Top Banner
Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions with Jacques DROULEZ Laboratoire de Physiologie de la Perception et de l'Action, CNRS, Collège de France, Paris Laurens, Droulez, Biol. Cyber
43

Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions with Jacques DROULEZ

Jan 04, 2016

Download

Documents

fleur-gordon

Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions with Jacques DROULEZ Laboratoire de Physiologie de la Perception et de l'Action, CNRS, Collège de France, Paris. Laurens, Droulez, Biol. Cyber. 2006. Probabilistic computation. Bayesian model. Semicircular Canals - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Jean LAURENS

Bayesian Modelling of Visuo-Vestibular Interactions

with Jacques DROULEZ

Laboratoire de Physiologie de la Perception et de l'Action,CNRS, Collège de France, Paris

Laurens, Droulez, Biol. Cyber. 2006

Page 2: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Bayesian model

Probabilisticcomputation

SemicircularCanals(noisy)

Otoliths(ambiguous)

PriorsP(motion)

P(sensory inputs | motion)Internal model of sensors

Motion estimatesP(motion | sensory inputs) = P(sensory inputs | motion).P(motion)

a

Plausible Improbable

GA

F

Page 3: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

A priori

● VOR dynamic

● Somatogravic effect

Page 4: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Geometrical aspects

Angularacceleration

∫ ∫

Otolithsignal

Canalsignal

Linearacceleration

Linearvelocity

Headposition

∫ ∫

Angularvelocity

Headorientation

Double integration

Double integration

H-1

Page 5: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Noise issues

Angularacceleration

∫ ∫

Otolithsignal

Canalsignal

Linearacceleration

Linearvelocity

∫ ∫

Noise

Angularvelocity

Headorientation

Headposition

Double integration

Double integration

?

?

H-1

Page 6: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

A priori

Angularacceleration

∫ ∫

Otolithsignal

Canalsignal

Linearacceleration

Linearvelocity

∫ ∫

A priori

Angularvelocity

Headorientation

A priori

Headposition

Double integration

Double integration

H-1

Noise

Page 7: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Visual informations

Angularacceleration

∫ ∫

Otolithsignal

Canalsignal

Linearacceleration

Linearvelocity

∫ ∫

A priori

Angularvelocity

Headorientation

A priori

Headposition

Double integration

Double integration

H-1

Noise

Visualsignal

Noise

Page 8: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Plan

● Introduction to Bayesian inference

● Visuo-vestibular interactions (Monkey)

● 3D Stimulations (Monkey, Human)

Page 9: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Bayesian inference

● Probability exam: normal and pronged dice (Gezinkter Würfel)

D1 : normal D2 : pronged6 in 50% throws

Page 10: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Bayesian inference

P(6 | D1) = 1/6

P(6 | D2) = 3/6

Likelihood :

P(D1 | 6) = 1/4

P(D2 | 6) = 3/4

?

Page 11: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Bayesian inference

● A priori:

P(D1) = 9/10

P(D2) = 1/10

Page 12: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Bayesian inference

● Bayes formula

P(6 | D2).P(D2)

P(6)P(D2 | 6) =

Likelihood A priori

Page 13: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Bayesian inference

Likelihood :

P(6 | D1) = 1/6

P(6 | D2) = 3/6

A priori :

P(D1) = 9/10

P(D2) = 1/10

A posteriori :

P(D1 | 6) = k * 1/6 * 9/10 = 3/4

P(D2 | 6) = k * 3/6 * 1/10 = 1/4?

Page 14: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Bayesian inference

● More observations

P(2 | D2).P(6 | D2).P(D2)

P(6,2)P(D2 | 6,2) =

Likelihood A priori

Page 15: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Bayesian inference and vestibular information

Likelihood :

P(Vest. Signal| Motion)

A priori :

P(Motion)

F

V = 0

P(Motion | Vest. Signal) = P(Vest. Signal| Motion).P(Motion)

Page 16: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Rotations around a vertical axis

Angularacceleration

∫Canalsignal

A priori40 °/s

Angularvelocity

Noise η10 °/s

Visualsignal

Noise η7 °/s

τ = 4 sH-1

Page 17: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Results: rotation in dark

0 50 100-1

-0.50

0.5

1

Rotation Stop

Rotation Vel.

Estimated vel. (τ = 20 s)

Vest. Signal (τ = 4 s)Velocity Storage

time (s)

Page 18: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Optokinetic stimulation

Light Dark

OKANOKN

0 20 40 60 80

0

0.5

1Stimulation velocity(Ω)

Estimatedvelocity (Ω)

Raphan,Matsuo,Cohen,1979

Page 19: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Optokinetic stimulation

Light Dark

0 20 40 60 80

0

0.5

1

No velocitystorage

Normal

No canals

Raphan, Cohen,Matsuo 1977

Stimulation velocity (°/s)

OK

N v

eloc

ity (

°/s)

Page 20: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Optokinetic stimulation

Light Dark

0 20 40 60 80

0

0.5

1

0 20 40 60 80

0

0.5

1

No canals

Normal

Page 21: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Canals plugging

Optokinetic stimulation

Rotation Stop

Light Dark

Rotation in dark

0 10 20-1

0

1

0 10 200

0.5

1

Angelaki & al. 1996

τ = 0.1 s

Page 22: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Velocity storage

0 50 100-1

-0.5

0

0.5

1

0 20 40 60 800

0.5

1

Rotation Stop Light Dark

Stimultation velocity

Estimated velocity (Ω)^

Vest. signal

'Velocity storage' (Ωt0)

^

Optokinetic stimulationRotation in Dark

Raphan, Cohen

Page 23: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Equivalence with Raphan-Cohen model

+

Page 24: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Conclusion

● Probabilistic modelling: noise on vestibular signal σ

= 10°/s

noise on visual signal σ = 7°/s A priori on velocity σ = 40°/s

Light Dark

0 20 40 60 80

0

0.5

1

Page 25: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

3D model

Acceleration Tilt

F ≈ G

Gravito-inertial ambiguity

G

A

F

Page 26: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

3D model

Angularacceleration

∫ ∫

Otolithsignal

Canalsignal

Linearacceleration

Linearvelocity

∫ ∫

A priori40 - 30 °/s

Angularvelocity

Headorientation

A priori3 - 5 m/s²

Headposition

Double integration

Double integration

Noise η10 °/s

Implementation: particle filter

Page 27: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Somatogravic effect

AccelerationA

Y (

m/s

²)

-2 0 2 4 6 8 10

0

2

4

Tilt

roll

(°)

-2 0 2 4 6 8 10

0

10

20

30

G

-A

F

Page 28: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Somatogravic: canals plugged

AY

(m

/s²)

-2 0 2 4 6 8 10

0

2

4ro

ll (°

)

-2 0 2 4 6 8 10

0

10

20

30

G

-A

F

Acceleration

Tilt

Page 29: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Tilt/translation discrimination

Acceleration (m/s²)

0 5 10 15-4-2024

tilt (°)

temps (s)0 5 10 15

-20

0

20

Acceleration (m/s²)

0 5 10 15-4-2024

tilt (°)

0 5 10 15

-20

0

20

Normal

Angelaki, 1999

Page 30: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Tilt/translation discrimination

0 5 10 15-4-2024

time (s)0 5 10 15

-20

0

20

0 5 10 15-4-2024

0 5 10 15

-20

0

20

Canals plugged

Angelaki, 1999

Acceleration (m/s²)

tilt (°)

Acceleration (m/s²)

tilt (°)

Page 31: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Post-rotatory tilt

Angular velocity

y (°/

s)

time (s)0 20 40 60 80 100 120

-50

0

50

Angelaki, 1994

Page 32: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Post-rotatory tilt

60 80 100 120-60-40-20

020

60 80 100 120

-20

0

20

time (s)60 80 100 120

-20

0

20

Angelaki, 1994

Page 33: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Centrifugation

G

A

F

Roll

r (

°)

0 50 100 150-20

020

4060

time (s)

Page 34: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

OVAR

Benson, Bodin, 1965Guedry, 1974

after Guedry, 1974

60 °/s

180 °/s

Page 35: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

OVAR

Head tilt (°)

0 50 100 150 2000

100

time (s)0 50 100 150 200

0

100

200

α

180 °/s

0 50 100 150 200

020

4060

60 °/s

Angular velocity (°/s)

Angular velocity (°/s)

Page 36: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

OVAR

F

G

F

G

-A

Guedry, 1974

60 °/s

180 °/s

Page 37: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

OVAR

Ang. vel. a priori: σΩ = 30°/s

Acceleration a priori : σA = 5 m/s²

60 °/s 78°/s 180 °/s

Rotation 2 σΩ

2.6 σΩ

6 σΩ

Acceleration (13 m/s²) 2.6 σA

2.6 σA

2.6 σA

Correia 1966,Lackner 1978,

Mittelstaedt 1989,Bos 2002 (90°/s)

Guedry 1965,Benson 1966,Correia 1966,

Wall 1990

Page 38: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

OVAR

Denise, Darlot, Droulez, Berthoz 1989

Angular velocity (°/s)

0 50 100 150 200

0

20

40

60

Angular velocity (°/s)

time (s)0 50 100 150 200

0

20

40

60

Angelaki 2000, Kushiro 2002

Page 39: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

OVAR

time (s)

Angelaki 2000, Kushiro 2002

0 20 40 60 80

0

20

40

60

Yaw velocity (°/s)

Page 40: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Motion sickness

0 20 40 6010

-2

100

102

104

accélération linéaire

rotation

inclinaison post-rotatoire

time (s)

k.P(Sensory Signal)

Page 41: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Conclusion

● 3 hypothesis Sensory signals uncertainty A priori Bayesian inference

● Lesion modelling (observer theory)● Bayesian approach● Extensions● Predictions Laurens, Droulez, Biol. Cyber. 2006

Page 42: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ

Thanks !

Page 43: Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions  with Jacques DROULEZ