Top Banner
Effect of NO x emission controls on the long-range transport of ozone air pollution and human mortality J. Jason West, Vaishali Naik, Larry W. Horowitz, Arlene M. Fiore
30

J. Jason West, Vaishali Naik, Larry W. Horowitz, Arlene M. Fiore

Jan 03, 2016

Download

Documents

Philip McCarthy

Effect of NO x emission controls on the long-range transport of ozone air pollution and human mortality. J. Jason West, Vaishali Naik, Larry W. Horowitz, Arlene M. Fiore. What is the effect of NO x reductions in one region, on ozone in all other world regions?. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

Effect of NOx emission controls on the long-range transport of ozone air

pollution and human mortality

J. Jason West, Vaishali Naik, Larry W. Horowitz,

Arlene M. Fiore

Page 2: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

What is the effect of NOx reductions in one region, on ozone in all other world

regions?

Reduce anthropogenic NOx emissions by 10% in each of 9 world regions, in the MOZART-2 global CTM (MACCM3 meteorology, EDGAR emissions for 1990s).

Naik et al. (JGR, 2005) used these simulations to show that NOx reductions in each region increase net RF.

Page 3: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

ppbv

NA

SA

AF

EU

IN

SE

FSU

EA

AU

Change in surface O3 (ppb), averaged over the 3-month period with highest population-weighted O3 in source region.

Surface O3 Change from 10% regional NOx reductions

Page 4: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

Effect of 10% regional NOx reductions

NA EU FSU AF IN EA SA SE AU

NA -512 -63 -46 -44 -44 -8 -11 -10 -3

EU -8 -194 -184 -73 -13 -9 1 -3 1

FSU -14 -55 -401 -16 -16 -27 0 0 0

AF -4 -9 -15 -176 -50 -1 -8 -8 -17

IN -4 0 -2 -6 -482 -16 -2 -32 -1

EA -16 -7 -16 -6 -6 -930 -1 -105 0

SA -6 1 1 -4 -4 1 -252 -5 -34

SE 0 2 1 -2 -15 -38 -9 -265 -11

AU 0 0 0 -1 0 0 -13 -3 -179

Receptor Region

Change in population-weighted O3 (ppt), averaged over the 3-month period with highest O3 in the receptor region.

Page 5: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

Normalized source-receptor matrix

NA EU FSU AF IN EA SA SE AU

NA 0.64 0.08 0.06 0.06 0.05 0.01 0.01 0.01 0.00

EU 0.02 0.40 0.38 0.15 0.03 0.02 0.00 0.01 0.00

FSU 0.06 0.22 1.62 0.07 0.06 0.11 0.00 0.00 0.00

AF 0.02 0.04 0.07 0.89 0.25 0.00 0.04 0.04 0.08

IN 0.04 0.00 0.02 0.05 4.19 0.14 0.02 0.28 0.01

EA 0.04 0.02 0.04 0.02 0.02 2.33 0.00 0.26 0.00

SA 0.07 -0.02 -0.01 0.05 0.05 -0.01 3.07 0.06 0.41

SE 0.00 -0.02 -0.01 0.04 0.23 0.58 0.13 4.05 0.16

AU -0.01 -0.01 -0.01 0.02 0.02 -0.01 0.34 0.08 4.70

Receptor Region

Change in 3-month population-weighted average O3 per unitchange in NOx emissions (ppb (Tg N yr-1)-1).

Page 6: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

Example: Europe

EU as source

EU as receptor

EU as receptorper Tg N

-0.20

-0.15

-0.10

-0.05

0.00

0.05

NA EU FSU AF IN EA SA SE AU

dO

3(p

pb

)

-0.20

-0.15

-0.10

-0.05

0.00

0.05

NA EU FSU AF IN EA SA SE AUd

O3

(pp

b)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

NA EU FSU AF IN EA SA SE AU

dO

3(p

pb

/ T

g y

r-1)

Change in population-weighted O3, averaged over the 3-month period with highest O3 in the receptor region.

Page 7: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

Example: North America

NA as source

NA as receptor

NA as receptorper Tg N

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

NA EU FSU AF IN EA SA SE AU

dO

3(p

pb

)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

NA EU FSU AF IN EA SA SE AUd

O3

(pp

b)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

NA EU FSU AF IN EA SA SE AU

dO

3(p

pb

/ T

g y

r-1 )

Change in population-weighted O3, averaged over the 3-month period with highest O3 in the receptor region.

Page 8: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

Monthly O3 changes in each receptor region

Panels for receptor regions, showing effects of 10% NOx reductions in each source region, for population-weighted monthly average O3.

Page 9: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

Why greater sensitivity to changes in emissions in tropics and SH?

** Mainly due to decreased O3 production below 500 mb.

Units are: Tg O3, Tg O3 (TgN yr-1)-1, Tg O3 yr-1 (TgN yr-1)-1

Page 10: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

Is ozone exported or NOy?

-4 -3 -2 -1 0

NA

EU

FSU

AF

IN

EA

SA

SE

AU

Change in Export and Production (Tg O3 yr-1)

Export fromSourceRegion

ProductionOutside ofSourceRegion

Exportgreater

Page 11: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

Effects on Metropolitan RegionsReceptor

Change in 3-month population-weighted average O3 (ppt).

Page 12: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

Avoided Mortalities (annual)

Receptor Region

Mortality based on Bell et al. (2004)Intra-regional avoided mortalities: 5744; Inter-regional: 2600

NA EU FSU AF IN EA SA SE AU TOT

NA 251 148 59 162 133 106 11 7 0 876

EU 12 -289 89 250 39 54 0 2 0 158

FSU 12 53 50 67 62 89 0 1 0 333

AF 12 49 36 938 134 58 4 5 5 1238

IN 13 13 10 53 3012 80 1 56 0 3238

EA 38 45 25 34 107 1154 0 124 0 1527

SA 3 -1 0 33 9 -1 203 3 1 251

SE 3 1 1 29 149 100 4 417 0 704

AU -1 -1 0 7 -2 -2 5 7 7 20

TOT 8344

Page 13: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

Avoided Mortalities (annual) per Tg N yr-1

Receptor Region

NA EU FSU AF IN EA SA SE AU TOT

NA 32 18 7 20 17 13 1 1 0 110

EU 3 -60 18 52 8 11 0 4 0 33

FSU 5 21 20 27 25 36 0 0 0 135

AF 6 25 18 472 68 29 2 0 0 623

IN 12 11 8 46 2621 70 1 3 0 2818

EA 10 11 6 8 27 290 0 49 0 383

SA 4 -1 0 40 12 -1 248 31 1 306

SE 5 2 1 44 227 152 6 637 0 1076

AU -1 -2 -1 18 -6 -4 13 17 19 52

TOT 345

Page 14: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

Long-term changes in O3 via CH4

NOX

O3

OH CH4 O3

rapidlocal

decadalglobal

-0.20

-0.15

-0.10

-0.05

0.00

0.05

NA EU FSU AF IN EA SA SE AU

O3 (

pp

b)

Short term

Steady state

EU as source

-0.20

-0.15

-0.10

-0.05

0.00

0.05

NA EU FSU AF IN EA SA SE AU

O3 (

pp

b)

Short term

Steady state

EU as receptor

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

NA EU FSU AF IN EA SA SE AU

O3 p

er N

Ox (

pp

b (

Tg

N y

r-1)-1

)

Short term

Steady state

EU as receptorper Tg N

Page 15: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

Long-term changes in O3 via CH4

CH4 and long-term O3 increase per unit NOx decrease(global annual average surface O3 change)

Tropical and SH regions have much

greater effect on CH4 and long-term O3 per

ton NOx reduced0 5 10 15 20 25 30 35 40

NA

EU

FSU

AF

IN

EA

SA

SE

AU

dCH4/dEmis (ppb (TgN yr-1)-1)

dO3/dEmis (ppt (TgN yr-1)-1)

1005025 750

Page 16: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

Conclusions

Based on 10% regional anthropogenic NOx emission reductions:

• Inter-continental effects are ~10x smaller than effects within a region.– Largest impact is Europe on the Former Soviet Union.– Control costs would need to be ~10% of within-region cost for

overseas reductions to be cost-effective.

• Tropical regions cause a greater ∆O3 per ton NOx reduced, than temperate regions.

• Avoided mortalities are greater outside of NA, EU, and FSU than within.

• Long-term changes in O3 (via CH4) roughly cancel the short-term O3 reduction for some region pairs.

Page 17: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore
Page 18: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

CONTINENT 2 OCEAN

Boundary layer

(0-3 km)

Free Troposphere

CONTINENT 1

Ozone Precursors Affect Both Ozone Air Quality and Climate Forcing

OH HO2

NMVOC, CO, CH4

NONO2

hO3

Direct Intercontinental Transport

Global Background O3

NOx

NMVOCsO3

NOx

NMVOCsO3

Page 19: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

Ozone Precursors Affect Both Ozone Air Quality and Climate Forcing

NOX

O3

OH CH4 O3

VOCs, COO3

OH CH4 O3

OHHO2

NO NO2

hO3

NMVOCs, CO, CH4

rapidlocal

decadalglobal

CH4

O3

OH CH4 O3

decadalglobal

Page 20: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

Surface ozone changes due to 20% anthropogenic reductions

Effect of global 20% anthropogenic emission reductions on 8-hr daily maximum surface O3, averaged over 3 month period with highest O3, at steady state (MOZART-2).

Page 21: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

-2.5

-2

-1.5

-1

-0.5

0

NOX NMVOC CO CH4

pp

bv

-2.5

-2

-1.5

-1

-0.5

0

NOX NMVOC CO CH4

pp

bv

Ozone changesEffects of 20% reductions in anthropogenic emissions

Tropospheric O3 burden

∆O3srf global

population-weighted 8hr. 3-month

∆O3srf annual average

Short term

Steady state

342

343

344

345

346

347

348

349

350

351

NOX NMVOC CO CH4

Tg

O3

NOX

O3

OH CH4 O3

Short term Long term

Steady state = Short term + Long term

Page 22: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

-0.16

-0.12

-0.08

-0.04

0

0.04

NOX NMVOC CO CH4

W m

-2

Radiative forcingEffects of 20% reductions in anthropogenic emissions

METHANE

OZONE

NOX

O3

OH CH4 O3

CH4 forcing estimated using Ramaswamyet al. (2001), O3 forcing using GFDL AM2radiative transfer model.

Page 23: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

NOX NMVOC CO CH4

W m

-2 p

pb

v-1

-0.16

-0.12

-0.08

-0.04

0

0.04

NOX NMVOC CO CH4

W m

-2Radiative Forcing and Ozone Air

QualityEffects of 20% reductions in anthropogenic emissions

METHANEOZONE

Radiative Forcing

∆ RFnet / ∆ O3srf

Reducing methane emissions causes thegreatest reduction in RF per unit improvement in O3 air quality.

Ozone air quality

-2.5

-2

-1.5

-1

-0.5

0

NOX NMVOC CO CH4

pp

bv

∆O3srf global population-

weighted 8hr. 3-month

West et al. (2007) GRL

Page 24: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

Human Health Effects of Ozone and PM

• Time-series studies: relate short-term (day-to-day) changes in concentration to daily mortality rates

• Cohort studies: relate community-level exposures over multiple years to annual mortality

• Relative Risk (RR) = the ratio of the probability of health outcome in exposed group vs. unexposed group

Bell et al., 2004

Mortality effects of ozone in short-term time-series studies:

Mortality effects of PM in long-term cohort studies:

Pope et al., 2002

Page 25: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

Mitigating Global Ozone Pollution by Reducing Methane Emissions: Global Health Benefits

Motivation

• Methane, the most abundant VOC, contributes to the growing global background of tropospheric ozone.

• Methane mitigation has been considered for climate, but not for air quality.

GOAL: Consider the viability of methane control for managing tropospheric ozone, by considering the costs of control and benefits for avoided human mortality.

Change in surface ozone from a 20% reduction in global

anthropogenic methane emissions.

• Methane mitigation decreases O3 everywhere (using MOZART-2, steady-state relative to 2030 A2).

• ∆O3 = -1.16 ppbv (glob. Ann. Avg. 8-hr. O3, population-weighted).

Page 26: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

Mitigating Global Ozone Pollution by Reducing Methane Emissions: Global Health Benefits

Global avoided premature mortalities from a 20% reduction in global

anthropogenic methane emissions.

Prevents ~30,000 premature mortalities in 2030 (~0.04% of total deaths), and ~370,000 from 2010-2030.

Conclusions• Methane emission reductions

decrease ozone everywhere, while also reducing greenhouse warming.

• Monetized health benefits are ~$240 per ton CH4 ($12 per ton CO2 eq.) - which can justify the 20% methane reduction.

• Methane abatement can be a cost-effective component of international long-term ozone management.

Ozo

ne c

once

ntra

tion

Historical

Background

Regional

Local

Standard

Future

Continueddomesticemissioncontrols

Opportunity for global methane

controls

West et al. (2006) PNAS

Page 27: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

OHHO2

NO NO2

hO3

NMVOCs, CO

Ozone Precursors Affect Both Ozone Air Quality and Climate Forcing

Urban Global

OHHO2

NO NO2

hO3

NMVOCs, CO, CH4

Page 28: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

Is ozone exported or NOx?

Page 29: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

-2.5

-2

-1.5

-1

-0.5

0

NOX NMVOC CO CH4

pp

bv

-2.5

-2

-1.5

-1

-0.5

0

NOX NMVOC CO CH4

pp

bv

Ozone changesEffects of 20% reductions in anthropogenic

emissionsTropospheric O3 burden

∆O3srf global

population-weighted 8hr. 3-month

∆O3srf annual average

Short term

Steady state

NOX

O3

OH CH4 O3

342

343

344

345

346

347

348

349

350

351

NOX NMVOC CO CH4

Tg

O3

Page 30: J. Jason West, Vaishali Naik,  Larry W. Horowitz,  Arlene M. Fiore

Effect of 10% regional NOx reductions

at steady state

NA EU FSU AF IN EA SA SE AU

NA -498 -45 -33 -30 -29 3 1 2 9

EU -4 -189 -180 -69 -9 -6 4 1 4

FSU -11 -51 -398 -13 -13 -25 3 2 3

AF 4 2 -7 -167 -41 6 -1 -1 -10

IN 1 6 2 -1 -476 -13 2 -28 2

EA -9 2 -10 1 1 -924 5 -99 5

SA 2 11 8 4 4 7 -245 2 -28

SE 8 12 8 6 -7 -32 -2 -259 -4

AU 4 5 4 3 4 3 -10 0 -176

Receptor Region

Change in 3-month population-weighted average O3 (ppt)