Top Banner
A.lampu sodium/natrium Lampu uap natrium adalah lampu lucutan gas yang menggunakan natrium dalam keadaan terusik untuk menghasilkan cahaya. Ada dua jenis dari lampu ini: tekanan rendah dan tekanan tinggi. Daftar isi 1 Natrium tekanan rendah 2 Natrium tekanan tinggi 3 Pertimbangan polusi cahaya 4 Referensi Natrium tekanan rendah Spektrum cahaya dari lampu natrium tekanan rendah. Pita oranye di sebelah kiri adalah pancaran atomik jalur-D natrium, membentuk kira-kira 90% dari pancaran bahaya lampu jenis ini Lampu natrium tekanan rendah (LPS), juga dikenal sebagai lampu natrium oksida (SOX), terdiri dari pelindung hampa luar dari gelas yang dilapisi dengan lapisan pemantul inframerah dari indium timah oksida , sebuah bahan semikonduktor yang memungkinkan cahaya tampak untuk lewat dan memantulkan kembali inframerah , menjaganya agar tidak lolos. Lampu mempunyai pipa-U borosilikat bagian dalam yang berisi natrium padat serta sedikit gas neon dan argon (campuran Penning ) untuk memulai lucutan gas, jadi ketika lampu dihidupkan, lampu ini memancarkan cahaya merah kabur untuk memanaskan logam natrium dan dalam beberapa menit berubah menjadi oranye terang setelah logam natrium menguap. Lampu ini menghasilkan cahaya hampir monokromatik pada panjang gelombang 589.3 nm (sebenarnya dua panjang gelombang pada 589.0 dan 589.6 nm). Sebagai hasilnya, warna dari benda yang disinari tidak dapat dibedakan dengan mudah.
37

jenis-jenis lampu

Jan 18, 2016

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: jenis-jenis lampu

A.lampu sodium/natrium

Lampu uap natrium adalah lampu lucutan gas yang menggunakan natrium dalam keadaan terusik untuk menghasilkan cahaya. Ada dua jenis dari lampu ini: tekanan rendah dan tekanan tinggi.

Daftar isi

1 Natrium tekanan rendah 2 Natrium tekanan tinggi 3 Pertimbangan polusi cahaya 4 Referensi

Natrium tekanan rendah

Spektrum cahaya dari lampu natrium tekanan rendah. Pita oranye di sebelah kiri adalah pancaran atomik jalur-D natrium, membentuk kira-kira 90% dari pancaran bahaya lampu jenis ini

Lampu natrium tekanan rendah (LPS), juga dikenal sebagai lampu natrium oksida (SOX), terdiri dari pelindung hampa luar dari gelas yang dilapisi dengan lapisan pemantul inframerah dari indium timah oksida, sebuah bahan semikonduktor yang memungkinkan cahaya tampak untuk lewat dan memantulkan kembali inframerah, menjaganya agar tidak lolos. Lampu mempunyai pipa-U borosilikat bagian dalam yang berisi natrium padat serta sedikit gas neon dan argon (campuran Penning) untuk memulai lucutan gas, jadi ketika lampu dihidupkan, lampu ini memancarkan cahaya merah kabur untuk memanaskan logam natrium dan dalam beberapa menit berubah menjadi oranye terang setelah logam natrium menguap.

Lampu ini menghasilkan cahaya hampir monokromatik pada panjang gelombang 589.3 nm (sebenarnya dua panjang gelombang pada 589.0 dan 589.6 nm). Sebagai hasilnya, warna dari benda yang disinari tidak dapat dibedakan dengan mudah.

Lampu LPS adalah sumber cahaya elektrik yang paling efisien, mencapai hinggga 200 lm/W [1] , terutama karena keluarannya adalah cahaya dengan panjang gelombang yang mendekati sensitivitas puncak dari mata manusia. Sebagai hasilnya, lampu ini sering digunakan untuk pencahayaan luar ruang seperti lampu jalan dan pencahayaan keamanan dimana perbedaan warna dianggap tidak penting.

Lampu LPS tersedia dalam rating daya dari 10 W hingga 180 W, bola lampu yang lebih panjang membuat masalah desain dan rekayasa menjadi sulit.

Page 2: jenis-jenis lampu

Lampu LPS lebih mirip dengan lampu pendar daripada lampu lucutan intensitas tinggi karena lampu ini bertekanan rendah, sumber lucutan berintensitas rendah dan bentuknya yang mirip lampu pendar. Juga seperti lampu pendar, lampu ini tidak memperlihatkan busur cerah seperti lampu HID lainnya, lampu ini memancarkan sinar lembut, menghasilkan sorotan yang lebih rendah. Tak seperti lampu HID lainnya, yang dapat mati total saat tegangan ditiadakan, lampu natrium tekanan rendah membusur kembali ke kecerahan maksimum dengan cepat.

Karakteristik unik lain dari lampu LPS adalah intensitas keluaran cahaya lampu ini tidak berkurang seiring dengan penuaan, tidak seperti lampu jenis lain. Sebagai contohnya, lampu HID uap raksa menjadi sangat redup saat semakin tua meskipun tetap memakan daya yang sama dengan lampu baru. Lampu LPS sedikit meningkatkan konsumsi daya (kira-kira 10%) sebelum akhir hidupnya, yang biasanya sekitar 18.000 jam penggunaan untuk lampu modern.

Natrium tekanan tinggi

Lampu natrium tekanan tinggi Philips SON-T Master 600W[2]

Spektrum cahaya dari lampu natrium tekanan tinggi

Gedung yang diterangi dengan lampu natrium tekanan tinggi

Page 3: jenis-jenis lampu

Lampu natrium tekanan tinggi (HPS) lebih kecil dan mengandung unsur tambahan seperti raksa, dan menghasilkan cahaya oranye kemerahjambuan. Beberapa bola lampu juga menghasilkan cahaya putih kebiruan. Ini mungkin dari cahaya raksa sebelum natrium menguap sempurna. Jalur-D natrium adalah sumber cahaya utama dari lampu HPS, dan spektrum sempit ini dilebarkan oleh natrium tekanan tinggi dalam l ampu, karena pelebaran ini dan pancaran dari raksa, warna benda yang diterangi dapat dibedakan. Ini membuatnya digunakan di tempat yang diinginkan pembedaan warna yang baik.

Lampu HPS disukai untuk penyinaran tumbuhan dalam ruang karena lebarnya spektrum suhu warna yang dihasilkan dan efisiensinya yang relatif tinggi.

Lampu natrium tekanan tinggi a cukup efisien, kira-kira 100 lm/W.

Karena reaksi kimia dari busur natrium tekanan tinggi yang sangat tinggi, tabung lucutan biasanya dibuat dari alumina bening.

Xenon pada tekanan rendah digunakan sebagai gas starter pada lampu HPS. Xenon mempunyai konduktivitas termal dan potensial ionisasi terendah di antara seluruh gas mulia non-radioaktif. Sebagai gas mulia, xenon tidak mengganggu reaksi kimia dalam lampu. Konduktivitas termal yang rendah mengurangi kehilangan bahang dalam lampu saat beroperasi, dan potensial ionisasi yang rendah menyebabkan tegangan dadal dari gas menjadi relatif rendah saat dingin, memungkinkan penghidupan yang cepat dan mudah.

B.lampu halogen

Lampu halogen adakan sebuah lampu pijar dimana sebuah filamen wolfram disegel di dalam sampul transparan kompak yang diisi dengan gas lembam dan sedikit unsur halogen seperti iodin atau bromin. Putaran halogen menambah umur dari bola lampu dan mencegah penggelapan kaca sampul dengan mengangkat serbuk wolfram dari bola lampu bagian dalam kembali ke filamen[1]. Lampu halogen dapat mengoperasikan filamennya pada suhu yang lebih tinggi dari lampu pijar biasa tanpa pengurangan umur. Lampu ini memberikan efisiensi yang lebih tinggi dari lampu pijar biasa (10-30 lm/W), dan juga memancarkan cahaya dengan suhu warna yang lebih tinggi[2].

Prinsip operasi

Page 4: jenis-jenis lampu

Bola lampu halogen

Foto filamen lampu halogen setelas beberapa ratus jam digunakan

Fungsi dari halogen dalam lampu adalah untuk membalik reaksi kimia penguapan wolfram dari filamen. Pada lampu pijar biasa, serbuk wolfram biasanya ditimbun pada bola lampu. Putaran halogen menjaga bola lampu bersih dan keluaran cahaya tetap konstan hampir seumur hidup. Pada suhu sedang, halogen bereaksi dengan wolfram yang menguap, halida wolfram(V) bromin yang terbentuk dibawa berputar oleh pengisi gas lembam. Pada suatu saat ini akan mencapai daerah bersuhu tinggi (filamen yang memijar), dimana ini akan berpisah, melepaskan wolfram dan membebaskan halogen untuk mengulangi proses[3]. Untuk membuat reaksi tersebut, suhu keseluruhan bola lampu harus lebih tinggi daripada lampu pijar biasa. Bola lampu harus dibuat dari kuarsa leburan atau gelas dengan titik lebur tingi seperti alumina. Karena gelas kuarsa sangat kuat, tekanan gas dapat ditingkatkan, sehingga mengurangi laju penguapan dari filamen, memungkinkan untuk beroperasi pada suhu yang lebih tinggi untuk umur yang sama, sehingga menambah efisiensi dan keluaran cahaya[4]. Wolfram yang diuapkan dari bagian filamen yang lebih panas tidak selalu dikembalikan pada tempatnya semula, jadi bagian tertentu dari filamen menjadi sangat tipis dan akhirnya gagal. Regenerasi juga mungkin dilakukan dengan fluorin, tetapi reaksi kimianya terlalu kuat sehingga bagian lain dari bola lampu ikut direaksikan[5][6] .

Page 5: jenis-jenis lampu

C. Lampu Merkuri

Prinsip kerja lampu merkuri sama dengan prinsip kerja lampu fluoresen, yaitu cahaya yang dipancarkan berdasarkan terjadinya loncatan elektron (peluahan muatan) di dalam tabung.Sedangkan konstruksinya berbeda dengan lampu fluoresen. Lampu merkuriterdiri dari dua tabung, yaitu tabung dalam dari gelas kuarsa dan bohlamluar.Tabung dalam berisi uap merkuri dan sedikit gas argon. Dua elektroda utama dibelokkan pada kedua ujung tabung, dan sebuah elektroda pangasut dipasang pada posisi berdekatan dengan salah satu elektroda utama.Saat sumber listrik disambung, arus listrik yang mengaliri tidak akan cukupuntuk mencapai terjadinya loncatan muatan diantara kedua elektroda utama. Namun, ionisasi terjadi diantara salah satu elektroda utama (E1) dengan elektroda pengasut (Ep) melalui gas argon. Ionisasi gas argon ini akan menyebar d idalam tabung dalam menuju elektroda utama yang lain (E2).Panas akan timbul akibat pelepasan elektron y ang terjadi dalam gas argon,dan cukup untuk menguapkan merkuri. Hal ini menyebabkan tekanan gasdalam tabung meningkat tinggi. Arus mula bekerja sekitar 1,5 hingga 1,7 arus normal. Lampu akan menyala dalam waktu 5 sampai 7 menit. Cahaya awal berwarna kemerahan dan setelah kerja normal berwarna putih. Jika sumber listrik diputuskan, maka lampu tidak dapat dinyalakan kembali sampai tekanan di dalam tabung berkurang.Untuk dapat menghidupkan kembali lampu merkuri ini, perlu waktu sekitar 5 menit atau lebih. Bohlam luar dari gelas yang di sisi dalamnya dilapisi dengan bubuk fluoresen berfungsi sebagai rumah lampu dan untuk menstabilkan suhu disekitar tabung.Karena lampu merkuri ini adalah bagian dari lampu tabung, maka untukmengoperasikannya harus menggunakan balast sebagai pembatas arus. Biasanya balast ini berupa reaktor atau transformator, bergantung dari karakteristik lampunya.

Lampu merkuri bekerja pada faktor daya yang rendah, sehingga untuk meningkatkannya diperlukan kapasitor kompensasi yang dipasang secara paralel.

Ada berbagai macam jenis lampu merkuri yang ada dipasaran. Hanya sajamasing-masing produsen lampu merkuri memberikan nama-nama yang berbeda, sehingga menyulitkan konsumen untuk mengenal setiap jenis lampu merkurin ini.

Rangkaian dasar untuk mengendalikan lampu merkuri tekanan tinggi adalahsebagai berikut:

Keterangan :L : Lampu merkuriB : BalastC : kapasitor kompensasi

Page 6: jenis-jenis lampu

 Lampu Merkuri Beracun

Kita semua prihatin tentang lingkungan, terutama jika itu menyangkut kesehatan kita. Hari ini kita lebih sadar dari daur ulang program untuk kertas, plastik, kaca, dan logam. Tapi mengapa khawatir tentang daur ulang Lampu neon? Telah ditemukan bahwa lampu neon dan tabung dianggap limbah berbahaya di California ketika mereka dibuang karena mengandung merkuri.

Pada tahun 1995, Badan Perlindungan Lingkungan (EPA) mulai daur ulang yang aman dan pembuangan dari lampu neon, debit intensitas tinggi (HID) lampu yang digunakan dalam bisnis komersial dan industri. Pada 8 Februari 2006semua lampu neon di California harus didaur ulang.Lampu neon dan intensitas tinggi debit perlu merkuri untuk beroperasi. Efisiensi energi mereka berasal dari kemampuan merkuri untuk menghasilkan energi ultraviolet.Pada tahun 2003, produsen lampu digunakan beberapa 7 ton merkuri, yang berakhir di lampu.Universal limbah biasanya barang yang biasa dibuang ke tong sampah oleh rumah tangga dan usaha besar dan kecil, seperti lampu pijar dan neon.Emisi berbahaya terjadi ketika lampu pecah, sejumlah kecil merkuri dilepaskan ke atmosfir dan akhirnya meresap ke air tanah. Merkuri dalam lampu tidak terlihat dan volatile. Tapi udara merkuri diendapkan di darat dan di air. Suatu bentuk dari logam beracun dikenal sebagai metil merkuri, yang dapat terakumulasi dalam ikan dan kerang.Dengan beberapa merkuri 600-650000000 mengandung lampu yang dijual di AS setiap tahun, bahkan ini sejumlah kecil uap merkuri dapat menambahkan secara signifikan. Ancaman merkuri toksisitas telah banyak dilaporkan. Banyak masalah kesehatan yang terkait dengan merkuri. Oleh karena itu, kebutuhan untuk daur ulang sebagai cara menjaga merkuri dari memasuki ekosistem sangat mendesak. Sebuah program daur ulang untuk fasilitas secara signifikan dapat mengurangi ancaman merkuri.Bagaimana cara mendaur ulang lampu?Ketika datang waktu untuk memilih metode daur ulang, fasilitas eksekutif memiliki beberapa pilihan. Yang paling umum adalah dengan menggunakan pra-bayar wadah daur ulang. Fasilitas eksekutif membeli kontainer, berkemas lampu menghabiskan dan kapal mereka ke sebuah pendaur ulang. Dengan cara ini menghilangkan kebutuhan untuk ruang penyimpanan, sebagai fasilitas kapal lampu dapat digunakan segera.Metode kedua adalah pick-up layanan, yang menawarkan layanan daur ulang dan lampu lampu menghancurkan sistem. Lampu yang digunakan adalah dikemas ke dalam kotak atau drum serat, dan pick-up yang dijadwalkan dengan layanan daur ulang.Cara ketiga adalah memiliki sebuah truk pengiriman yang membawa lampu baru dan mengambil kembali yang lama, untuk biaya daur ulang. Karena truk sebaliknya akan kembali ke situs yang kosong, ini adalah cara yang sangat efisien untuk mendaur ulang lampu. Dari sudut pandang lingkungan, juga masuk akal. Transportasi berkurang dan penanganan ekstra dihilangkan.Waktu untuk memulai merkuri lampu-program daur ulang sekarang. Hal ini dimungkinkan untuk memulai membalikkan kerusakan lingkungan, dan itu semua dimulai di kantor manajemen fasilitas di mana manajer fasilitas dapat menerapkan program daur ulang.

Page 7: jenis-jenis lampu

D. fluorescent lamp

Lampu TL (Fluorescent Lamp) adalah lampu listrik yang memanfaatkan gas NEON dan lapisan Fluorescent sebagai pemendar cahaya pada saat dialiri arus listrik. Tabung lampu TL ini diisi oleh semacam gas yang pada saat elektrodanya mendapat tegangan tinggi gas ini akan terionisasi sehingga menyebabkan elektron-elektron pada gas tersebut bergerak dan memendarkan lapisan fluorescent pada lapisan tabung lampu TL. Karakteristik Lampu TL (Fluorescent Lamp) Karakteristik dari lampu TL ini, adalah mampu menghasilkan cahaya output per watt daya yang digunakan lebih tinggi daripada lampu bolam biasa (incandescent lamp). Prinsip Kerja Dan Karakteristik Lampu TL (Fluorescent Lamp),Prinsip Kerja Lampu TL (Fluorescent Lamp),Karakteristik Lampu TL (Fluorescent Lamp),definisi lampu TL,pengertian lampu TL,lampu TL,Fluorescent Lamp,lampu Fluorescent,lampu TL philips,lampu TL,harga lampu TL philips,jual lampu TL,mem-beli lampu TL,karakteristik lampu TL,pengertian lampu TL,prinsip kerja lampu TL,struktur lampu TL,bagian lampu TL,cara kerja lampu TL,sistem kerja lampu TL,prose kerja lampu TL,proses cahaya lampu TL,kelebihan lampu TL,keuntungan lampu TL,lampu TL hemat energi,lampu TL murah,lampu TL berkualitas,spesifikasi lampu TL,starter lampu TL,komponen lampu TL,menyalakan lampu TL,cara seting lampu TL,cara pasang lampu TL,memasang lampu TL,merakit lampu TL,intensitas cahaya lampu TL,efisiensi lampu TL,keunggulan lampu TL,lampu TL hemat energi,lampu hemat energi Sebagai contoh, sebuah penelitian menunjukkan bahwa 32 watt lampu TL akan mengjasilkan cahaya sebesar 1700 lumens pada jarak 1 meter sedangkan 75 watt lampu bolam biasa (lampu bolam dengan filamen tungsten) menghasilkan 1200 lumens. Atau dengan kata lain perbandingan effisiensi lampu TL dan lampu bolam adalah 53 : 16. Efisiensi disini didefinisikan sebagai intensitas cahaya yang dihasilkan dibagi dengan daya listrik yang digunakan. Prinsip Kerja Lampu TL (Fluorescent Lamp) Ketika tegangan AC 220 volt di hubungkan ke satu set lampu TL maka tegangan diujung-ujung starter sudah cukup utuk menyebabkan gas neon didalam tabung starter untuk panas (terionisasi) sehingga menyebabkan starter yang kondisi normalnya adalah normally open ini akan ‘closed’ sehingga gas neon di dalamnya dingin (deionisasi) dan dalam kondisi starter ‘closed’ ini terdapat aliran arus yang memanaskan filamen tabung lampu TL sehingga gas yang terdapat didalam tabung lampu TL ini terionisasi. Pada saat gas neon di dalam tabung starter sudah cukup dingin maka bimetal di dalam tabung starter tersebut akan ‘open’ kembali sehingga ballast akan menghasilkan spike tegangan tinggi yang akan menyebabkan terdapat lompatan elektron dari kedua elektroda dan memendarkan lapisan fluorescent pada tabung lampu TL tersebut. Perstiwa ini akan berulang ketika gas di dalam tabung lampu TL tidak terionisasi penuh sehingga tidak terdapat cukup arus yang melewati filamen lampu neon tersebut. Lampu neon akan tampak berkedip. Selain itu jika tegangang induksi dari ballast tidak cukup besar maka walaupun tabung neon TL tersebut sudah terionisasi penuh tetap tidak akan menyebabkan lompatan elektron dari salah satu elektroda tersebut. Besarnya tegangan spike yang dihasilkan oleh trafo ballast dapat ditentukan oleh rumus berikut : V=L\frac{di}{dt} Jika proses ‘starting up’ yang pertama tidak berhasil maka tegangan diujung-ujung starter akan cukup untuk menyebabkan gas neon di dalamnya untuk terionisasi (panas) sehingga starter ‘closed’. Dan seterusnya sampai lampu TL ini masuk pada kondisi steady state yaitu pada saat impedansinya turun menjadi ratusan ohm . Impedansi dari tabung akan turun dari dari ratusan megaohm menjadi ratusan ohm saja pada saat kondisi ‘steady state’. Arus yang ditarik oleh lampu TL tergantung dari impedansi trafo ballast seri dengan impedansi tabung lampu TL. Selain itu karena tidak ada sinkronisasi dengan tegangan input maka ada kemungkinan pada saat starter

Page 8: jenis-jenis lampu

berubah kondisi dari ‘closed’ ke ‘open’ terjadi pada saat tegangan AC turun mendekati nol sehingga tegangan yang dihasilkan oleh ballast tidak cukup untuk menyebabkan lompatan elektron pada tabung lampu TL.

E. Lampu LED

ode pancaran cahaya (bahasa Inggris: light-emitting diode; LED) adalah suatu semikonduktor yang memancarkan cahaya monokromatik yang tidak koheren ketika diberi tegangan maju.

Gejala ini termasuk bentuk elektroluminesensi. Warna yang dihasilkan bergantung pada bahan semikonduktor yang dipakai, dan bisa juga ultraviolet dekat atau inframerah dekat.

Daftar isi

1 Teknologi LED o 1.1 Fungsi fisikal o 1.2 Emisi cahaya o 1.3 Polarisasi o 1.4 Tegangan maju o 1.5 Sirkuit LED o 1.6 Substrat LED o 1.7 LED biru dan putih

2 Produsen terkemuka dunia

Teknologi LED

Fungsi fisikal

Sebuah LED adalah sejenis diode semikonduktor istimewa. Seperti sebuah diode normal, LED terdiri dari sebuah chip bahan semikonduktor yang diisi penuh, atau di-dop, dengan ketidakmurnian untuk menciptakan sebuah struktur yang disebut p-n junction. Pembawa-muatan - elektron dan lubang mengalir ke junction dari elektrode dengan voltase berbeda. Ketika elektron bertemu dengan lubang, dia jatuh ke tingkat energi yang lebih rendah, dan melepas energi dalam bentuk photon.

Emisi cahaya

Panjang gelombang dari cahaya yang dipancarkan, dan oleh karena itu warnanya, tergantung dari selisih pita energi dari bahan yang membentuk p-n junction. Sebuah diode normal, biasanya terbuat dari silikon atau germanium, memancarkan cahaya tampak inframerah dekat, tetapi bahan yang digunakan untuk sebuah LED memiliki selisih pita energi antara cahaya inframerah dekat, tampak, dan ultraungu dekat.

Page 9: jenis-jenis lampu

LED dalam aplikasi sebagai alat penerangan lampu langit-langit

Polarisasi

Tak seperti lampu pijar dan neon, LED mempunyai kecenderungan polarisasi. Chip LED mempunyai kutub positif dan negatif (p-n) dan hanya akan menyala bila diberikan arus maju. Ini dikarenakan LED terbuat dari bahan semikonduktor yang hanya akan mengizinkan arus listrik mengalir ke satu arah dan tidak ke arah sebaliknya. Bila LED diberikan arus terbalik, hanya akan ada sedikit arus yang melewati chip LED. Ini menyebabkan chip LED tidak akan mengeluarkan emisi cahaya.

Chip LED pada umumnya mempunyai tegangan rusak yang relatif rendah. Bila diberikan tegangan beberapa volt ke arah terbalik, biasanya sifat isolator searah LED akan jebol menyebabkan arus dapat mengalir ke arah sebaliknya.

Tegangan maju

Karakteristik chip LED pada umumnya adalah sama dengan karakteristik diode yang hanya memerlukan tegangan tertentu untuk dapat beroperasi. Namun bila diberikan tegangan yang terlalu besar, LED akan rusak walaupun tegangan yang diberikan adalah tegangan maju.

Tegangan yang diperlukan sebuah diode untuk dapat beroperasi adalah tegangan maju (Vf).

Sirkuit LED

Sirkuit LED dapat didesain dengan cara menyusun LED dalam posisi seri maupun paralel. Bila disusun secara seri, maka yang perlu diperhatikan adalah jumlah tegangan yang diperlukan seluruh LED dalam rangkaian tadi. Namun bila LED diletakkan dalam keadaan paralel, maka yang perlu diperhatikan menjadi jumlah arus yang diperlukan seluruh LED dalam rangkaian ini.

Page 10: jenis-jenis lampu

Menyusun LED dalam rangkaian seri akan lebih sulit jika warna LED berbeda-beda, karena tiap warna LED yang berlainan mempunyai tegangan maju (Vf) yang berbeda. Perbedaan ini akan menyebabkan bila jumlah tegangan yang diberikan oleh sumber daya listrik tidak cukup untuk membangkitkan chip LED, maka beberapa LED akan tidak menyala. Sebaliknya, bila tegangan yang diberikan terlalu besar akan berakibat kerusakan pada LED yang mempunyai tegangan maju relatif rendah.

Pada umumnya, LED yang disusun secara seri harus mempunyai tegangan maju yang sama atau paling tidak tak berbeda jauh supaya rangkaian LED ini dapat bekerja secara baik. Jika LED digunakan untuk indikator pada voltase lebih tinggi dari operasinya dirangkai seri dengan resistor untuk menyesuaikan arus agar tidak melampaui arus maksimum LED, kalau arus maksimum terlampau LED jadi rusak.

Substrat LED

Pengembangan LED dimulai dengan alat inframerah dan merah dibuat dengan gallium arsenide. Perkembagan dalam ilmu material telah memungkinkan produksi alat dengan panjang gelombang yang lebih pendek, menghasilkan cahaya dengan warna bervariasi.

LED konvensional terbuat dari mineral inorganik yang bervariasi, menghasilkan warna sebagai berikut:

aluminium gallium arsenide (AlGaAs) - merah dan inframerah gallium aluminium phosphide - hijau gallium arsenide/phosphide (GaAsP) - merah, oranye-merah, oranye, dan kuning gallium nitride (GaN) - hijau, hijau murni (atau hijau emerald), dan biru gallium phosphide (GaP) - merah, kuning, dan hijau zinc selenide (ZnSe) - biru indium gallium nitride (InGaN) - hijau kebiruan dan biru indium gallium aluminium phosphide - oranye-merah, oranye, kuning, dan hijau silicon carbide (SiC) - biru diamond (C) - ultraviolet silicon (Si) - biru (dalam pengembangan) sapphire (Al2O3) - biru

LED biru dan putih

Page 11: jenis-jenis lampu

Sebuah GaN LED ultraviolet

LED biru pertama yang dapat mencapai keterangan komersial menggunakan substrat galium nitrida yang ditemukan oleh Shuji Nakamura tahun 1993 sewaktu berkarir di Nichia Corporation di Jepang. LED ini kemudian populer di penghujung tahun 90-an. LED biru ini dapat dikombinasikan ke LED merah dan hijau yang telah ada sebelumnya untuk menciptakan cahaya putih.

LED dengan cahaya putih sekarang ini mayoritas dibuat dengan cara melapisi substrat galium nitrida (GaN) dengan fosfor kuning. Karena warna kuning merangsang penerima warna merah dan hijau di mata manusia, kombinasi antara warna kuning dari fosfor dan warna biru dari substrat akan memberikan kesan warna putih bagi mata manusia.

LED putih juga dapat dibuat dengan cara melapisi fosfor biru, merah dan hijau di substrat ultraviolet dekat yang lebih kurang sama dengan cara kerja lampu fluoresen.

Metode terbaru untuk menciptakan cahaya putih dari LED adalah dengan tidak menggunakan fosfor sama sekali melainkan menggunakan substrat seng selenida yang dapat memancarkan cahaya biru dari area aktif dan cahaya kuning dari substrat itu sendiri.

F.SEGITIGA DAYA Dalam sistem listrik AC / Arus bolak-balik ada tiga jenis daya untuk beban yang memiliki Impedansi

(Z),yaitu:

Daya Semu (S) , satuannya VA (Volt Ampere)

Pada beban impedansi (Z), Daya semu adalah daya yang terukur atau terbaca pada alat ukur. Daya semu adalah penjumlahan daya aktif dan reaktif secara vektoris.

Daya Reaktif (Q), satuannya VAR (Volt Ampere Reaktif)

Daya reaktif adalah daya yang timbul akibat adanya efek induksi elektromagnetik oleh beban yang mempunyai nilai induktif (fase arus tertinggal / laging) atau kapasitif (fase arus mendahului / leading).

Daya Aktif(P), satuannya W (Watt)

Daya aktif disebut juga daya nyata yaitu daya yang dibutuhkan oleh beban.

Hubungan dari ketiga daya diatas (S, Q, P) disebut segitiga daya.

Page 12: jenis-jenis lampu

Dari gambar diatas terlihat bahwa semakin besar nila daya reaktif (Q) akan meningkatkan sudut

antara daya nyata dan daya semu atau biasa disebut dengan power factor / COS φ. sehingga daya yang terbaca pada alat ukur (S) lebih besar daripada daya yang sesungguhnya dibutuhkan oleh beban (P).

Dimana : S= V x I (VA)

P= V x I x Cos φ (W)

Q= V x I x Sin φ (VAR)

G. perhitungan Pemakaian daya pada rumah Tangga

alah satu hal yang menarik untuk dibahas adalah pengertian mengenai daya listrik PLN. Ada beberapa pertanyaan seperti ini : “Listrik PLN di rumah saya 1300Watt, mengapa…dst”. Dan selalu kita koreksi dengan 1300VA. Perbedaannya adalah satuan VA dan Watt. Apa perbedaannya dan mengapa digunakan satuan VA?

Pembahasannya kita mulai dari teori dasar listrik mengenai daya. Daya listrik merupakan jumlah energi yang digunakan untuk melakukan kerja atau usaha. Dalam sistem listrik arus bolak-balik, dikenal adanya 3 jenis daya yaitu :

1. Daya Nyata (simbol : S; satuan : VA (Volt Ampere))

2. Daya Aktif (symbol : P; satuan : W (Watt))

3. Daya Reaktif (symbol : Q; satuan : VAR (Volt Ampere Reaktif))

Daya Aktif adalah daya yang digunakan untuk energi kerja sebenarnya. Daya inilah yang dikonversikan menjadi energi tenaga (mekanik), cahaya atau panas. Satuan daya aktif adalah Watt.

Daya Reaktif adalah daya yang digunakan untuk pembangkitan fluks magnetik atau medan magnet. Satuannya adalah VAR. Contoh peralatan listrik yang memerlukan daya reaktif adalah

Page 13: jenis-jenis lampu

motor listrik atau dinamo, trafo, ballast lampu yang konvensional dan peralatan listrik lain yang menggunakan proses induksi listrik lilitan untuk operasinya.

Daya Nyata dengan satuan VA adalah total perkalian antara arus dan tegangan pada suatu jaringan listrik atau penjumlahan dengan metode trigonometri dari daya aktif dan reaktif dalam segitiga daya.

Hubungan antara ketiga jenis daya ini digambarkan dalam segitiga daya.

Gambar Segitiga Daya Listrik

 

 

Sekarang kita lihat rumus yang menghubungkan ketiga daya tersebut . Rumus untuk daya nyata adalah perkalian antara arus dan tegangan, yaitu :

S=V.I

Dimana :S = Daya Nyata (VA)V = Voltage / Tegangan (Volt)I = Arus (Ampere)

Sedangkan hubungan antara daya nyata dan daya aktif dapat dihitung dengan rumus trigonometri sebagai berikut:

Page 14: jenis-jenis lampu

Cos φ=P/S

P=S x Cosφ

P=V x I x Cos φ

Dimana :P = Daya Aktif (Watt)S = Daya Nyata (VA)

Dengan rumus segitiga phytagoras dapat juga dituliskan :

S=√(P^2+Q^2 )

Cos ϕ adalah perbandingan antara daya aktif (P) dan daya nyata (S) dan dikenal dengan faktor daya listrik (PF : Power Factor). Nilai Cos ϕ yang digunakan PLN adalah sebesar 0.8.

Itu teori listriknya, bagaimana dengan aplikasinya untuk instalasi listrik perumahan?

Daya nyata (S) dengan satuan VA digunakan untuk perhitungan besarnya daya listrik terpasang dari PLN di rumah pelanggan. Hal ini karena PLN hanya memasang MCB sebagai pembatas daya listrik pada kWh-meter. Contohnya pada suatu rumah dipasang MCB 6A dengan tegangan 220V maka daya terpasang pelanggan tersebut adalah 6A x 220V = 1320VA atau dibulatkan 1300VA.

Daya listrik terpasang PLN yang lainnya (yang paling umum) adalah 450VA, 900VA, 2200VA, 3500VA, 4400VA.

Daya aktif (P) dengan satuan Watt digunakan untuk mengetahui berapa daya listrik yang bisa digunakan untuk peralatan listrik oleh konsumen. Dari rumus daya aktif diatas maka dari besarnya daya terpasang 1300VA tersebut bisa dihitung daya aktifnya.

Dengan Cos ϕ sebesar 0.8 maka dengan daya terpasang 1300VA, daya aktifnya (P) sebesar 6A x 220V x 0.8 = 1056 Watt.

Apa artinya 1300VA dan 1056Watt?

Setiap peralatan listrik di rumah sebenarnya hanya mencantumkan nilai daya listrik dalam Watt, yang merupakan daya aktif. contohnya mesin jetpump 150Watt, lampu TL 20Watt, AC 300Watt dan lain-lain. Bila semua peralatan listrik tersebut dipakai, maka total maksimum daya yang mampu disediakan hanya 1056Watt (bila rumah tersebut berlangganan listrik 1300VA).

Dalam nilai 1300VA (S) dan 1056Watt (P), terdapat daya reaktif (Q). Perhitungan secara trigometri, dengan faktor daya sebesar 0.8 akan menghasilkan nilai Q = 792VAR. Daya reaktif ini digunakan untuk pembangkitan medan magnet pada peralatan listrik yang bersifat induksi seperti mesin air, kipas angin, ballast lampu, AC dll.

Page 15: jenis-jenis lampu

Contoh, pada mesin air tertulis dayanya 150Watt, maka daya 150 Watt tersebut akan dikonversikan oleh motor listrik / dinamo mesin air menjadi tenaga. Untuk menghasilkan daya kerja 150Watt tersebut, mesin air akan menyerap daya nyata sebesar 150Watt/0.8 = 187,5VA. Daya reaktif sebesar 112.5VAR digunakan untuk pembangkitan medan magnet pada motor listrik.

Bagaimana perhitungan daya listrik oleh PLN?

Untuk pelanggan perumahan, hanya penggunaan daya aktif dalam satuan watt yang dihitung oleh PLN. Karena itu alat pengukurnya disebut kWh-meter (kiloWatt Hour meter). Besarnya daya reaktif tidak dihitung karena faktor daya untuk listrik perumahan masih ditoleransi dalam angka 0.8. Berbeda dengan listrik industry dimana terpasang kVARh-meter (Kilo-VAR hour meter) untuk menghitung besarnya pemakaian daya reaktif, dimana jika penggunaannya melebihi batas maka akan kena pinalti oleh PLN.

Apa pentingnya kita mengetahui perbedaan antara daya listrik dalam Watt dan VA?

Misalkan kita mempunyai peralatan listrik dengan total daya 1200Watt, maka besarnya daya listrik PLN tidak akan cukup dengan 1300VA (rating MCB 6A). Dengan faktor daya 0.8 maka akan didapat daya nyata sebesar 1200/0.8 = 1500VA. Sehingga daya listrik PLN yang terdekat adalah 2200VA (sesuai dengan rating MCB-nya yaitu 10A). Dari angka 2200VA maka selanjutnya kita bisa menentukan besarnya kapasitas instalasi listrik, terutama kabel listrik, minimal adalah 10A atau 2200VA.

Jadi satuan Watt lebih digunakan untuk menghitung besarnya penggunaan daya listrik pada peralatan dan satuan VA digunakan untuk menghitung kapasitas terpasang instalasi listrik, mulai dari MCB dan penghantarnya.

Tentunya masih ada lagi pertanyaan selanjutnya : Apakah angka faktor daya sebesar 0.8 bisa berubah? Dan apakah pengaruh daya reaktif bisa merugikan? Kita akan bahas pada artikel selanjutnya. Mudah-mudahan artikel yang singkat ini bisa mencerahkan dan bermanfaat.

H.penggunaan kapasitor

lah satu permasalahan yang sering kita dengar dalam penggunaan energi listrik untuk level industri adalah masalah faktor daya atau cos φ dan pemasangan kapasitor. Apabila cos φ lebih rendah dari 0.85 maka daya reaktif yang dihasilkan dari beban industri tersebut akan dikenakan biaya dalam penentuan besarnya tagihan listrik. Dalam kasus ini, pihak industri diwajibkan membayar daya reaktif yang digunakan kepada penyedia layanan listrik. Untuk mengatasi masalah rendahnya faktor-daya atau tingginya daya reaktif, banyak industri atau bangunan modern memasang kapasitor. Penjelasan tentang kenapa hal ini dikenakan denda, gimana cara mengukurnya dan hal-hal apa saja lah satu permasalahan yang sering kita dengar dalam penggunaan energi listrik untuk level industri adalah masalah faktor daya atau cos φ dan pemasangan kapasitor. Apabila cos φ lebih rendah dari 0.85 maka daya reaktif yang dihasilkan dari beban industri tersebut akan dikenakan biaya dalam penentuan besarnya tagihan listrik. Dalam kasus ini, pihak industri diwajibkan membayar daya reaktif yang digunakan

Page 16: jenis-jenis lampu

kepada penyedia layanan listrik. Untuk mengatasi masalah rendahnya faktor-daya atau tingginya daya reaktif, banyak industri atau bangunan modern memasang kapasitor. Penjelasan tentang kenapa hal ini dikenakan denda, gimana cara mengukurnya dan hal-hal apa saja yang perlu diperhatikan dalam pemasangan kapasitor, akan coba dibahas pada artikel di bawah ini.

I.  Dasar Teori

Dalam sistem tenaga listrik dikenal tiga jenis daya, yaitu daya aktif atau real power (P), daya reaktif atau reactive power (Q), dan daya nyata atau apparent power(S). Daya aktif adalah daya listrik yang dibangkitkan di sisi keluaran generator, kemudian termanfaatkan oleh konsumen; dapat dikonversi ke bentuk energi lainnya seperti energi gerak pada motor; bisa juga menjadi energi panas pada heater; ataupun dapat diubah kebentuk energi listrik lainnya. Perlu diingat bahwa daya ini memiliki satuan watt (W), kilowatt (kW) atau tenaga kuda (HP).

Sedangkan daya reaktif adalah suatu besaran yang digunakan untuk menggambarkan adanya fluktuasi daya pada saluran transmisi dan distribusi akibat dibangkitkannya medan/daya magnetik atau beban yang bersifat induktif (seperti : motor listrik, trafo, dan las listrik). Walaupun namanya adalah daya, daya reaktif ini tidak nyata dan tidak bisa dimanfaatkan. Daya ini memiliki satuan volt-ampere-reaktif (VAR) atau kilovar (kVAR). Pada konsumen level industri, beban induktif yang paling banyak digunakan adalah motor listrik atau pompa listrik. Adanya daya reaktif ini menyebabkan aliran daya aktif tidak bisa dilakukan secara efisien dan memerlukan peralatan listrik yang kapasitasnya lebih besar dari daya aktif yang diperlukan.

Untuk menggambarkan seberapa efisien daya aktif yang dapat disalurkan, dalam dunia kelistrikan dikenal suatu besaran yang disebut faktor-daya atau cos φ. Nilai maksimum cos φ adalah 1 dan nilai minimumnya adalah 0. Semakin tinggi faktor-daya maka semakin efisien penyaluran dayanya. Artinya juga, semakin kecil faktor-daya maka semakin besar daya reaktifnya.

Bagi konsumen kecil atau rumah tangga, keberadaan daya reaktif tidak terlalu menjadi masalah karena PT. PLN tidak memperhitungkannya dalam penentuan tagihan listrik. Akan tetapi bagi konsumen besar, pabrik atau bangunan modern, PT. PLN mensyaratkan faktor-daya harus lebih dari 0,85. Jika nilai faktor-daya kurang dari nilai itu maka daya reaktif akan diukur dan diperhitungkan dalam penentuan besarnya tagihan. PT. PLN melakukan ini karena aliran daya reaktif yang besar menyebabkan peralatan milik PT. PLN tidak bisa bekerja secara efisien dan tidak bisa digunakan secara maksimum.

II. Faktor Daya

Daya nyata merupakan jumlah daya total yang terdiri dari daya reaktif (P) dan daya reaktif (Q) yang dirumuskan :

Page 17: jenis-jenis lampu

Hubungan ketiga daya itu dapat juga digambarkan dalam bentuk segitiga daya seperti pada Gambar 1 berikut :

Gambar 1. Segitiga Daya

Perbandingan antara daya aktif (P) dan daya nyata (S) inilah dikenal dengan istilah faktor daya atau power factor (PF). Apabila dilihat pada segitiga daya diatas, perbandingan daya aktif (P) dan daya nyata (S) merupakan nilai cos φ. Oleh karena hal ini, istilah faktor daya (PF) juga sering dikenal dengan sebutan nilai cos φ.

Seperti yang dijelaskan sebelumnya,  beban yang sering digunakan pada konsumen level industri kebanyakan bersifat induktif. Peningkatan beban yang bersifat induktif ini pada sistem tenaga listrik dapat menurunkan nilai faktor daya (PF) dalam proses pengiriman daya. Penurunan faktor daya (PF) ini dapat menimbulkan berbagai kerugian, yang antara lain:

1. Memperbesar kebutuhan kVA2. Penurunan Efisiensi penyaluran daya3. Memperbesar rugi-rugi panas kawat dan peralatan4. Mutu listrik menjadi rendah karena adanya drop tegangan

Untuk alasan kerugian akibat penurunan faktor daya (PF) inilah, penyedia layanan listrik, PLN, menetapkan denda VAR, dalam usaha untuk menghimbau konsumennya agar ikut berkontribusi menjaga faktor daya pada kondisi idealnya.

Adapun perhitungan kelebihan pemakaian kVARH dalam rupiah dapat dilakukan dengan menggunakan rumus sbb :

[ B - 0,62 ( A1 + A2 ) ] Hk

dimana :

   B = pemakaian k VARH   A1= pemakaian kWH WPB   A2 = pemakaian kWH LWB   Hk = harga kelebihan pemakaian kVARH

Page 18: jenis-jenis lampu

II.   Perbaikan Faktor Daya atau Cos φ dan Perhitungan Kompensasi Daya Reaktif

Salah satu cara untuk memperbaiki faktor daya adalah dengan memasang kompensasi kapasitif menggunakan kapasitor. Pada konsumen level industri istilah ini lebih dikenal dengan sebutan pemasangan power factor correction (PFC). Pemasangan PFC disini sama artinya dengan pemasangan PF controller dan capacitor bank (kumpulan dari kapasitor-kapasitor yang dipasang secara paralel).

Kapasitor adalah peralatan listrik yang bisa menghasilkan daya reaktif yang diperlukan oleh konsumen sehingga aliran daya reaktif di saluran bisa berkurang. Dengan kata lain, kapasitor bermanfaat untuk menaikkan faktor-daya. Dengan memasang kapasitor, konsumen besar bisa terhindar dari tambahan tagihan listrik karena daya reaktif yang berlebih. Semakin mahalnya tarif listrik dan semakin tingginya keinginan untuk mengoperasikan peralatan secara efisien, menyebabkan penggunaan kapasitor semakin banyak dan meluas. Idealnya, kapasitor dipasang di dekat peralatan yang memerlukan daya reaktif sehingga tidak perlu terjadi adanya aliran daya reaktif melalui kabel, trafo, atau peralatan lainnya.

II.1    PF controller

Fungsi PF controller adalah untuk mengatur switching step-step capacitor banksesuai dengan nilai kompensasi daya reaktifnya (Qc) yang diperlukan untuk mencapai target faktor daya (PF) idealnya atau yang telah ditentukan. PF controller bekerja berdasarkan sensing parameter yang disebut C/k faktor yang diperoleh dari input tegangan dan arus. Ada 2 cara untuk mensetting faktor C/k, yaitu secara automatic dan manual. Cara automatic mensetting C/k dapat dilakukan dengan cara mengaktifkan mode automatic pada perhitungan C/k pada PF controller. Cara setting ini akan tergantung pada 4 parameter, yaitu :

 Nilai tegangan kerja kapasitor Un  Skala arus (rasio CT yang dipakai)  Konfigurasi jaringan, 3 phasa atau 1 phasa  Rating kapasitor step pertama

PF controller secara otomatis akan mengeset nilai C/k apabila ada perubahan pada 4 parameter diatas. Untuk cara manual dapat dilakukan dengan mengacu pada perhitungan berikut :

dimana,

                                      Q = reactive 3-phase power of one step (kVAR)

                                      U = system voltage (V)

                                       k = CT ratio

Page 19: jenis-jenis lampu

II.2   Capasitor Bank

Capacitor bank adalah kumpulan kapasitor yang digunakan untuk memberikan kompensasi reactive power (Qc). Kebutuhan kompensasi reactive power (Qc) yang dibutuhkan untuk mencapai power factor (p.f) dapat dihitung berdasarkan formula :

dimana :

                         Qc       = kompensasi reactive power yang dibutuhkan (kVAR)

                         P         = active power (kW)

                          cos φ1  = power factor (p.f) lama

                          cos φ2  = power factor (p.f) baru atau target

Perhitungan ini juga dapat digambarkan pula dalam segitiga daya pada Gambar 2.

Gambar 2. Segitiga Daya Kompensasi KVAR

II.2.1  Proses Kerja Kapasitor

Kapasitor yang akan digunakan untuk meperbesar pf dipasang paralel dengan rangkaian beban. Bila rangkaian itu diberi tegangan maka elektron akan mengalir masuk ke kapasitor. Pada saat kapasitor penuh dengan muatan elektron maka tegangan akan berubah. Kemudian elektron akan ke luar dari kapasitor dan mengalir ke dalam rangkaian yang memerlukannya dengan demikian pada saaat itu kapasitor membangkitkan daya reaktif. Bila tegangan yang berubah itu kembali normal (tetap) maka kapasitor akan menyimpan kembali elektron. Pada saat kapasitor mengeluarkan elektron (Ic) berarti sama juga kapasitor menyuplai daya treaktif ke beban. Keran beban bersifat induktif (+) sedangkan daya reaktif bersifat kapasitor (-) akibatnya daya reaktif yang berlaku menjadi kecil.

II.2.2 Pemasangan Kapasitor

Kapasitor yang akan digunakan untuk memperkecil atau memperbaiki PF penempatannya ada dua cara :

1.  Terpusat kapasitor ditempatkan pada:

Page 20: jenis-jenis lampu

                                          (a) Sisi primer atau sekunder transformator

                                          (b) Pada bus pusat pengontrol

2.  Cara terbatas kapasitor ditempatkan

                                         (a) Feeder kecil

                                         (b) Pada rangkaian cabang

                                          (c) Langsung pada beban

III.   Perawatan Capasitor Bank

III.1 Perawatan Fisik

Kapasitor yang digunakan untuk memperbaiki PF supaya tahan lama tentunya harus dirawat secara teratur. Dalam perawatan itu perhatian harus dilakukan pada tempat yang lembab yang tidak terlindungi dari debu dan kotoran. Sebelum melakukan pemeriksaan pastikan bahwa kapasitor tidak terhubung lagi dengan sumber. Kemudian karena kapasitor ini masih mengandung muatan berarti masih ada arus/tegangan listrik maka kapasitor itu harus dihubung singkatkan supaya muatannya hilang. Adapun jenis pemeriksaan yang harus dilakukan meliputi :

Pemeriksaan kebocoran Pemeriksaan kabel dan penyangga Pemeriksaan isolator

III.2  Proteksi Kapasitor dari Gangguan Harmonisa Frekuesi Tinggi

Sedikit orang yang memahami bahwa kapasitor mempunyai impedansi atau hambatan yang rendah pada frekuensi tegangan yang tinggi. Atau dengan kata lain apabila gelombang tegangan dan arus listrik mengandung harmonisa frekuensi tinggi, maka arus listrik cenderung mengalir melalui rangkaian yang hambatannya rendah, yaitu kapasitor yang terpasang ini.

Semakin banyaknya penggunaan perangkat elektronika daya seperti inverter untuk menaikkan efisiensi peralatan industri, penggunaan ballast elektronik untuk meningkatkan efisiensi lampu, dan penggunaan penyearah untuk memasok sumber daya searah membuat bentuk gelombang tegangan dan arus berubah menjadi non-sinusoidal. Suatu besaran yang digunakan untuk menggambarkan seberapa jauh suatu gelombang tidak berbentuk sinusoidal dinyatakan dengan besaran harmonisa. Arus harmonisa adalah arus listrik yang frekuensinya mengandung kelipatan bulat dari frekuensi dasarnya, dalam hal ini PT. PLN menggunakan frekuensi dasar sebesar 50 Hz.  Arus harmonisa yang banyak muncul akibat penggunaan alat-alat elektronika daya adalah arus harmonisa yang mempunyai frekuensi 150, 250, dan 350 Hz. Di banyak bangunan modern, kandungan arus harmonisa yang mengalir di jaringan listrik bisa mencapai lebih dari 30%.

Page 21: jenis-jenis lampu

Impedansi atau hambatan dari kapasitor berubah sesuai dengan frekuensi arus listrik yang mengalir melalui kapasitor. Jika hambatan kapasitor mempunyai nilai yang sama dengan hambatan jaringan sumber maka tercapailah suatu kondisi yang disebut resonansi. Pada kondisi resonansi, hambatan total sistem menjadi nol. Kondisi ini mirip dengan kondisi rangkaian pendek yang membahayakan kapasitor dan peralatan lainnya. Kondisi inilah yang sering menyebabkan rusaknya kapasitor dan peralatan lainnya.

Kapasitor sering dilalui arus lebih pada harmonisa frekuesi tinggi. Karena kapasitor biasanya berisi minyak, kapasitor akan mudah terbakar. Kejadian inilah yang sering memicu banyak kebakaran di industri dan bangunan modern.

Untuk mengatasi masalah terbakarnya kapasitor karena adanya arus harmonisa, bermacam cara sederhana bisa dilakukan. Cara pertama yang umum ditawarkan oleh banyak pabrik pembuat kapasitor adalah dengan memasang induktor secara seri dengan kapasitor untuk mencegah mengalirnya arus harmonisa melalui kapasitor. Cara ini cukup efektif tetapi menyebabkan biaya pemasangan kapasitor menjadi mahal.

Cara lain yang paling sederhana dapat dilakukan untuk mengatasi masalah ini adalah tentu saja menjauhkan pemasangan kapasitor dari posisi beban yang diperkirakan banyak menghasilkan harmonisa. Cara ini sering sekali bisa dilakukan tanpa banyak mengeluarkan biaya tambahan.

Secara umum, pemasangan kapasitor tidak mengkhawatirkan jika :

(i) kapasitas peralatan elektronik yang diperkirakan menghasilkan harmonisa tidak lebih dari 30% kapasitas sumber, dan

(ii) besar kapasitor yang dipasang tidak lebih dari 50% kapasitas sumber.

Jika penggunaan peralatan elektronik sangat banyak dan kapasitor yang akan dipasang besar maka suatu studi khusus tentang kemungkinan terjadinya resonansi harus dilakukan untuk mencegah terjadinya kebakaran. Di banyak bangunan modern yang penggunaan peralatan elektroniknya sangat banyak, peluang terjadinya resonansi sangat tinggi sehingga studi semacam ini menjadi sangat sering diperlukan. Dengan melakukan studi ini diharapkan kebakaran yang menyebabkan kerugian ratusan milyar rupiah bisa dicegah.

yang perlu diperhatikan dalam pemasangan kapasitor, akan coba dibahas pada artikel di bawah ini.

I.  Dasar Teori

Dalam sistem tenaga listrik dikenal tiga jenis daya, yaitu daya aktif atau real power (P), daya reaktif atau reactive power (Q), dan daya nyata atau apparent power(S). Daya aktif adalah daya listrik yang dibangkitkan di sisi keluaran generator, kemudian termanfaatkan oleh konsumen; dapat dikonversi ke bentuk energi lainnya seperti energi gerak pada motor; bisa juga menjadi energi panas pada heater; ataupun dapat diubah kebentuk energi listrik lainnya. Perlu diingat bahwa daya ini memiliki satuan watt (W), kilowatt (kW) atau tenaga kuda (HP).

Page 22: jenis-jenis lampu

Sedangkan daya reaktif adalah suatu besaran yang digunakan untuk menggambarkan adanya fluktuasi daya pada saluran transmisi dan distribusi akibat dibangkitkannya medan/daya magnetik atau beban yang bersifat induktif (seperti : motor listrik, trafo, dan las listrik). Walaupun namanya adalah daya, daya reaktif ini tidak nyata dan tidak bisa dimanfaatkan. Daya ini memiliki satuan volt-ampere-reaktif (VAR) atau kilovar (kVAR). Pada konsumen level industri, beban induktif yang paling banyak digunakan adalah motor listrik atau pompa listrik. Adanya daya reaktif ini menyebabkan aliran daya aktif tidak bisa dilakukan secara efisien dan memerlukan peralatan listrik yang kapasitasnya lebih besar dari daya aktif yang diperlukan.

Untuk menggambarkan seberapa efisien daya aktif yang dapat disalurkan, dalam dunia kelistrikan dikenal suatu besaran yang disebut faktor-daya atau cos φ. Nilai maksimum cos φ adalah 1 dan nilai minimumnya adalah 0. Semakin tinggi faktor-daya maka semakin efisien penyaluran dayanya. Artinya juga, semakin kecil faktor-daya maka semakin besar daya reaktifnya.

Bagi konsumen kecil atau rumah tangga, keberadaan daya reaktif tidak terlalu menjadi masalah karena PT. PLN tidak memperhitungkannya dalam penentuan tagihan listrik. Akan tetapi bagi konsumen besar, pabrik atau bangunan modern, PT. PLN mensyaratkan faktor-daya harus lebih dari 0,85. Jika nilai faktor-daya kurang dari nilai itu maka daya reaktif akan diukur dan diperhitungkan dalam penentuan besarnya tagihan. PT. PLN melakukan ini karena aliran daya reaktif yang besar menyebabkan peralatan milik PT. PLN tidak bisa bekerja secara efisien dan tidak bisa digunakan secara maksimum.

II. Faktor Daya

Daya nyata merupakan jumlah daya total yang terdiri dari daya reaktif (P) dan daya reaktif (Q) yang dirumuskan :

Hubungan ketiga daya itu dapat juga digambarkan dalam bentuk segitiga daya seperti pada Gambar 1 berikut :

Page 23: jenis-jenis lampu

Gambar 1. Segitiga Daya

Perbandingan antara daya aktif (P) dan daya nyata (S) inilah dikenal dengan istilah faktor daya atau power factor (PF). Apabila dilihat pada segitiga daya diatas, perbandingan daya aktif (P) dan daya nyata (S) merupakan nilai cos φ. Oleh karena hal ini, istilah faktor daya (PF) juga sering dikenal dengan sebutan nilai cos φ.

Seperti yang dijelaskan sebelumnya,  beban yang sering digunakan pada konsumen level industri kebanyakan bersifat induktif. Peningkatan beban yang bersifat induktif ini pada sistem tenaga listrik dapat menurunkan nilai faktor daya (PF) dalam proses pengiriman daya. Penurunan faktor daya (PF) ini dapat menimbulkan berbagai kerugian, yang antara lain:

1. Memperbesar kebutuhan kVA2. Penurunan Efisiensi penyaluran daya3. Memperbesar rugi-rugi panas kawat dan peralatan4. Mutu listrik menjadi rendah karena adanya drop tegangan

Untuk alasan kerugian akibat penurunan faktor daya (PF) inilah, penyedia layanan listrik, PLN, menetapkan denda VAR, dalam usaha untuk menghimbau konsumennya agar ikut berkontribusi menjaga faktor daya pada kondisi idealnya.

Adapun perhitungan kelebihan pemakaian kVARH dalam rupiah dapat dilakukan dengan menggunakan rumus sbb :

[ B - 0,62 ( A1 + A2 ) ] Hk

dimana :

   B = pemakaian k VARH   A1= pemakaian kWH WPB   A2 = pemakaian kWH LWB   Hk = harga kelebihan pemakaian kVARH

II.   Perbaikan Faktor Daya atau Cos φ dan Perhitungan Kompensasi Daya Reaktif

Salah satu cara untuk memperbaiki faktor daya adalah dengan memasang kompensasi kapasitif menggunakan kapasitor. Pada konsumen level industri istilah ini lebih dikenal dengan sebutan pemasangan power factor correction (PFC). Pemasangan PFC disini sama artinya dengan pemasangan PF controller dan capacitor bank (kumpulan dari kapasitor-kapasitor yang dipasang secara paralel).

Kapasitor adalah peralatan listrik yang bisa menghasilkan daya reaktif yang diperlukan oleh konsumen sehingga aliran daya reaktif di saluran bisa berkurang. Dengan kata lain, kapasitor bermanfaat untuk menaikkan faktor-daya. Dengan memasang kapasitor, konsumen besar bisa terhindar dari tambahan tagihan listrik karena daya reaktif yang berlebih. Semakin mahalnya tarif listrik dan semakin tingginya keinginan untuk mengoperasikan peralatan secara efisien,

Page 24: jenis-jenis lampu

menyebabkan penggunaan kapasitor semakin banyak dan meluas. Idealnya, kapasitor dipasang di dekat peralatan yang memerlukan daya reaktif sehingga tidak perlu terjadi adanya aliran daya reaktif melalui kabel, trafo, atau peralatan lainnya.

II.1    PF controller

Fungsi PF controller adalah untuk mengatur switching step-step capacitor banksesuai dengan nilai kompensasi daya reaktifnya (Qc) yang diperlukan untuk mencapai target faktor daya (PF) idealnya atau yang telah ditentukan. PF controller bekerja berdasarkan sensing parameter yang disebut C/k faktor yang diperoleh dari input tegangan dan arus. Ada 2 cara untuk mensetting faktor C/k, yaitu secara automatic dan manual. Cara automatic mensetting C/k dapat dilakukan dengan cara mengaktifkan mode automatic pada perhitungan C/k pada PF controller. Cara setting ini akan tergantung pada 4 parameter, yaitu :

 Nilai tegangan kerja kapasitor Un  Skala arus (rasio CT yang dipakai)  Konfigurasi jaringan, 3 phasa atau 1 phasa  Rating kapasitor step pertama

PF controller secara otomatis akan mengeset nilai C/k apabila ada perubahan pada 4 parameter diatas. Untuk cara manual dapat dilakukan dengan mengacu pada perhitungan berikut :

dimana,

                                      Q = reactive 3-phase power of one step (kVAR)

                                      U = system voltage (V)

                                       k = CT ratio

II.2   Capasitor Bank

Capacitor bank adalah kumpulan kapasitor yang digunakan untuk memberikan kompensasi reactive power (Qc). Kebutuhan kompensasi reactive power (Qc) yang dibutuhkan untuk mencapai power factor (p.f) dapat dihitung berdasarkan formula :

dimana :

Page 25: jenis-jenis lampu

                         Qc       = kompensasi reactive power yang dibutuhkan (kVAR)

                         P         = active power (kW)

                          cos φ1  = power factor (p.f) lama

                          cos φ2  = power factor (p.f) baru atau target

Perhitungan ini juga dapat digambarkan pula dalam segitiga daya pada Gambar 2.

Gambar 2. Segitiga Daya Kompensasi KVAR

II.2.1  Proses Kerja Kapasitor

Kapasitor yang akan digunakan untuk meperbesar pf dipasang paralel dengan rangkaian beban. Bila rangkaian itu diberi tegangan maka elektron akan mengalir masuk ke kapasitor. Pada saat kapasitor penuh dengan muatan elektron maka tegangan akan berubah. Kemudian elektron akan ke luar dari kapasitor dan mengalir ke dalam rangkaian yang memerlukannya dengan demikian pada saaat itu kapasitor membangkitkan daya reaktif. Bila tegangan yang berubah itu kembali normal (tetap) maka kapasitor akan menyimpan kembali elektron. Pada saat kapasitor mengeluarkan elektron (Ic) berarti sama juga kapasitor menyuplai daya treaktif ke beban. Keran beban bersifat induktif (+) sedangkan daya reaktif bersifat kapasitor (-) akibatnya daya reaktif yang berlaku menjadi kecil.

II.2.2 Pemasangan Kapasitor

Kapasitor yang akan digunakan untuk memperkecil atau memperbaiki PF penempatannya ada dua cara :

1.  Terpusat kapasitor ditempatkan pada:

                                          (a) Sisi primer atau sekunder transformator

                                          (b) Pada bus pusat pengontrol

2.  Cara terbatas kapasitor ditempatkan

                                         (a) Feeder kecil

                                         (b) Pada rangkaian cabang

                                          (c) Langsung pada beban

Page 26: jenis-jenis lampu

III.   Perawatan Capasitor Bank

III.1 Perawatan Fisik

Kapasitor yang digunakan untuk memperbaiki PF supaya tahan lama tentunya harus dirawat secara teratur. Dalam perawatan itu perhatian harus dilakukan pada tempat yang lembab yang tidak terlindungi dari debu dan kotoran. Sebelum melakukan pemeriksaan pastikan bahwa kapasitor tidak terhubung lagi dengan sumber. Kemudian karena kapasitor ini masih mengandung muatan berarti masih ada arus/tegangan listrik maka kapasitor itu harus dihubung singkatkan supaya muatannya hilang. Adapun jenis pemeriksaan yang harus dilakukan meliputi :

Pemeriksaan kebocoran Pemeriksaan kabel dan penyangga Pemeriksaan isolator

III.2  Proteksi Kapasitor dari Gangguan Harmonisa Frekuesi Tinggi

Sedikit orang yang memahami bahwa kapasitor mempunyai impedansi atau hambatan yang rendah pada frekuensi tegangan yang tinggi. Atau dengan kata lain apabila gelombang tegangan dan arus listrik mengandung harmonisa frekuensi tinggi, maka arus listrik cenderung mengalir melalui rangkaian yang hambatannya rendah, yaitu kapasitor yang terpasang ini.

Semakin banyaknya penggunaan perangkat elektronika daya seperti inverter untuk menaikkan efisiensi peralatan industri, penggunaan ballast elektronik untuk meningkatkan efisiensi lampu, dan penggunaan penyearah untuk memasok sumber daya searah membuat bentuk gelombang tegangan dan arus berubah menjadi non-sinusoidal. Suatu besaran yang digunakan untuk menggambarkan seberapa jauh suatu gelombang tidak berbentuk sinusoidal dinyatakan dengan besaran harmonisa. Arus harmonisa adalah arus listrik yang frekuensinya mengandung kelipatan bulat dari frekuensi dasarnya, dalam hal ini PT. PLN menggunakan frekuensi dasar sebesar 50 Hz.  Arus harmonisa yang banyak muncul akibat penggunaan alat-alat elektronika daya adalah arus harmonisa yang mempunyai frekuensi 150, 250, dan 350 Hz. Di banyak bangunan modern, kandungan arus harmonisa yang mengalir di jaringan listrik bisa mencapai lebih dari 30%.

Impedansi atau hambatan dari kapasitor berubah sesuai dengan frekuensi arus listrik yang mengalir melalui kapasitor. Jika hambatan kapasitor mempunyai nilai yang sama dengan hambatan jaringan sumber maka tercapailah suatu kondisi yang disebut resonansi. Pada kondisi resonansi, hambatan total sistem menjadi nol. Kondisi ini mirip dengan kondisi rangkaian pendek yang membahayakan kapasitor dan peralatan lainnya. Kondisi inilah yang sering menyebabkan rusaknya kapasitor dan peralatan lainnya.

Kapasitor sering dilalui arus lebih pada harmonisa frekuesi tinggi. Karena kapasitor biasanya berisi minyak, kapasitor akan mudah terbakar. Kejadian inilah yang sering memicu banyak kebakaran di industri dan bangunan modern.

Untuk mengatasi masalah terbakarnya kapasitor karena adanya arus harmonisa, bermacam cara sederhana bisa dilakukan. Cara pertama yang umum ditawarkan oleh banyak pabrik pembuat

Page 27: jenis-jenis lampu

kapasitor adalah dengan memasang induktor secara seri dengan kapasitor untuk mencegah mengalirnya arus harmonisa melalui kapasitor. Cara ini cukup efektif tetapi menyebabkan biaya pemasangan kapasitor menjadi mahal.

Cara lain yang paling sederhana dapat dilakukan untuk mengatasi masalah ini adalah tentu saja menjauhkan pemasangan kapasitor dari posisi beban yang diperkirakan banyak menghasilkan harmonisa. Cara ini sering sekali bisa dilakukan tanpa banyak mengeluarkan biaya tambahan.

Secara umum, pemasangan kapasitor tidak mengkhawatirkan jika :

(i) kapasitas peralatan elektronik yang diperkirakan menghasilkan harmonisa tidak lebih dari 30% kapasitas sumber, dan

(ii) besar kapasitor yang dipasang tidak lebih dari 50% kapasitas sumber.

Jika penggunaan peralatan elektronik sangat banyak dan kapasitor yang akan dipasang besar maka suatu studi khusus tentang kemungkinan terjadinya resonansi harus dilakukan untuk mencegah terjadinya kebakaran. Di banyak bangunan modern yang penggunaan peralatan elektroniknya sangat banyak, peluang terjadinya resonansi sangat tinggi sehingga studi semacam ini menjadi sangat sering diperlukan. Dengan melakukan studi ini diharapkan kebakaran yang menyebabkan kerugian ratusan milyar rupiah bisa dicegah.