Top Banner
Jamming and glassy behavior in colloids Peter Schall University of Amsterdam JMBC Workshop
37

Jamming and glassy behavior in colloids

Feb 09, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Jamming and glassy behavior in colloids

Jamming and glassy behavior in colloidsPeter Schall

University of Amsterdam

JMBC Workshop

Page 2: Jamming and glassy behavior in colloids

Jamming and glassy behavior in colloids

1. Glasses: Some concepts

2. Flow of Glassy Materials

3. Insight from Colloidal Glasses

Page 3: Jamming and glassy behavior in colloids

Liquid or Solid?

Page 4: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Solid !

Liquid !

Liquid or Solid?

Example:Pitch

10-2 104 106 108 1010100 102 1012 1014 sec

1 day 1 year Menkind

Time scale

Page 5: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Fundamental Transition

Elastic solidReversible, MemoryElastic Modulus µ

Viscous LiquidIrreversible, randomdiffusive, Viscosity η

Symmetry change

Temporal symmetry

Elastic

FF(-t) = F(t)

Plastic

FF(-t) = - F(t)

Energy storage Energy loss

Page 6: Jamming and glassy behavior in colloids

Dynamic Arrest

Page 7: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Glass Formation

Cooling from Liquid

atomic vibrations+

structural changes

atomic vibrationsonly

Glass transition

Page 8: Jamming and glassy behavior in colloids

P. Schall, Harvard University

Macroscopic:Viscosity

temperature

viscosity / Pa⋅s

1010

1020

1030

1012 glass

liquid

10-2 104 106 108 1010100 102 1012 1014 sec

1 day 1 year Menkind

Glass transition

Time scale

1040

Viscosity and Diffusion

Page 9: Jamming and glassy behavior in colloids

P. Schall, Harvard University

Macroscopic:Viscosity

temperature

viscosity / Pa⋅s

1010

1020

1030

1012 glass

liquid

10-2 104 106 108 1010100 102 1012 1014 sec

1 day 1 year Menkind

Glass transition

Time scale

1040

Viscosity and Diffusion

Viscosity η~ 1/D (diff.coeff.)~ τ (relax.time)

Page 10: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

η ~ η0 e ( Eact/kBT)Viscosity

D ~ D0 e ( -Eact/kBT)Diffusion coefficient

Simple Liquids: Arrhenius

(1/T)

Log(viscosity)

(1/Tg)

strongglasses

fragileglasses

Eact

Viscosity and Diffusion

Page 11: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Strong and Fragile Glasses

“Angel plot“

Arrheniusη = η0 exp(E/kBT)

Vogel-Fulcher-Tamman

η = exp(A+ )BT-T0

Page 12: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Vogel-Fulcher-Tamman

Vogel-Fulcher-Tamman

Myth:Do cathedral glassesflow over centuries?

� = ��� � + ��

Page 13: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Vogel-Fulcher-Tamman

Vogel-Fulcher-Tamman

� = ��� � + ��

Page 14: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Vogel-Fulcher-Tamman

Vogel-Fulcher-Tamman

� = ��� � + ��

GeO2: A = -9.94, B = 17962, T0 = 0K

Your turn!

Relaxation time: 1032 years!>> age of the universe 1010 years

Page 15: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

BernalThe structure of liquids et al. 1960s

Free Volume Theory

Canonical Holes

Hard Spheres

Page 16: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Model systems: Hard spheres

Page 17: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Model systems: Hard spheres

Voronoi Volume

Page 18: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Model systems: Hard spheres

Voronoi VolumeDistribution

Page 19: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

ViV0

P(Vf) ~ exp(-Vf / <Vf>)Free Volume Theory:

Free Volume Theory

Free Volume Vf ~ (Vi – V0)

Page 20: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

ViV0

Free Volume Theory

Viscosity: η ~ P (Vf >δV0)-1

Rearrangements occur at Vf > δV0

~ exp(δV0/<Vf>)

Page 21: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

ViV0

Free Volume Theory

Free volume from thermal expansion

Vf = 0 at T = T0

Vf(T), η(T) ???

Your turn!

Page 22: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

ViV0

Free Volume Theory

� � ∝��

Free volume from thermal expansion

Vf = 0 at T = T0

Page 23: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

ViV0

Free Volume Theory

� � ∝��Free volume from thermal expansion

Big success of free volume theory!

� = ��� � + ��

Page 24: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

1 / (Temperature) Volume fraction φ

φmax

Free Volume Theory

Suspensions(Chaikin, PRE 2002)

Page 25: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

ViV0

Free Volume Theory

Free volume:���� �? ? ?� =? ? ?Viscosity:

Max. PackingFraction φm ~ 0.64

Your turn!

Page 26: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

ViV0

Free Volume Theory

Free volume:���� �

���

�����������

� = ����� ��������Viscosity:

Max. PackingFraction φm ~ 0.64

Page 27: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Free Volume Theory: Suspensions

φmax

� = ����� ��������

0,0 0,1 0,2 0,3 0,4 0,5 0,61

10

100

1000

10000

η / µ

φ

(Cheng, Chaikin, PRE 2002)

Page 28: Jamming and glassy behavior in colloids

Dynamic correlations

IncreasingcooperativityT � Tg

Adam & Gibbs (1965)

Analogy to 2nd order phase transitions?... but viscosity not singular

Page 29: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Dynamic correlations

2nd Order Phase Transitions

m(r)

Magnetization � =�� � ��Local Magnetic Moment � �

Order Parameter

H

Page 30: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Dynamic correlations

2nd Order Phase Transitions

m(r)H

�� =� � � ��

� Δ� = � � ∙ � � + Δ� #Correlation function

Susceptibility

∆∆∆∆r

Page 31: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Dynamic correlations

2nd Order Phase Transitions

m(r)B

�� ∝ $ − $& �'

� � ∝ ��(��� − � )⁄Critical Scaling close to Tc

∆∆∆∆r

) ∝ $ − $& �+Divergence of• Correlation length

• Susceptibility

Correlationlength

Page 32: Jamming and glassy behavior in colloids

Dynamic correlations

Granular fluidof ball bearings

Colloidalglass

Computer simulation2D repulsive discs

Glass transition ascritical phenomenon?

Page 33: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Dynamic correlation function

m(0,∆t)

m(r,∆t)

r

4-point correlation function

Dynamic correlations

Biroli, Dauchot, Berthier,PRL 2005, 2008, 2009

Glotzer et al. 1999

Page 34: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Dynamic correlation function

m(0,∆t)

m(r,∆t)

r

4-point correlation function

Dynamic susceptibility

�, =�-, �, Δ/ ��

-, �, Δ/ = � 0, Δ/ ∙ � �, Δ/

Dynamic correlations

Dynamical criticality?-, ∝ ��(��# 12⁄

Page 35: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Glass transition: critical phenomenon?

Berthier et al.PRL 2003

Dynamical criticality?-, ∝ ��(��# 12⁄

Page 36: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Glass transition: critical phenomenon?

Dynamical criticality?-, ∝ ��(��# 12⁄

No evidence of true divergence

Page 37: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Summary

Free Volume Theory� Success in deriving Vogel Fulcher relation

Dynamic heterogeneity� No true divergence of correlations

Amorphous materialsLiquid and Solid, depending on time scale

Empirical relations for viscosity: Vogel-Fulcher