Top Banner

of 57

jentoft_diffusereflectance_250108

Jun 03, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/12/2019 jentoft_diffusereflectance_250108

    1/57

    Modern Methods in HeterogeneousModern Methods in Heterogeneous

    Catalysis ResearchCatalysis Research

    Diffuse ReflectanceDiffuse Reflectance

    IR and UVIR and UV--vis Spectroscopyvis Spectroscopy

    Abteilung Anorganische ChemieFritz-Haber-Institut der Max-Planck-Gesellschaft

    Faradayweg 4-6, 14195 Berlin

    January 25, 2008

    FriederikeFriederike C. JentoftC. Jentoft

  • 8/12/2019 jentoft_diffusereflectance_250108

    2/57

    F.C

    .JentoftFHIBerlin2008

    OutlineOutline

    1. Introduction & Challenges2. Fundamentals of Transmission and Reflection Spectroscopy

    - Lambert-Beer law

    - Scattering and reflection phenomena- Schuster-Kubelka-Munk theory

    3. Experimental

    - Integrating spheres- Mirror optics

    - Fiber optics

    4. Applications- Bulk structure

    - Surface species / functional groups

    - Probing surface sites

    - Reaction intermediates and products

    - Gas phase analysis

  • 8/12/2019 jentoft_diffusereflectance_250108

    3/57

    F.C

    .JentoftFHIBerlin2008

    MIRMIR -- NIRNIR visvis UVUV

    electronic transitions, vibrations (rotations)

    Type oftransition

    Spectral range

    Molecular rotationElectronic

    excitation

    X-ray

    radiation

    InfraredRadio waves

    Micro waves

    F M N

    visvis UV

    Mid IR (MIR) Near IR (NIR) UV-vis

    Wavenumber/ cm-1

    3300 to 250 12500 to 3300 50000 to 12500

    Wavelength /nm

    3000 to(25000-40000)

    (700-1000) to3000

    200 to 800

    Energy /eV 6.2 to 1.5

    Molecular

    vibrations

  • 8/12/2019 jentoft_diffusereflectance_250108

    4/57

    F.C

    .JentoftFHIBerlin2008

    Spectroscopy with Powder SamplesSpectroscopy with Powder Samples

    How to measure spectra of a powderous solid?

    Absorption as a function of wavelength, qualitatively and

    quantitatively

  • 8/12/2019 jentoft_diffusereflectance_250108

    5/57

    F.C

    .JentoftFHIBerlin2008

    Interaction of Light with SampleInteraction of Light with Sample

    how to extract absorption properties from transmitted light?

    how to deal with reflection and scattering?

    incident light

    reflection at phase boundaries

    transmitted light

    scattered light

    absorption of light

    (luminescence)

  • 8/12/2019 jentoft_diffusereflectance_250108

    6/57

    F.C

    .JentoftFHIBerlin2008

    How to Deal with Phase Boundary ReflectionHow to Deal with Phase Boundary Reflection

    fraction of reflected light can be eliminated through referencemeasurement with same materials (cuvette+ solvent)

    incident light

    reflection at phase boundaries

    transmitted light

  • 8/12/2019 jentoft_diffusereflectance_250108

    7/57

    F.C

    .JentoftFHIBerlin2008

    Interaction of Light with SampleInteraction of Light with Sample

    Absorption properties from transmitted light?

    incident light transmitted light

    absorption of light

    i d i h d S l b iT itt d Li ht d S l Ab ti

  • 8/12/2019 jentoft_diffusereflectance_250108

    8/57

    F.C

    .JentoftFHIBerlin2008

    Transmitted Light and Sample AbsorptionTransmitted Light and Sample Absorption

    PropertiesProperties

    separation of variables and integration

    sample thickness: l =lI

    I

    dlcI

    dI

    00

    decrease of I in an

    infinitesimally thin layer

    lcII =0

    ln

    dlcIdlkIdI ==c: molar concentration of absorbing species [mol/m-3]: the molar napierian extinction coefficient [m2/mol]

    I0 I

    0I

    I= : transmittance

    T itt d Li ht d S l Ab tiT itt d Li ht d S l Ab ti

  • 8/12/2019 jentoft_diffusereflectance_250108

    9/57

    F.C

    .JentoftFHIBerlin2008

    Transmitted Light and Sample AbsorptionTransmitted Light and Sample Absorption

    PropertiesProperties

    === 1

    0

    lce

    I

    I

    )ln( === lcBAe

    )log(10 == lcA

    extinction E (means absorbed + scattered light)absorbance A (A 10 or Ae)

    optical density O.D.

    all these quantities are DIMENSIONLESS !!!!

    Lambert-Beer Law

    standard spectroscopysoftware uses A10!

    (decadic) absorbancedekadische Absorbanz

    napierian absorbanceNapier-Absorbanz

  • 8/12/2019 jentoft_diffusereflectance_250108

    10/57

    F.C

    .JentoftFHIBerlin2008

    Interaction of Light with SampleInteraction of Light with Sample

    incident light

    reflection at phase boundaries

    transmitted light

    scattered light

    absorption of light

    (luminescence)

  • 8/12/2019 jentoft_diffusereflectance_250108

    11/57

    F.C

    .JentoftFHIBerlin2

    008

    ScatteringScattering

    Scattering is negligible in molecular disperse media (solutions)

    Scattering is considerable for colloids and solids when thewavelength is in the order of magnitude of the particle size

    Wavenumber Wavelength

    Mid-IR (MIR) 3300 to 250 cm-1 3 to (25-40) mNear-IR (NIR) 12500 to 3300 cm-1 (700-1000) to 3000 nmUV-vis 50000 to 12500 cm-1 200 to 800 nm

    Scattering is reduced through embeddingof the particles in media with similarrefractive index: KBr wafer (clear!)technique, immersion in Nujol

    But Reaction with Material Used forBut Reaction with Material Used for

  • 8/12/2019 jentoft_diffusereflectance_250108

    12/57

    F.C

    .JentoftFHIBerlin2

    008

    1100 1000 900 800 7000

    20

    40

    60

    Wavenumbers (cm-1)

    1083

    1073

    1059983

    960

    896

    862 788

    (NaCl)(KBr)(CsCl)

    Tra

    nsmittance

    (%)

    But.Reaction with Material Used forBut.Reaction with Material Used for

    EmbeddingEmbedding

    H4PVMo11O40

    Reaction with diluent possible

    Dilution usually not suitable for experiments at high T/ with reactive gases

  • 8/12/2019 jentoft_diffusereflectance_250108

    13/57

    F.C

    .JentoftFHIBerlin2

    008

    Limitations of Transmission SpectroscopyLimitations of Transmission Spectroscopy

    5000 4500 4000 3500 3000 2500 2000 15000

    1

    2

    3

    4

    5

    6

    7sulfated ZrO

    2after activation at 723 K

    Transmittance(%

    )

    Wavenumber / cm-1

    Sulf-supporting wafer

  • 8/12/2019 jentoft_diffusereflectance_250108

    14/57

    F.C

    .JentoftFHIBerlin2

    008

    Can We Use the Reflected Light?Can We Use the Reflected Light?

    Instead of measuring the transmitted light, we could measure thereflected light

    Can we extract the absorption properties of our sample from thereflected light?

    Detector

  • 8/12/2019 jentoft_diffusereflectance_250108

    15/57

    F.

    C.

    JentoftFHIBerlin2

    008

    SpecularSpecular Reflection (NonReflection (Non--Absorbing Media)Absorbing Media)

    fraction of reflected light increases with

    depends on and ratio of the refractive indices (Snell law)

    insignificant for non-absorbing media, for air/glass about 4%

    incident beam reflected beam

    n0

    n1>n0

    refracted beam

    n1surface SIDE VIEW

  • 8/12/2019 jentoft_diffusereflectance_250108

    16/57

    F.

    C.

    JentoftFHIBerlin2

    008

    Diffuse ReflectionDiffuse Reflection

    Intensity of diffusely reflected lightindependent of angle of incidence

    Result of multiple reflection, refraction, anddiffraction (scattering) inside the sample

  • 8/12/2019 jentoft_diffusereflectance_250108

    17/57

    F.

    C.

    JentoftFHIBerlin2

    008

    Diffuse ReflectionDiffuse Reflection

    Randomly oriented crystals in a powder:light diffusely reflected

    Flattening of the surface or pressing of apellet can cause orientation of the crystals,

    which are elementary mirrors Causes glossy peaks if angle of observationcorresponds to angle of incidence

    Solution: roughen surface with (sand)paper or

    press between rough paper, or use differentobservation angle!

  • 8/12/2019 jentoft_diffusereflectance_250108

    18/57

    F.

    C.

    JentoftFHIBerlin2

    008

    SpecularSpecular & Diffuse Reflection& Diffuse Reflection

    Reflection of radiantenergy at boundary

    surfaces

    mirror-type(polished) surfaces

    mat (dull, scattering)surfaces

    mirror-type reflectionmirror reflection

    surface reflectionspecular reflectionregulre Reflexion

    gerichtete Reflexion

    reflecting power calledreflectivity

    reflecting power calledreflectance

    multiple reflections atsurfaces of small

    particles

  • 8/12/2019 jentoft_diffusereflectance_250108

    19/57

    F.

    C.

    JentoftFHIBerlin2

    008

    Light scatteringdeflection of electromagnetic or corpuscular

    radiation from its original direction

    Raman-scattering

    Compton-scattering

    Brillouin-scattering

    elastic

    ScatteringScattering

    Rayleigh-scattering > d

    wavelength dependent: 1/ 4

    no preferred direction

    Mie-scattering d

    wavelength independent

    preferentially in forward (andbackward) direction

    inelastic

    l hR l i h dd Mi S tt i

  • 8/12/2019 jentoft_diffusereflectance_250108

    20/57

    F.

    C.

    JentoftFHIBerlin2

    008

    RayleighRayleigh-- andand MieMie--ScatteringScattering

    Quelle: RMPP on line

    d >> : Mie-Theory approaches laws

    of geometric optics

    h

    d < : Rayleigh-Scatteringisotropic distribution

    d = : Mie-Scatteringin forward and backward directions

    d > : Mie-Scatteringpredominantly in forward direction

    T i l C t l t P ti lT i l C t l t P ti l

  • 8/12/2019 jentoft_diffusereflectance_250108

    21/57

    F.

    C.

    JentoftFHIBerlin2

    008

    Typical Catalyst ParticlesTypical Catalyst Particles

    Need theory that treats light transfer in an absorbing and scattering

    medium Want to extract absorption properties!

    ZrO2

    ca. 20 m

    scanning electron microscopy image

  • 8/12/2019 jentoft_diffusereflectance_250108

    22/57

    A Si lifi d D i ti f th SKM F tiA Simplified De i ation of the SKM F nction

  • 8/12/2019 jentoft_diffusereflectance_250108

    23/57

    F.

    C.

    JentoftFHIBerlin2

    008

    A Simplified Derivation of the SKM FunctionA Simplified Derivation of the SKM Function

    S

    K

    R

    RRF =

    =

    2

    )1()(

    2

    2 constants are needed to describe the reflectance:absorption coefficient Kscattering coefficient S

    Kubelka-Munk functionremission function

    Assume black background, so that R0 = 0Make sample infinitely thick, i.e. no transmitted light (typical samplethickness in experiment ca. 3 mm)

    )2( SKKSK

    SR

    +++=

    for K0 (no absorption) R1, i.e. all light reflectedfor S0 (no scattering) R0, i.e. all light transmitted or absorbed

    T ansmission s Reflection Spect oscopTransmission vs Reflection Spectroscopy

  • 8/12/2019 jentoft_diffusereflectance_250108

    24/57

    F.

    C.

    JentoftFHIBerlin2008

    Transmission vs. Reflection SpectroscopyTransmission vs. Reflection Spectroscopy

    TA ln=R

    RRF

    2

    )1()(2=

    0.0 0.2 0.4 0.6 0.8 1.00

    1

    2

    3

    4

    5

    6

    Kubelka-Munk-function

    Absorbance

    Absorbance/

    Kubelka-Munk

    Transmittance / Reflectance

    For quantification and to be able to calculate difference spectra:calculate absorbance / Kubelka-Munk function

    Transmission vs Reflection SpectroscopyTransmission vs Reflection Spectroscopy

  • 8/12/2019 jentoft_diffusereflectance_250108

    25/57

    F.

    C.

    JentoftFHIBerlin2008

    Transmission vs. Reflection SpectroscopyTransmission vs. Reflection Spectroscopy

    200 400 600 800

    0.0

    0.1

    0.2

    0.3

    0.40.5

    0.6

    0.7

    0.8

    0.91.0

    or RC+A

    TC+A

    TC+A

    Transmittance

    orReflectance

    Wavelength / nm

    or RC+A

    TA ln=R

    RRF

    2

    )1()(

    2=

    200 400 600 8000.0

    0.1

    0.2

    0.3

    0.4

    0.50.6

    0.7

    0.8

    0.9

    1.0

    higher reflectance

    lower reflectance

    KubelkaMunkfunction

    Wavelength / nm

    200 400 600 8000.0

    0.1

    0.2

    0.3

    0.4

    0.50.6

    0.7

    0.8

    0.9

    1.0

    higher transmission

    lower transmission

    Absorbance

    Wavelength / nm

    Spectroscopy in TransmissionSpectroscopy in Transmission

  • 8/12/2019 jentoft_diffusereflectance_250108

    26/57

    F.

    C.

    JentoftFHIBerlin2008

    Spectroscopy in TransmissionSpectroscopy in Transmission

    reference nothing= void, empty cell, cuvette

    with solvent

    Catalyst

    LightSource

    Detector

    spectrum:transmission ofcatalyst vs.transmission ofreference

    Double beam spectrometer: direct comparison sample - reference Single beam spectrometer: consecutive measurement

    Diffuse Reflectance SpectroscopyDiffuse Reflectance Spectroscopy

  • 8/12/2019 jentoft_diffusereflectance_250108

    27/57

    F.

    C.

    JentoftFHIBerlin2008

    Diffuse Reflectance SpectroscopyDiffuse Reflectance Spectroscopy

    referencewhite standard

    Catalyst

    LightSource

    Detector

    spectrum:reflectance ofsample (catalyst)vs. reflectance of

    standard

    Need element that collects diffusely reflected light

    Need to avoid specularly reflected light Need reference standard (white standard)

    White StandardsWhite Standards

  • 8/12/2019 jentoft_diffusereflectance_250108

    28/57

    F.C.

    JentoftFHIBerlin2008

    White StandardsWhite Standards

    Spectralon thermoplastic resin, excellent reflectance in UV-vis region

    KBr: IR (43500-400 cm-1)

    BaSO4: UV-vis

    MgO: UV-vis

    Spectralon: UV-vis-NIR

    SpecularSpecular Reflection: Angular DistributionReflection: Angular Distribution

  • 8/12/2019 jentoft_diffusereflectance_250108

    29/57

    F.C.

    JentoftFHIBerlin2008

    SpecularSpecular Reflection: Angular DistributionReflection: Angular Distribution

    the intensity of the specularly reflected light is largest at an azimuthof 180

    incident beam reflected beam

    surfaceTOP VIEW

    azimuth180

    azimuth

  • 8/12/2019 jentoft_diffusereflectance_250108

    30/57

  • 8/12/2019 jentoft_diffusereflectance_250108

    31/57

    MirrorMirror OpticalOptical AccessoryAccessory

  • 8/12/2019 jentoft_diffusereflectance_250108

    32/57

    F.C.

    JentoftFHIBerlin2008

    MirrorMirror OpticalOptical AccessoryAccessory

    First ellipsoidal mirror focuses beam on sample

    Second ellipsoidal mirror collects reflected light

    20% of the diffusely reflected light is collected

    can be placed into the normal

    sample chamber (in line with

    beam), no rearrangement

    necessary

    Source

    Detector

    FiberFiber OpticsOptics forfor UVUV--visvis

  • 8/12/2019 jentoft_diffusereflectance_250108

    33/57

    F.C.

    JentoftFHIBerlin2008

    FiberFiber OpticsOptics forfor UVUV visvis

    Light conducted through total reflectance Fiber bundle with 6 around 1 configuration: illumination through 6 (45),

    signal through 1

    Avoids collection of specularly reflected light

    Bilder: Hellma (http://www.hellma-worldwide.de) and CICP (http://www.cicp.com/home.html)

    Methods in Catalysis ResearchMethods in Catalysis Research

  • 8/12/2019 jentoft_diffusereflectance_250108

    34/57

    F.C.

    JentoftFHIBerlin

    2008

    Methods in Catalysis ResearchMethods in Catalysis Research

    UV-vis spectroscopy[Transmission]

    UV-vis spectroscopy

    Diffuse Reflectance

    Diffuse reflectance UV-vis spectroscopy

    (DR-UV-vis spectroscopy or DRS)

    Collecting Elements:- Mirror optics

    - Integrating spheres- Fiber optics

    IR spectroscopyTransmission

    Fourier-transform infraredspectroscopy (FTIR

    spectroscopy)

    Diffuse Reflectance

    Diffuse reflectance

    Fourier-transform infraredspectroscopy (DRIFTS)

    Collecting elements:- Mirror optics

    - Integrating spheres

    Possible TransitionsPossible Transitions

  • 8/12/2019 jentoft_diffusereflectance_250108

    35/57

    F.C.

    JentoftFHIBerlin

    2008

    Possible Transitions

    Transitions/

    Contributionfrom

    Vibrations Electronic transitions

    Catalyst bulk Lattice, structural units Band gap energy ofsemiconductors

    Catalyst surface Stretching and deformationmodes of functional groups,

    vibrations of supportedspecies: metal complexes

    Charge transfer and d-dtransitions of metal

    complexes, metal particles

    Probing of surface

    properties (functionalgroups), adsorbed reactants

    Probing of surface

    properties, adsorbedreactants

    In situ: adsorbed reactionintermediates / products

    In situ: reactionintermediates

    Adsorbates

    Gas phase Can be unwantedProduct analysis

  • 8/12/2019 jentoft_diffusereflectance_250108

    36/57

    Limitations of Transmission IR SpectroscopyLimitations of Transmission IR Spectroscopy

  • 8/12/2019 jentoft_diffusereflectance_250108

    37/57

    F.C.

    JentoftFHIBerlin

    2008

    p pyp py

    5000 4000 3000 2000 10000.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    sulfated ZrO2after activation at 723 K

    Tr

    ansmittance

    Wavenumber / cm-1

    ComparisonComparisonTransmissionTransmission Diffuse Reflectance (IR)Diffuse Reflectance (IR)

  • 8/12/2019 jentoft_diffusereflectance_250108

    38/57

    F

    .C.

    JentoftFHIBerlin

    2008

    5000 4000 3000 2000 10000.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    sulfated ZrO2after activation at 723 K

    Tr

    ansmittance

    Wavenumber / cm-1

    5000 4000 3000 2000 10000.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2sulfated ZrO

    2after activation at 723 K

    Tr

    ansmittance

    Wavenumber / cm-1

    R

    eflectance

    Transmission: self-supporting waferReflectance: powder bed

    Spectra can have very different appearance

    Transmittance decreases, reflectance increases with increasing wavenumbe

    TransmissionTransmission -- Diffuse Reflectance (IR)Diffuse Reflectance (IR)

    ComparisonComparisonTransmissionTransmission Diffuse Reflectance (IR)Diffuse Reflectance (IR)

  • 8/12/2019 jentoft_diffusereflectance_250108

    39/57

    F

    .C.

    JentoftFHIBerlin

    2008

    TransmissionTransmission -- Diffuse Reflectance (IR)Diffuse Reflectance (IR)

    Vibrations of surface species may be more evident in DR spectra

    5000 4000 3000 20003.0

    3.2

    3.4

    3.63.8

    4.0

    4.2

    4.4

    4.6

    4.8

    5.0

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    AbsorbanceA

    Napi

    er

    Wavenumber / cm-1

    Kubelk

    a-MunkFunc

    tion

    sulfated ZrO2after activation at 723 K

    Transmission: self-supporting waferReflectance: powder bed

    OH vibrations

    SO vibrations

    Possible TransitionsPossible Transitions

  • 8/12/2019 jentoft_diffusereflectance_250108

    40/57

    F

    .C.

    JentoftFHIBerlin

    2008

    Transitions/Contributionfrom

    Vibrations Electronic transitions

    Catalyst bulk Lattice, structural units Band gap energy ofsemiconductors

    Catalyst surface Stretching and deformationmodes of functional groups,

    vibrations of supportedspecies: metal complexes

    Charge transfer and d-dtransitions of metal

    complexes, metal particles

    Probing of surface

    properties (functionalgroups), adsorbed reactants

    Probing of surface

    properties, adsorbedreactants

    In situ: adsorbed reactionintermediates / products

    In situ: reactionintermediates

    Adsorbates

    Gas phase Can be unwantedProduct analysis

    Band Gap Determination (DRBand Gap Determination (DR--UVUV--vis)vis)

  • 8/12/2019 jentoft_diffusereflectance_250108

    41/57

    F

    .C.

    JentoftFHIBerlin

    2008

    Approximate composition C6N8Hz

    Friedel-Crafts Acylation

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

    0

    500

    1000

    1500

    2000

    2500

    3000GLine fit of Data1_G

    (F(R)*E)2

    Energy / eV

    Eg= 2.92 eV

    SN3055, RT, after treatment at 473 in N2

    200 300 400 500 600 700 8000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Catalyst: F. Goettmann, MPI KG GolmBand gap determination: Weber, J. Catal. 1996

    Reflectanc

    e

    Wavelength / nm

    25C_air_c126C_N2_c19, after heating to 473 K

    SN 3055 sample29.09.2006

    DispersedDispersed VVxxOOyy Species (DRSpecies (DR--UVUV--vis)vis)

  • 8/12/2019 jentoft_diffusereflectance_250108

    42/57

    F

    .C.

    JentoftFHIBerlin

    2008

    yy

    Kondratenko and Baerns, Appl. Catal. 2001

    9.5 wt% VOx/ Al2O30.5 wt% VOx/Al2O3

    +

    CT bands at 359 and 376 nm: isolated octahedrally co-ordinated V5+

    species

    CT bands at 468 and 535 nm: octahedraly co-ordinated V5+ species in

    V2O5 clusters (XRD shows crystalline form of V2O5)

    Possible TransitionsPossible Transitions

  • 8/12/2019 jentoft_diffusereflectance_250108

    43/57

    F

    .C.

    JentoftFHIBerlin

    2008

    Transitions/Contributionfrom

    Vibrations Electronic transitions

    Catalyst bulk Lattice, structural units Band gap energy ofsemiconductors

    Catalyst surface Stretching and deformationmodes of functional groups,

    vibrations of supportedspecies: metal complexes

    Charge transfer and d-dtransitions of metal

    complexes, metal particles

    Probing of surface

    properties (functionalgroups), adsorbed reactants

    Probing of surface

    properties, adsorbedreactants

    In situ: adsorbed reactionintermediates / products

    In situ: reactionintermediates

    Adsorbates

    Gas phase Can be unwantedProduct analysis

    CO Adsorption at RT on Cu/ZrOCO Adsorption at RT on Cu/ZrO22

  • 8/12/2019 jentoft_diffusereflectance_250108

    44/57

    F

    .C.

    JentoftFHIBerlin

    2008

    Identification of copper oxidation states based on COfrequency can be ambiguous

    2200 2150 2100 2050 2000 1950

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    Cu0

    300C / 2% H2

    300C / 20% O2

    450C / 15% H2

    Kub

    elkaMunkfu

    nction

    Wavenumber / cm-1

    2111

    2106

    2098

    Cu+

    ?

    CO Desorption at RT on Cu/ZrOCO Desorption at RT on Cu/ZrO22

  • 8/12/2019 jentoft_diffusereflectance_250108

    45/57

    F

    .C.

    JentoftFHIBerlin

    2008

    Identification via stability of Cu-CO complex

    0 50 100 150 200 250 300 3500

    20

    40

    60

    80

    100

    after 20% O2

    after 2% H2

    norm.Intensity

    Purging time / min

    Possible TransitionsPossible Transitions

  • 8/12/2019 jentoft_diffusereflectance_250108

    46/57

    F

    .C.

    JentoftFHIBerlin

    2008

    Transitions/Contributionfrom

    Vibrations Electronic transitions

    Catalyst bulk Lattice, structural units Band gap energy ofsemiconductors

    Catalyst surface Stretching and deformationmodes of functional groups,

    vibrations of supportedspecies: metal complexes

    Charge transfer and d-dtransitions of metal

    complexes, metal particles

    Probing of surface

    properties (functionalgroups), adsorbed reactants

    Probing of surface

    properties, adsorbedreactants

    In situ: adsorbed reactionintermediates / products

    In situ: reactionintermediates

    Adsorbates

    Gas phase Can be unwantedProduct analysis

  • 8/12/2019 jentoft_diffusereflectance_250108

    47/57

    ExampleExample

  • 8/12/2019 jentoft_diffusereflectance_250108

    48/57

    F

    .C.

    JentoftFHIBerlin

    2008

    450 500 550 600 650 700 750 800

    0.0

    0.1

    0.2

    Absorbance

    Wavelength / nm

    450 500 550 600 650 700 750 8000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Absorbance

    Wavelength / nm

    Methylene blue adsorbed on TiO2Methylene blue in aqueous solution

    Possible TransitionsPossible Transitions

  • 8/12/2019 jentoft_diffusereflectance_250108

    49/57

    F

    .C.

    JentoftFHIBerlin

    2008

    Transitions/Contributionfrom

    Vibrations Electronic transitions

    Catalyst bulk Lattice, structural units Band gap energy ofsemiconductors

    Catalyst surface Stretching and deformationmodes of functional groups,

    vibrations of supportedspecies: metal complexes

    Charge transfer and d-dtransitions of metal

    complexes, metal particles

    Probing of surfaceproperties (functionalgroups), adsorbed reactants

    Probing of surfaceproperties

    In situ: adsorbed reactionintermediates / products

    In situ: reactionintermediates

    Adsorbates

    Gas phase Can be unwantedProduct analysis

    Origin of Surface and Gas Phase ContributionsOrigin of Surface and Gas Phase Contributions

  • 8/12/2019 jentoft_diffusereflectance_250108

    50/57

    F.C.

    JentoftFHIBerlin

    2008

    HEATER

    Incident light

    Diffusely reflected light

    IR transparent window

    DRIFTS:DRIFTS: nn--Butane IsomerizationButane Isomerization

  • 8/12/2019 jentoft_diffusereflectance_250108

    51/57

    F.C.

    JentoftFHIBerlin

    2008

    CH 3

    CH3CH2

    CH2CH3

    CH3

    CHCH3

    3500 3000 2500 2000 15000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.82.0

    Ku

    belkaMunkf

    unction

    Wavenumber / cm -1

    Sulf. ZrO2, 5 kPan-C4 in N2, 373 K

    Time on stream

    CH stretchingads. H

    2O

    DRDR--UVUV--vis:vis: nn--Butane IsomerizationButane Isomerization

  • 8/12/2019 jentoft_diffusereflectance_250108

    52/57

    F.C.

    JentoftFHIBerlin

    2008

    250 300 3500

    1

    2

    3

    4 18 h

    4 h

    1 h

    activated

    Kubelka-Munk

    function

    Wavelength / nm

    295

    400 500 6000.00

    0.02

    0.04

    0.06

    0.08

    0.10

    380

    450

    CH 3

    CH3CH2

    CH2

    CH3

    CH3

    CH

    CH3

    Sulf. ZrO2, 5 kPan-C4 in N2, 373 K

    Time onstream

    +

    +

    +

    300 nm

    350-370 nm

    430-440nm

    Possible TransitionsPossible Transitions

  • 8/12/2019 jentoft_diffusereflectance_250108

    53/57

    F.C.

    JentoftFHIBerlin

    2008

    Transitions/Contributionfrom

    Vibrations Electronic transitions

    Catalyst bulk Lattice, structural units Band gap energy ofsemiconductors

    Catalyst surface Stretching and deformationmodes of functional groups,

    vibrations of supportedspecies: metal complexes

    Charge transfer and d-dtransitions of metal

    complexes, metal particles

    Probing of surfaceproperties (functionalgroups), adsorbed reactants

    Probing of surfaceproperties, adsorbedreactants

    In situ: adsorbed reactionintermediates / products

    In situ: reactionintermediates

    Adsorbates

    Gas phase Can be unwantedProduct analysis

    DRIFTS: Preferential Oxidation of CO (PROX)DRIFTS: Preferential Oxidation of CO (PROX)

  • 8/12/2019 jentoft_diffusereflectance_250108

    54/57

    F.C.

    JentoftFHIBerlin

    2008

    3500 3000 2500 20000.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    Kubelka-Mu

    nkfunction

    Wavenumber / cm-1

    CO + O2 CO2in excess H2

    1% Pt/CeO2 at T = 383 K, 1% CO/1% O2 in H2

    Time onstream

  • 8/12/2019 jentoft_diffusereflectance_250108

    55/57

    Possible TransitionsPossible Transitions

  • 8/12/2019 jentoft_diffusereflectance_250108

    56/57

    F.C.

    JentoftFHIBerlin

    2008

    Transitions/Contributionfrom

    Vibrations Electronic transitions

    Catalyst bulk Lattice, structural units Band gap energy ofsemiconductors

    Catalyst surface Stretching and deformationmodes of functional groups,

    vibrations of supportedspecies: metal complexes

    Charge transfer and d-dtransitions of metal

    complexes, metal particles

    Probing of surfaceproperties (functionalgroups), adsorbed reactants

    Probing of surfaceproperties

    In situ: adsorbed reactionintermediates / products

    In situ: reactionintermediates

    Adsorbates

    Gas phase Can be unwantedProduct analysis

  • 8/12/2019 jentoft_diffusereflectance_250108

    57/57