Top Banner

of 47

IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

Apr 02, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    1/47

    NMDA RECEPTORS AND GLUTAMATE

    The N-methyl-D-aspartate receptor(also known as the NMDA receptororNMDAR),a glutamate receptor, is the predominantmolecular device for controlling synapticplasticity and memoryfunction.[1]The NMDAR is a specific type of ionotropic glutamatereceptor.NMDA (N-methyl-D-aspartate) is the name of a selective agonist that binds to

    NMDA receptors but not to other 'glutamate' receptors.Activation of NMDA receptorsresults in the opening of an ion channel that is nonselective to cations with anequilibrium potential near 0 mV.A property of the NMDA receptor is its voltage-dependent activation, aresult of ion channel block by extracellular Mg2+ ions. Thisallows theflow of Na+ and small amounts of Ca2+ ions into the cell and K+ out ofthecell to be voltage-dependent

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    2/47

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    3/47

    NMDA receptor 1

    NMDA receptor

    NMDA

    Glutamic acid

    Stylised depiction of an activated NMDAR.

    Glutamate is in the glutamate-binding site and

    glycine is in the glycine-binding site. Allosteric

    sites that would cause inhibition of the receptor

    are not occupied. NMDARs require the binding

    of two molecules of glutamate or aspartate and

    two of glycine.[]

    The N-methyl-D-aspartate receptor (also known as the NMDA

    receptor or NMDAR), a glutamate receptor, is the predominant

    molecular device for controlling synaptic plasticity and memory

    function.[1]

    The NMDAR is a specific type of ionotropic glutamate receptor.

    NMDA (N-methyl-D-aspartate) is the name of a selective agonist that

    binds to NMDA receptors but not to other 'glutamate' receptors.

    Activation of NMDA receptors results in the opening of an ion channel

    that is nonselective to cations with an equilibrium potential near 0 mV.

    A property of the NMDA receptor is its voltage-dependent activation, a

    result of ion channel block by extracellular Mg2+

    ions. This allows the

    flow of Na+

    and small amounts of Ca2+

    ions into the cell and K+

    out of

    the cell to be voltage-dependent.

    [][][][]

    Calcium flux through NMDARs is thought to be critical in synaptic

    plasticity, a cellular mechanism for learning and memory. The NMDA

    receptor is distinct in two ways: first, it is both ligand-gated and

    voltage-dependent; second, it requires co-activation by two ligands:

    glutamate and either d-serine or glycine.[2]

    Structure

    The NMDA receptor forms a heterotetramer between two GluN1 and

    two GluN2 subunits (the subunits were previously denoted as NR1 and

    NR2), two obligatory NR1 subunits and two regionally localized NR2

    subunits. A related gene family of NR3 A and B subunits have an

    inhibitory effect on receptor activity. Multiple receptor isoforms with

    distinct brain distributions and functional properties arise by selective

    splicing of the NR1 transcripts and differential expression of the NR2

    subunits.

    Each receptor subunit has modular design and each structural module

    also represents a functional unit:

    The extracellulardomain contains two globular structures: amodulatory domain and a ligand-binding domain. NR1 subunits

    bind the co-agonist glycine and NR2 subunits bind the

    neurotransmitter glutamate.

    The agonist-binding module links to a membrane domain, which

    consists of three trans-membrane segments and a re-entrant loop

    reminiscent of the selectivity filter of potassium channels.

    The membrane domain contributes residues to the channel pore and is responsible for the receptor's high-unitary

    conductance, high-calcium permeability, and voltage-dependent magnesium block.

    Each subunit has an extensive cytoplasmic domain, which contain residues that can be directly modified by aseries of protein kinases and protein phosphatases, as well as residues that interact with a large number of

    http://en.wikipedia.org/w/index.php?title=Protein_phosphataseshttp://en.wikipedia.org/w/index.php?title=Protein_kinaseshttp://en.wikipedia.org/w/index.php?title=Electrical_conductancehttp://en.wikipedia.org/w/index.php?title=Potassium_channelshttp://en.wikipedia.org/w/index.php?title=Ligandhttp://en.wikipedia.org/w/index.php?title=Domain_%28biology%29http://en.wikipedia.org/w/index.php?title=Extracellularhttp://en.wikipedia.org/w/index.php?title=Isoformhttp://en.wikipedia.org/w/index.php?title=Genehttp://en.wikipedia.org/w/index.php?title=Heterotetramerhttp://en.wikipedia.org/w/index.php?title=Glycinehttp://en.wikipedia.org/w/index.php?title=D-serinehttp://en.wikipedia.org/w/index.php?title=Glutamatehttp://en.wikipedia.org/w/index.php?title=Ligand-gated_ion_channelhttp://en.wikipedia.org/w/index.php?title=Memoryhttp://en.wikipedia.org/w/index.php?title=Learninghttp://en.wikipedia.org/w/index.php?title=Synaptic_plasticityhttp://en.wikipedia.org/w/index.php?title=Synaptic_plasticityhttp://en.wikipedia.org/w/index.php?title=Voltage-dependent_ion_channelhttp://en.wikipedia.org/w/index.php?title=Equilibrium_potentialhttp://en.wikipedia.org/w/index.php?title=Ionhttp://en.wikipedia.org/w/index.php?title=Ion_channelhttp://en.wikipedia.org/w/index.php?title=Selective_agonisthttp://en.wikipedia.org/w/index.php?title=NMDAhttp://en.wikipedia.org/w/index.php?title=Glutamate_receptorhttp://en.wikipedia.org/w/index.php?title=Ionotropichttp://en.wikipedia.org/w/index.php?title=Memoryhttp://en.wikipedia.org/w/index.php?title=Synaptic_plasticityhttp://en.wikipedia.org/w/index.php?title=Glutamatehttp://en.wikipedia.org/w/index.php?title=File%3AActivated_NMDAR.PNGhttp://en.wikipedia.org/w/index.php?title=Allosterichttp://en.wikipedia.org/w/index.php?title=File%3AL-glutamic-acid-skeletal.pnghttp://en.wikipedia.org/w/index.php?title=Glutamic_acidhttp://en.wikipedia.org/w/index.php?title=File%3ANmda.pnghttp://en.wikipedia.org/w/index.php?title=NMDA
  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    4/47

    NMDA receptor 2

    structural, adaptor, and scaffolding proteins.

    The glycine-binding modules of the NR1 and NR3 subunits and the glutamate-binding module of the NR2A subunit

    have been expressed as soluble proteins, and their three-dimensional structure has been solved at atomic resolution

    by x-ray crystallography. This has revealed a common fold with amino acid-binding bacterial proteins and with the

    glutamate-binding module of AMPA-receptors and kainate-receptors.

    Variants

    GluN1

    There are eight variants of the NR1 subunit produced by alternative splicing of GRIN1:[]

    NR1-1a, NR1-1b; NR1-1a is the most abundantly expressed form.

    NR1-2a, NR1-2b;

    NR1-3a, NR1-3b;

    NR1-4a, NR1-4b;

    GluN2

    NR2 subunit in vertebrates (left) and

    invertebrates (right). Ryan et al., 2008

    While a single NR2 subunit is found in invertebrate organisms, four

    distinct isoforms of the NR2 subunit are expressed in vertebrates and

    are referred to with the nomenclature NR2A through D(coded by

    GRIN2A, GRIN2B, GRIN2C, GRIN2D). Strong evidence shows that

    the genes coding the NR2 subunits in vertebrates have undergone at

    least two rounds of gene duplication.[3]

    They contain the binding-site

    for the neurotransmitter glutamate. More importantly, each NR2

    subunit has a different intracellular C-terminal domain that can interact

    with different sets of signalling molecules.[4] Unlike NR1 subunits,

    NR2 subunits are expressed differentially across various cell types and

    control the electrophysiological properties of the NMDA receptor. One

    particular subunit, NR2B, is mainly present in immature neurons and

    in extrasynaptic locations, and contains the binding-site for the selective inhibitor ifenprodil.

    Whereas NR2B is predominant in the early postnatal brain, the number of NR2A subunits grows, and eventually

    NR2A subunits outnumber NR2B. This is called NR2B-NR2A developmental switch, and is notable because of the

    different kinetics each NR2 subunit lends to the receptor.[]

    For instance, greater ratios of the NR2B subunit leads to

    NMDA receptors which remain open longer compared to those with more NR2A.[5]

    This may in part account for

    greater memory abilities in the immediate postnatal period compared to late in life, which is the principle behindgenetically-altered 'doogie mice'.

    There are three hypothetical models to describe this switch mechanism:

    Dramatic increase in synaptic NR2A along with decrease in NR2B

    Extrasynaptic displacement of NR2B away from the synapse with increase in NR2A

    Increase of NR2A diluting the number of NR2B without the decrease of the latter.

    The NR2B and NR2A subunits also have differential roles in mediating excitotoxic neuronal death.[]

    The

    developmental switch in subunit composition is thought to explain the developmental changes in NMDA

    neurotoxicity.[]

    Disruption of the gene for NR2B in mice causes perinatal lethality, whereas the disruption of NR2A

    gene produces viable mice, although with impaired hippocampal plasticity.[6]

    One study suggests that reelin may

    play a role in the NMDA receptor maturation by increasing the NR2B subunit mobility.[]

    http://en.wikipedia.org/w/index.php?title=GRIN2Bhttp://en.wikipedia.org/w/index.php?title=Reelinhttp://en.wikipedia.org/w/index.php?title=Lethalityhttp://en.wikipedia.org/w/index.php?title=Excitotoxicityhttp://en.wikipedia.org/w/index.php?title=Doogie_micehttp://en.wikipedia.org/w/index.php?title=NR2Ahttp://en.wikipedia.org/w/index.php?title=GRIN2Bhttp://en.wikipedia.org/w/index.php?title=Ifenprodilhttp://en.wikipedia.org/w/index.php?title=Glutamatehttp://en.wikipedia.org/w/index.php?title=Neurotransmitterhttp://en.wikipedia.org/w/index.php?title=GRIN2Dhttp://en.wikipedia.org/w/index.php?title=GRIN2Chttp://en.wikipedia.org/w/index.php?title=GRIN2Bhttp://en.wikipedia.org/w/index.php?title=GRIN2Ahttp://en.wikipedia.org/w/index.php?title=File%3AModel_of_NR2_Subunit_of_NMDA_receptor_%28vertebrate_and_invertebrate%29.jpghttp://en.wikipedia.org/w/index.php?title=GRIN1http://en.wikipedia.org/w/index.php?title=GRIN1http://en.wikipedia.org/w/index.php?title=X-ray_crystallography
  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    5/47

    NMDA receptor 3

    NR2B to NR2C switch

    Granule cell precursors (GCPs) of the cerebellum, after undergoing symmetric cell division[]

    in the external

    granule-cell layer (EGL), migrate into the internal granule-cell layer (IGL) where they downregulate NR2B and

    activate NR2C, a process that is independent of neuregulin beta signaling through ErbB2 and ErbB4 receptors.[]

    Ligands

    Agonists

    Activation of NMDA receptors requires binding of glutamate or aspartate (aspartate does not stimulate the receptors

    as strongly).[]

    In addition, NMDARs also require the binding of the co-agonist glycine for the efficient opening of

    the ion channel, which is a part of this receptor.

    D-serine has also been found to co-agonize the NMDA receptor with even greater potency than glycine.[]

    D-serine is

    produced by serine racemase, and is enriched in the same areas as NMDA receptors. Removal of D-serine can block

    NMDA-mediated excitatory neurotransmission in many areas. Recently, it has been shown that D-serine can be

    released both by neurons and astrocytes to regulate NMDA receptors.

    In addition, a third requirement is membrane depolarization. A positive change in transmembrane potential will

    make it more likely that the ion channel in the NMDA receptor will open by expelling the Mg2+

    ion that blocks the

    channel from the outside. This property is fundamental to the role of the NMDA receptor in memory and learning,

    and it has been suggested that this channel is a biochemical substrate of Hebbian learning, where it can act as a

    coincidence detector for membrane depolarization and synaptic transmission.

    Known NMDA receptor agonists include:

    Aminocyclopropanecarboxylic acid

    D-Cycloserine

    cis-2,3-Piperidinedicarboxylic acid

    L-aspartate

    Quinolinate

    Homocysterate

    D-serine

    ACPL

    L-alanine

    Partial agonists

    N-Methyl-D-aspartic acid (NMDA)

    3,5-dibromo-L-phenylalanine

    [7]

    GLYX-13

    Antagonists

    Antagonists of the NMDA receptor are used as anesthetics for animals and sometimes humans, and are often used as

    recreational drugs due to their hallucinogenic properties, in addition to their unique effects at elevated dosages such

    as dissociation. When certain NMDA receptor antagonists are given to rodents in large doses, they can cause a form

    of brain damage called Olney's Lesions. NMDA receptor antagonists that have been shown to induce Olney's

    Lesions include Ketamine, Phencyclidine, Dextrorphan (a metabolite of Dextromethorphan), and MK-801, as well as

    some NDMA receptor antagonists used only in research environments. So far, the published research on Olney's

    Lesions is inconclusive in its occurrence upon human or monkey brain tissues with respect to an increase in the

    presence of NMDA receptor antagonists.[]

    http://en.wikipedia.org/w/index.php?title=MK-801http://en.wikipedia.org/w/index.php?title=Dextromethorphanhttp://en.wikipedia.org/w/index.php?title=Dextrorphanhttp://en.wikipedia.org/w/index.php?title=Phencyclidinehttp://en.wikipedia.org/w/index.php?title=Ketaminehttp://en.wikipedia.org/w/index.php?title=Olney%27s_Lesionshttp://en.wikipedia.org/w/index.php?title=Olney%27s_Lesionshttp://en.wikipedia.org/w/index.php?title=Olney%27s_Lesionshttp://en.wikipedia.org/w/index.php?title=Brain_damagehttp://en.wikipedia.org/w/index.php?title=Dissociation_%28psychology%29http://en.wikipedia.org/w/index.php?title=Hallucinogenichttp://en.wikipedia.org/w/index.php?title=Recreational_drughttp://en.wikipedia.org/w/index.php?title=Anestheticshttp://en.wikipedia.org/w/index.php?title=GLYX-13http://en.wikipedia.org/w/index.php?title=3%2C5-dibromo-L-phenylalaninehttp://en.wikipedia.org/w/index.php?title=NMDAhttp://en.wikipedia.org/w/index.php?title=N-Methyl-D-aspartic_acidhttp://en.wikipedia.org/w/index.php?title=L-alaninehttp://en.wikipedia.org/w/index.php?title=ACPLhttp://en.wikipedia.org/w/index.php?title=D-serinehttp://en.wikipedia.org/w/index.php?title=Homocysteratehttp://en.wikipedia.org/w/index.php?title=Quinolinatehttp://en.wikipedia.org/w/index.php?title=L-aspartatehttp://en.wikipedia.org/w/index.php?title=Cis-2%2C3-Piperidinedicarboxylic_acidhttp://en.wikipedia.org/w/index.php?title=D-Cycloserinehttp://en.wikipedia.org/w/index.php?title=Aminocyclopropanecarboxylic_acidhttp://en.wikipedia.org/w/index.php?title=Hebbian_learninghttp://en.wikipedia.org/w/index.php?title=Learninghttp://en.wikipedia.org/w/index.php?title=Memoryhttp://en.wikipedia.org/w/index.php?title=Mg_ion_%28physiology%29http://en.wikipedia.org/w/index.php?title=Transmembrane_potentialhttp://en.wikipedia.org/w/index.php?title=Serine_racemasehttp://en.wikipedia.org/w/index.php?title=D-serinehttp://en.wikipedia.org/w/index.php?title=Glycinehttp://en.wikipedia.org/w/index.php?title=Agonisthttp://en.wikipedia.org/w/index.php?title=Aspartic_acidhttp://en.wikipedia.org/w/index.php?title=Glutamic_acid
  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    6/47

    NMDA receptor 4

    Common NMDA receptor antagonists include:

    Amantadine[]

    Ketamine

    Methoxetamine

    Phencyclidine (PCP)

    Nitrous oxide (laughing gas) Dextromethorphan and dextrorphan

    Memantine

    Ethanol

    Riluzole (used in ALS)[8]

    Xenon

    HU-211 (also a cannabinoid)

    Lead (Pb2+)[9]

    Conantokins

    Huperzine A

    Atomoxetine[]

    Dual opioid and NMDA receptor antagonists:

    Ketobemidone

    Methadone

    Dextropropoxyphene

    Tramadol

    Kratom alkaloids

    Ibogaine

    Modulators

    The NMDA receptor is modulated by a number of endogenous and exogenous compounds:[]

    Mg2+

    not only blocks the NMDA channel in a voltage-dependent manner but also potentiates NMDA-induced

    responses at positive membrane potentials. Treatment with forms magnesium glycinate and magnesium taurinate

    has been used to produce rapid recovery from depression.[]

    Na+, K

    +and Ca

    2+not only pass through the NMDA receptor channel but also modulate the activity of NMDA

    receptors.

    Zn2+

    and Cu2+

    generally block NMDA current activity in a noncompetitive and a voltage-independent manner.

    However zinc may potentiate or inhibit the current depending on the neural activity. (Zinc and Copper Influence

    Excitability of Rat Olfactory Bulb Neurons by Multiple Mechanisms|http://jn.physiology.org/content/86/4/

    1652.short)

    Pb2+

    lead is a potent NMDAR antagonist. Presynaptic deficits resulting from Pb2+ exposure during

    synaptogenesis are mediated by disruption of NMDAR-dependent BDNF signaling.

    It has been demonstrated that polyamines do not directly activate NMDA receptors, but instead act to potentiate

    or inhibit glutamate-mediated responses.

    Aminoglycosides have been shown to have a similar effect to polyamines, and this may explain their neurotoxic

    effect.

    The activity of NMDA receptors is also strikingly sensitive to the changes in H+

    concentration, and partially

    inhibited by the ambient concentration of H+

    under physiological conditions.[citation needed]

    The level of inhibition

    by H+ is greatly reduced in receptors containing the NR1a subtype, which contains the positively charged insert

    Exon 5. The effect of this insert may be mimicked by positively charged polyamines and aminoglycosides,

    http://en.wikipedia.org/wiki/Citation_neededhttp://en.wikipedia.org/w/index.php?title=PHhttp://en.wikipedia.org/w/index.php?title=Aminoglycosidehttp://en.wikipedia.org/w/index.php?title=Polyaminehttp://en.wikipedia.org/w/index.php?title=Leadhttp://jn.physiology.org/content/86/4/1652.short)http://jn.physiology.org/content/86/4/1652.short)http://en.wikipedia.org/w/index.php?title=Copperhttp://en.wikipedia.org/w/index.php?title=Zinc%23Biological_rolehttp://en.wikipedia.org/w/index.php?title=Ca_ion_%28physiology%29http://en.wikipedia.org/w/index.php?title=K_ion_%28physiology%29http://en.wikipedia.org/w/index.php?title=Sodiumhttp://en.wikipedia.org/w/index.php?title=Membrane_potentialhttp://en.wikipedia.org/w/index.php?title=Channel_blockhttp://en.wikipedia.org/w/index.php?title=Mg_ion_%28physiology%29http://en.wikipedia.org/w/index.php?title=Exogenoushttp://en.wikipedia.org/w/index.php?title=Endogenoushttp://en.wikipedia.org/w/index.php?title=Ibogainehttp://en.wikipedia.org/w/index.php?title=Kratomhttp://en.wikipedia.org/w/index.php?title=Tramadolhttp://en.wikipedia.org/w/index.php?title=Dextropropoxyphenehttp://en.wikipedia.org/w/index.php?title=Methadonehttp://en.wikipedia.org/w/index.php?title=Ketobemidonehttp://en.wikipedia.org/w/index.php?title=Atomoxetinehttp://en.wikipedia.org/w/index.php?title=Huperzine_Ahttp://en.wikipedia.org/w/index.php?title=Conantokinshttp://en.wikipedia.org/w/index.php?title=Leadhttp://en.wikipedia.org/w/index.php?title=Cannabinoidhttp://en.wikipedia.org/w/index.php?title=HU-211http://en.wikipedia.org/w/index.php?title=Xenonhttp://en.wikipedia.org/w/index.php?title=Riluzolehttp://en.wikipedia.org/w/index.php?title=Ethanolhttp://en.wikipedia.org/w/index.php?title=Memantinehttp://en.wikipedia.org/w/index.php?title=Dextrorphanhttp://en.wikipedia.org/w/index.php?title=Dextromethorphanhttp://en.wikipedia.org/w/index.php?title=Nitrous_oxidehttp://en.wikipedia.org/w/index.php?title=Phencyclidinehttp://en.wikipedia.org/w/index.php?title=Methoxetaminehttp://en.wikipedia.org/w/index.php?title=Ketaminehttp://en.wikipedia.org/w/index.php?title=Amantadine
  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    7/47

    NMDA receptor 5

    explaining their mode of action.

    NMDA receptor function is also strongly regulated by chemical reduction and oxidation, via the so-called "redox

    modulatory site."[]

    Through this site, reductants dramatically enhance NMDA channel activity, whereas oxidants

    either reverse the effects of reductants or depress native responses. It is generally believed that NMDA receptors

    are modulated by endogenous redox agents such as glutathione, lipoic acid, and the essential nutrient

    pyrroloquinoline quinone. Src kinase enhances NMDA receptor currents.

    []

    Reelin modulates NMDA function through Src family kinases and DAB1.[]

    significantly enhancing LTP in the

    hippocampus.

    CDK5 regulates the amount of NR2B-containing NMDA receptors on the synaptic membrane, thus affecting

    synaptic plasticity.[][]

    Proteins of the major histocompatibility complex class I are endogenous negative regulators of

    NMDAR-mediated currents in the adult hippocampus,[10]

    and modify NMDAR-induced changes in AMPAR

    trafficking[10]

    and NMDAR-dependent synaptic plasticity.[]

    Receptor modulation

    The NMDA receptor is a non-specific cation channel that can allow the passage of Ca2+

    and Na+

    into the cell and K+

    out of the cell. The excitatory postsynaptic potential (EPSP) produced by activation of an NMDA receptor increases

    the concentration of Ca2+

    in the cell. The Ca2+

    can in turn function as a second messenger in various signaling

    pathways. However, the NMDA receptor cation channel is blocked by Mg2+

    at resting membrane potential. To

    unblock the channel, the postsynaptic cell must be depolarized.[]

    Therefore, the NMDA receptor functions as a "molecular coincidence detector". Its ion channel opens only when the

    following two conditions are met simultaneously: Glutamate is bound to the receptor, and the postsynaptic cell is

    depolarized (which removes the Mg2+

    blocking the channel). This property of the NMDA receptor explains many

    aspects of long-term potentiation (LTP) and synaptic plasticity.[]

    NMDA receptors are modulated by a number of endogenous and exogenous compounds and play a key role in a

    wide range of physiological (e.g., memory) and pathological processes (e.g., excitotoxicity).

    Clinical significance

    Cochlear NMDARs are the target of intense research to find pharmacological solutions to treat tinnitus. Recently,

    NMDARs were associated with a rare autoimmune disease, Anti-NMDAR encephalitis, that usually occurs due to

    cross reactivity of antibodies produced by the immune system against ectopic brain tissues, such as those found in

    teratoma.

    Antagonizing the NMDA receptor with the Drug Memantine (Namenda(R)) has shown some benefit in treating

    Alzheimer's Dementia.

    Compared to dopaminergic stimulants, the NMDA receptor antagonist PCP can produce a wider range of symptoms

    that resemble schizophrenia in healthy volunteers, in what has led to the glutamate hypothesis of schizophrenia.

    Experiments in which rodents are treated with NMDA receptor antagonist are today the most common model when it

    comes to testing of novel schizophrenia therapies or exploring the exact mechanism of drugs already approved for

    treatment of schizophrenia.

    http://en.wikipedia.org/w/index.php?title=Glutamate_hypothesis_of_schizophreniahttp://en.wikipedia.org/w/index.php?title=Phencyclidinehttp://en.wikipedia.org/w/index.php?title=Stimulanthttp://en.wikipedia.org/w/index.php?title=Dopaminehttp://en.wikipedia.org/w/index.php?title=Teratomahttp://en.wikipedia.org/w/index.php?title=Anti-NMDA_receptor_encephalitishttp://en.wikipedia.org/w/index.php?title=Autoimmunehttp://en.wikipedia.org/w/index.php?title=Excitotoxicityhttp://en.wikipedia.org/w/index.php?title=Pathologyhttp://en.wikipedia.org/w/index.php?title=Memoryhttp://en.wikipedia.org/w/index.php?title=Physiologyhttp://en.wikipedia.org/w/index.php?title=Synaptic_plasticityhttp://en.wikipedia.org/w/index.php?title=Long-term_potentiationhttp://en.wikipedia.org/w/index.php?title=Coincidence_detectorhttp://en.wikipedia.org/w/index.php?title=Signaling_pathwayhttp://en.wikipedia.org/w/index.php?title=Signaling_pathwayhttp://en.wikipedia.org/w/index.php?title=Second_messengerhttp://en.wikipedia.org/w/index.php?title=Excitatory_postsynaptic_potentialhttp://en.wikipedia.org/w/index.php?title=Synaptic_plasticityhttp://en.wikipedia.org/w/index.php?title=AMPARhttp://en.wikipedia.org/w/index.php?title=Major_histocompatibility_complexhttp://en.wikipedia.org/w/index.php?title=Synaptic_plasticityhttp://en.wikipedia.org/w/index.php?title=NR2Bhttp://en.wikipedia.org/w/index.php?title=CDK5http://en.wikipedia.org/w/index.php?title=Hippocampushttp://en.wikipedia.org/w/index.php?title=Long-term_potentiationhttp://en.wikipedia.org/w/index.php?title=DAB1http://en.wikipedia.org/w/index.php?title=Src_Family_Kinaseshttp://en.wikipedia.org/w/index.php?title=Reelinhttp://en.wikipedia.org/w/index.php?title=Src_%28gene%29http://en.wikipedia.org/w/index.php?title=Pyrroloquinoline_quinonehttp://en.wikipedia.org/w/index.php?title=Lipoic_acidhttp://en.wikipedia.org/w/index.php?title=Glutathione
  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    8/47

    NMDA receptor 6

    External links

    Media related to NMDA receptor at Wikimedia Commons

    NMDA receptor pharmacology[11]

    Motor Discoordination Results from Combined Gene Disruption of the NMDA Receptor NR2A and NR2C

    Subunits, But Not from Single Disruption of the NR2A or NR2C Subunit[12]

    A schematic diagram summarizes three potential models for the switching of NR2A and NR2B subunits at

    developing synapses.[13]

    - a figure from Liu et al., 2004[]

    DrosophilaNMDA receptor 1 - The Interactive Fly[14]

    References

    [1] Clinical Implications of Basic Research: Memory and the NMDA receptors (http://content.nejm. org/cgi/content/full/361/3/302), Fei Li

    and Joe Z. Tsien, N Engl J Med, 361:302, July 16, 2009

    [4] Ryan, T. J. & Grant, S. G. N. (2009) The origin and evolution of synapses (vol 10, pg 701, 2009).Nat Rev Neurosci 10, Doi 10.1038/Nrn2748

    [8] http:/ /www.clinicalpharmacology-ip. com

    [9][9] Toxicol. Sci. 2010 116: 249-263;

    [10][10] >

    [11] http://www.bris.ac. uk/Depts/Synaptic/info/pharmacology/NMDA.html

    [12] http://www.jneurosci.org/cgi/content/full/16/24/7859

    [13] http://www.jneurosci.org/cgi/content-nw/full/24/40/8885/FIG8

    [14] http://www.sdbonline. org/fly/hjmuller/nmda1. htm

    http://www.sdbonline.org/fly/hjmuller/nmda1.htmhttp://www.jneurosci.org/cgi/content-nw/full/24/40/8885/FIG8http://www.jneurosci.org/cgi/content/full/16/24/7859http://www.bris.ac.uk/Depts/Synaptic/info/pharmacology/NMDA.htmlhttp://www.clinicalpharmacology-ip.com/http://content.nejm.org/cgi/content/full/361/3/302http://www.sdbonline.org/fly/hjmuller/nmda1.htmhttp://www.jneurosci.org/cgi/content-nw/full/24/40/8885/FIG8http://www.jneurosci.org/cgi/content/full/16/24/7859http://www.bris.ac.uk/Depts/Synaptic/info/pharmacology/NMDA.htmlhttp://commons.wikimedia.org/wiki/Category:NMDA_receptorhttp://en.wikipedia.org/w/index.php?title=File:Commons-logo.svg
  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    9/47

    Article Sources and Contributors 7

    Article Sources and ContributorsNMDA receptor Source: http://en.wikipedia.org/w/index.php?oldid=567872222 Contributors: A. Rad, A314268, ABCD, AJVincelli, Abductive, Absg2011eur, Acdx, Alibobar,

    Aloneyouaregeek, Amelvin, Aplested, Arcadian, ArionVII, Arseni, AxelBoldt, Axl, Bad2101, Bebebas, Benjah-bmm27, Bignoter, Biochemza, Boghog, Brandonazz, Brodyt66, CMBJ, Cacycle,

    Cafeturco, Calvero JP, Ccevo2011, Chemgirl131, Clicketyclack, CopperKettle, Cyberfay, Cytocon, Dactyle, DarkLaguna, Dcirovic, Delldot, Delta G, Diberri, Dr. Vinzenz, Draicone,

    Drphilharmonic, Ekretzmer, EmanWilm, Excirial, Forluvoft, Fuzzform, Gadfium, Gould363, Hieu nguyentrung12, Hokanomono, IlyaV, Informedbanker, Ippyy, Jab843, Jakaufman, Jasongallant,

    JeremyA, Jesse V., John, Jolb, JonatasM, Karn, Kate, Kernsters, Lepidoptera, Marqueed, Meodipt, Mike.lifeguard, Millencolin, Mlbish, Nbauman, Neuro100, NeuronExMachina, Neuroscience

    Research, Nmg20, NotWith, Nrets, Oda Mari, Odieiscool, OldakQuill, PhilipO, Piperh, Pjoef, Ramorum, Rich Farmbrough, Richwil, Rjwilmsi, Rob Hurt, SJFriedl, Sedmic, Selket, Shao, Shaun,

    Shushruth, SilentWings, Skingski, Sournick3, Speshuldusty, Stepa, Steven J. Anderson, StockTrader, Subcellular, SuperiorCerebrum, Supermartin, TheOltimate, User931, Verpies, Viralmemesis,Wavelength, Wfseidel, William Avery, Wolfkeeper, Zigger, 142 anonymous edits

    Image Sources, Licenses and ContributorsImage:Nmda.png Source: http://en.wikipedia.org/w/index.php?title=File:Nmda.png License: GNU Free Documentation License Contributors: Original uploader was Jarombouts at

    nl.wikipedia

    Image:L-glutamic-acid-skeletal.png Source: http://en.wikipedia.org/w/index.php?title=File:L-glutamic-acid-skeletal.png License: Public Domain Contributors: Arrowsmaster,

    Benjah-bmm27, Edgar181

    Image:Activated NMDAR.PNG Source: http://en.wikipedia.org/w/index.php?title=File:Activated_NMDAR.PNG License: Public Domain Contributors: en:User:Delldot

    File:Model of NR2 Subunit of NMDA receptor (vertebrate and invertebrate).jpg Source:

    http://en.wikipedia.org/w/index.php?title=File:Model_of_NR2_Subunit_of_NMDA_receptor_(vertebrate_and_invertebrate).jpg License: Creative Commons Attribution 2.0 Contributors: Ryan

    TJ, Emes RD, Grant SG, Komiyama NH.

    file:Commons-logo.svg Source: http://en.wikipedia.org/w/index.php?title=File:Commons-logo.svg License: logo Contributors: Anomie

    License

    Creative Commons Attribution-Share Alike 3.0 Unported//creativecommons.org/licenses/by-sa/3.0/

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    10/47

    NMDA Receptors

    Source: http://www.ncbi.nlm.nih.gov/books/NBK11526/

    NMDA receptors are highly permeant for Ca2+

    , show slower gating kinetics and the

    channel is blocked in a voltage-and use-dependent manner by physiological

    concentrations of Mg2+

    ions (Mcbain and Mayer, 1994). These properties make them

    ideally suited for their role as a coincidence detector underlying Hebbian processes in

    synaptic plasticity such as learning (see later), chronic pain, drug tolerance and

    dependence (Collingridge and Singer, 1990; Bear and Malenka, 1994; Trujillo and Akil,

    1995; Danysz and Parsons, 1995; Collingridge and Bliss, 1995; Dickenson, 1997).

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    11/47

    Glycine as a co-agonist

    Glycine is a co-agonist at NMDA receptors at a strychnine-insensitive recognition site

    (glycineB) and its presence at moderate nM concentrations is a prerequisite for channel

    activation by glutamate or NMDA (Danysz and Parsons, 1998). Physiological

    concentrations reduce one form of relatively rapid NMDA receptor desensitization.

    Recently it has been suggested that D-Serine may be more important than glycine as

    an endogenous co-agonist at NMDA receptors in the telencephalon and developing

    cerebellum. There is still some debate as to whether the glycineB site is saturated in

    vivo (Danysz and Parsons, 1998) but it seems likely that the degree of NMDA receptor

    activation varies depending on regional differences in receptor subtype expression and

    local glycine or D-serine concentrations. Moreover, glycine concentrations at synapticNMDA receptors could be finely modulated by local expression of specific glycine

    transporters such as GLYT1 (Supplisson and Bergman, 1997).

    Polyamines

    The polyamines spermine and spermidine have multiple effects on the activity of NMDA

    receptors (Johnson, 1996; Williams, 1997). These include an increase in the magnitude

    of NMDA-induced whole-cell currents seen in the presence of saturating concentrationsof glycine, an increase in glycine affinity, a decrease in glutamate affinity, and voltage-

    dependent inhibition at higher concentrations. Endogenous polyamines could act as a

    bi-directional gain control of NMDA receptors, by dampening toxic chronic activation by

    low concentrations of glutamate-through changes in glutamate affinity and voltage-

    dependent blockade-but enhancing transient synaptic responses to mM concentrations

    of glutamate (Williams, 1997; Zhang and Shi, 2001).

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    12/47

    Molecular Biology

    Two major subunit families designated NR1, NR2 as well as a modulatory subunit

    designated NR3 have been cloned. Most functional receptors in the mammalian CNS

    are formed by combination of NR1 and NR2 subunits which express the glycine and

    glutamate recognition sites respectively (Hirai et al., 1996; Laube et al., 1997).

    NR1 Subunits

    Alternative splicing generates eight isoforms for the NR1 subfamily (Zukin and Bennett,

    1995). The variants arise from splicing at three exons one encodes a 21-amino acid

    insert in the N-terminal domain (N1, exon 5), and two encode adjacent sequences of 37

    and 38 amino acids in the C-terminal domain (C1, exon 21 and C2, exon 22). NR1

    variants are sometimes denoted by the presence or absence of these three alternatively

    spliced exons (from N to C1 to C2). NR1111 has all three exons, NR1000 has none, and

    NR1100 has only the N-terminal exon. The variants from NR1000 to NR1111 are

    alternatively denoted as NMDAR1E, C, D, A, G, F, H and B respectively or NMDAR1-

    4a,-2a,-3a,-1a,-4b,-2b,-3b and-1b respectively, but the more frequent terminology using

    non-capitalized suffices for the most common splice variants is NR1a (NR1011 or

    NMDAR1A) and NR1b (NR1100 or NMDARIG). MRNA for double splice variants in theC1/C2 regions such as NR1011 (NR1a) show an almost complementary pattern to those

    lacking both of these inserts such as NR1100 (NR1b); the former are more concentrated

    in rostral structures such as cortex, caudate, and hippocampus, while the latter are

    principally found in more caudal regions such as thalamus, colliculi, locus coeruleus and

    cerebellum (Laurie et al., 1995).

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    13/47

    NR2 Subunits

    The NR2 subfamily consists of four individual subunits, NR2A to NR2D. Various

    heteromeric NMDA receptor channels formed by combinations of NR1 and NR2

    subunits are known to differ in gating properties, Mg2+ sensitivity and pharmacological

    profile (Sucher et al., 1996). The heteromeric assembly of NR1 and NR2C subunits for

    instance, has a lower sensitivity to Mg2+

    but increased sensitivity to glycine and a very

    restricted distribution in the brain.In situ hybridization has revealed overlapping but

    different expression for NR2 mRNA e.g. NR2A mRNA is distributed ubiquitously like

    NR1 with highest densities occurring in hippocampal regions and NR2B is expressed

    predominantly in forebrain but not in cerebellum where NR2C predominates. The spinal

    cord expresses high levels of NR2C and NR2D (Tolle et al., 1993) and these may formheteroligomeric receptors with NR1 plus NR2A which would provide a basis for the

    development of drugs selectively aimed at spinal cord disorders(Sundstrom et al.,

    1997). NMDA receptors cloned from murine CNS have a different terminology to those

    in the rat: z1 remains the terminology for the mouse equivalent of NR1 and e1 to e4

    represent NR2A to 2D subunits respectively.

    NR3 Subunits

    NR3 (NRL or Chi-1) is expressed predominantly in the developing CNS and does not

    seem to form functional homomeric glutamate-activated channels but co-expression of

    NR3 with NR1 plus NR2 subunits decreases response magnitude (Sucher et al., 1995;

    Kinsley et al., 1999; Matsuda et al., 2002). However, NR3A or NR3B do co-assemble

    with NR1 alone inXenopus oocytes to form excitatory glycine receptors that are

    unaffected by glutamate or NMDA, Ca2+

    -impermeable, resistant to blockade by Mg2+

    uncompetitive and competitive antagonists and actually inhibited by the glycine co-

    agonist D-serine. (Chatterton et al., 2002)

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    14/47

    Uncompetitive NMDA receptor antagonists

    Antagonists which completely block NMDA receptors cause numerous side effects such

    as memory impairment, psychotomimetic effects, ataxia and motor dis-coordination as

    they also impair normal synaptic transmission - a two edged sword. The challenge has

    therefore been to develop NMDA receptor antagonists that prevent the pathological

    activation of NMDA receptors but allow their physiological activation. It has been

    suggested that uncompetitive NMDA receptor antagonists with rapid unblocking kinetics

    but somewhat less pronounced voltage-dependency than Mg2+

    should be able to

    antagonise the pathological effects of the sustained, but relatively small increases in

    extracellular glutamate concentration but, like Mg2+, leave the channel as a result of

    strong depolarization following physiological activation by transient release of mMconcentrations of synaptic glutamate (Parsons et al., 1999; Jones et al., 2001). As such,

    uncompetitive NMDA receptor antagonists with moderate, rather than high affinity may

    be desirable. Memantine, ketamine, dextromethorphan and possibly felbamate and

    budipine are clinically-used agents which belong to this category NB: for the last two it

    is unsure if uncompetitive NMDA receptor antagonism really contributes to their

    therapeutic efficacy. Others such as neramexane, remacemide, NPS-1506 and possibly

    the cannabinoid dexanabinol are at different stages of clinical development. Several

    promising agents have unfortunately been abandoned at late stages of development,

    possibly due to the choice of the wrong, too ambious, clinical indications such as stroke

    and trauma.

    Glycine site antagonists

    Most full glycineB antagonists (i.e. those without intrinsic partial agonist activity) show

    very poor penetration to the CNS although some agents with improved, but by no

    means optimal pharmacokinetic properties have now been developed. GlycineB

    antagonists have been reported to lack many of the side effects classically associated

    with NMDA receptor blockade such as no neurodegenerative changes in the cingulate /

    retrosplenial cortex even after high doses (Hargreaves et al., 1993) and no

    psychotomimetic-like or learning impairing effects at anticonvulsive doses (Murata and

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    15/47

    Kawasaki, 1993; Kretschmer et al., 1997; Baron et al., 1997; Danysz and Parsons,

    1998). The MSD compound L-701,324 has even been proposed to have atypical

    antipsychotic effects (Bristow et al., 1996). The improved neuroprotective therapeutic

    profile of glycineB full antagonists could be due to their ability to reveal glycine-sensitive

    desensitization (Parsons et al., 1993).

    Kynurenic acid is an endogenous glycineB antagonist but it seems unlikely that

    concentrations are sufficient to interact with NMDA receptors under normal conditions

    (Danysz and Parsons, 1998; Stone, 2001). However, concentrations are raised under

    certain pathological conditions (Danysz and Parsons, 1998; Stone, 2001) and

    interactions with other receptors such as a7 neuronal nicotinic have been reported at

    lower concentrations (Hilmas et al., 2001). Strategies aimed at increasing kynurenicacid concentrations by for example by giving its precursor 4-Cl-kynurenine, inhibiting

    brain efflux with probenecid or inhibiting its metabolism have been proposed to be of

    therapeutic potential (Danysz and Parsons, 1998; Stone, 2001).

    D-cycloserine and (+R)-HA-966 are partial agonists at the glycineB site with different

    levels of intrinsic activity: 57% and 14% respectively in cultured hippocampal neurones

    (Karcz-Kubicha et al., 1997). Although these systemically-active partial agonists do not

    induce receptor desensitization (Henderson et al., 1990; Kemp and Priestley, 1991;

    Karcz-Kubicha et al., 1997) they have favourable therapeutic profiles in some in vivo

    models (Lanthorn, 1994; Witkin et al., 1997). This may, in part, be due to their own

    intrinsic activity as agonists at the glycineB site which would serve to preserve a certain

    level of NMDA receptor function even at very high concentrations (Priestley and Kemp,

    1994; Fossom et al., 1995; Krueger et al., 1997).

    D-cycloserine shows agonist like features at low doses, while with increasing dosing

    antagonistic effects predominate (Lanthorn, 1994). Such findings are often falsely

    interpreted to be typical for partial agonists i.e. agonism at low and antagonism at high

    doses. However, partial agonism actually means that an agent reaches a ceiling, non-

    maximal effect at higher doses (intrinsic activity) i.e. will antagonise receptor activation

    by high concentrations of a full agonist but facilitate at low concentrations of a full

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    16/47

    agonist (Henderson et al., 1990; Karcz-Kubicha et al., 1997). Recent data indicate that

    the consistent biphasic effects of D-cycloserine seen in vivo may rather be related to

    different affinities and intrinsic activities at NMDA receptor subtypes. D-cycloserine is a

    partial agonist for the murine equivalents of NR1/2A and NR1/2B heteromers (38% and

    56% intrinsic activity compared to glycine 10 M) but is more effective than glycine at

    NR1/2C (130%) (O'Connor et al., 1996). This effect is accompanied by higher affinity at

    NR1/2C receptors - NR1/2C > NR1/2D >> NR1/2B > NR1/2A (O'Connor et al., 1996).

    Very similar data were published recently by a different group, except that the intrinsic

    activity at NR1/2C was even higher (192%) (Sheinin et al., 2001). As such, it is likely

    that the biphasic effects seen in vivo are due to agonistic actions at NR1/2C receptors

    at lower doses and inhibition of NR1/2A and NR1/2B containing receptors at higher

    doses. This receptor subtype selectivity and differential intrinsic activity could well

    underlie its promising preclinical profile in some animals models.

    Although ACPC has been reported to be a partial agonist with very high intrinsic activity,

    it is probably really a full agonist at the glycineB site and actually behaves as an

    antagonist in some in vivo models (neuroprotection, anticonvulsive effects) which are

    likely to be mediated via competitive antagonistic properties at higher concentrations

    {NahumLevy et al., 1999 #18977} (Skolnick et al., 1989). The consistent observation

    that chronic treatment with ACPC is neuroprotective could be because it desensitizes or

    uncouples NMDA receptors (Skolnick et al., 1992; Papp and Moryl, 1996) or may be

    related to an increase in the relative levels of NR2C expression (Fossom et al., 1995).

    NR2B selective antagonists

    Ifenprodil and its analogue eliprodil block NMDA receptors in a spermine-sensitive

    manner and were originally proposed to be polyamine antagonists. It is now clear that

    both agents are selective for NR2B subunits (Legendre and Westbrook, 1991) and bind

    to a site that is distinct from the polyamine recognition site, but interact allosterically with

    this site and the glycineB site. NR2B selective agents may also offer a promising

    approach to minimize side effects as agents would not produce maximal inhibition of

    responses of neurons expressing heterogeneous receptors. Thus, cortical and

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    17/47

    hippocampal neurons express both NR2A and NR2B receptors in approximately similar

    proportions, but very little NR2C or NR2D. NR2B selective agents therefore block

    NMDA receptor mediated responses of such neurons to a maximal level of around 30-

    50% of control. Several studies have shown that ifenprodil and eliprodil reduce seizures

    and are effective neuroprotectants against focal and global ischaemia and trauma at

    doses that do not cause ataxia or impair learning (Parsons et al., 1998). These

    compounds are not devoid of side effects and some companies attempted to improve

    the selectivity NR2B antagonists by reducing affects at other receptors such as a1 and

    a2 adrenergic receptors - traxoprodil (CP-101,606) and CP-283,097 showed improved

    selectivity and in vivo potency (Butler et al., 1997; Menniti et al., 1997; Chenard and

    Menniti, 1999). However, an unfortunate new side effect has recently been reported, i.e.

    that some of these agents may produce a prolongation of the QT interval in the cardiac

    action potential due to blockade of human ether-a-go-go-related gene (hERG)

    potassium channels (Gill et al., 1999). This would be less of a problem in acute

    excitotoxicity and traxoprodil is still under development for stroke / TBI.

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    18/47

    Glutamate and Glutamate Receptors in the Vertebrate Retina

    Victoria Connaughton

    General Overview of Synaptic Transmission

    Cells communicate with each other electrically, through gap junctions, and chemically, using

    neurotransmitters. Chemical synaptic transmission allows nerve signals to be exchanged

    between cells that are electrically isolated from each other. The chemical messenger, or

    neurotransmitter, provides a way to send the signal across the extracellular space, from the

    presynaptic neuron to the postsynaptic cell. The space is called a cleft and is typically more

    than 10 nanometers across. Neurotransmitters are synthesized in the presynaptic cell and stored

    in vesicles in presynaptic processes, such as the axon terminal. When the presynaptic neuron

    is stimulated, calcium channels open, and the influx of calcium ions into the axon terminal

    triggers a cascade of events leading to the release of neurotransmitter. Once released, the

    neurotransmitter diffuses across the cleft and binds to receptors on the postsynaptic cell,allowing the signal to propagate. Neurotransmitter molecules can also bind onto presynaptic

    autoreceptors and transporters, regulating subsequent release and clearing excess

    neurotransmitter from the cleft. Compounds classified as neurotransmitters have several

    characteristics in common (reviewed in Massey (1) and Erulkar (2)).

    Briefly: 1) the neurotransmitter is synthesized, stored, and released from the presynaptic

    terminal; 2) specific neurotransmitter receptors are localized on the postsynaptic cells; and 3)

    there exists a mechanism to stop neurotransmitter release and clear molecules from the cleft.

    Common neurotransmitters in the retina are glutamate, GABA, glycine, dopamine, and

    acetylcholine. Neurotransmitter compounds can be small molecules, such as glutamate and

    glycine, or large peptides, such as vasoactive intestinal peptide (VIP). Some neuroactive

    compounds are amino acids, which also have metabolic functions in the presynaptic cell.

    Glutamate (Fig. 1) is believed to be the major excitatory neurotransmitter in the retina. In

    general, glutamate is synthesized from ammonium and -ketoglutarate (a component of the

    Krebs cycle) and is used in the synthesis of proteins, other amino acids, and even other

    neurotransmitters (such as GABA) (3). Although glutamate is present in all neurons, only a

    few are glutamatergic, releasing glutamate as their neurotransmitter. Neuroactive glutamate is

    stored in synaptic vesicles in presynaptic axon terminals (4). Glutamate is incorporated into

    the vesicles by a glutamate transporter located in the vesicular membrane. This transporter

    selectively accumulates glutamate through a sodium-independent, ATP-dependent process

    (4-6), resulting in a high concentration of glutamate in each vesicle. Neuroactive glutamate is

    classified as an excitatory amino acid (EAA), because glutamate binding onto postsynaptic

    receptors typically stimulates, or depolarizes, the postsynaptic cells.

    Histological Techniques Identify Glutamatergic NeuronsUsing immunocytochemical techniques, neurons containing glutamate are identified and

    labeled with a glutamate antibody. In the retina, photoreceptors, bipolar cells, and ganglion

    cells are glutamate immunoreactive (7-12) (Fig. 2). Some horizontal and/or amacrine cells can

    also display weak labeling with glutamate antibodies (7,8,10,13). These neurons are believed to

    release GABA, not glutamate, as their neurotransmitter (14), suggesting that the weak glutamate

    labeling reflects the pool of metabolic glutamate used in the synthesis of GABA. This has been

    supported by the results from double-labeling studies using antibodies to both GABA and

    glutamate; glutamate-positive amacrine cells also label with the GABA antibodies (8,13).

    Webvision

    We

    bvision

    Webvision

    Webvision

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    19/47

    Photoreceptors, which contain glutamate, actively take up radiolabeled glutamate from the

    extracellular space, as do Muller cells (Fig. 3) (15,16). Glutamate is incorporated into these cell

    types through a high-affinity glutamate transporter located in the plasma membrane. Glutamate

    transporters maintain the concentration of glutamate within the synaptic cleft at low levels,

    preventing glutamate-induced cell death (17). Although Muller cells take up glutamate, they

    do not label with glutamate antibodies (8). Glutamate incorporated into Muller cells is rapidly

    broken down into glutamine, which is then exported from glial cells and incorporated into

    surrounding neurons (18

    ). Neurons can then synthesize glutamate from glutamine (18

    ,19

    ).

    Thus, histological techniques are used to identify potential glutamatergic neurons by labeling

    neurons containing glutamate (through immunocytochemistry) and neurons that take up

    glutamate (through autoradiography). To determine whether these cell types actually release

    glutamate as their neurotransmitter, however, the receptors on postsynaptic cells have to be

    examined.

    Glutamate Receptors

    Once released from the presynaptic terminal, glutamate diffuses across the cleft and binds onto

    receptors located on the dendrites of the postsynaptic cell(s). Multiple glutamate receptor types

    have been identified. Although glutamate will bind onto all glutamate receptors, each receptor

    is characterized by its sensitivity to specific glutamate analogs and by the features of the

    glutamate-elicited current. Glutamate receptor agonists and antagonists are structurally similar

    to glutamate (Fig. 4), which allows them to bind onto glutamate receptors. These compounds

    are highly specific and, even in intact tissue, can be used in very low concentrations because

    they are poor substrates for glutamate uptake systems (20,21).

    Two classes of glutamate receptors (Fig. 5) have been identified: 1) ionotropic glutamate

    receptors, which directly gate ion channels; and 2) metabotropic glutamate receptors, which

    may be coupled to an ion channel or other cellular functions via an intracellular second

    messenger cascade. These receptor types are similar in that they both bind glutamate, and

    glutamate binding can influence the permeability of ion channels. However, there are several

    differences between the two classes.

    Ionotropic Glutamate ReceptorsGlutamate binding onto an ionotropic receptor directly influences ion channel activity because

    the receptor and the ion channel form one complex (Fig. 5a). These receptors mediate fast

    synaptic transmission between neurons. Each ionotropic glutamate receptor, or iGluR, is

    formed from the co-assembly of individual subunits. The assembled subunits may or may not

    be homologous, with the different combinations of subunits resulting in channels with different

    characteristics (22-26).

    Two iGluR types (Fig. 6) have been identified: 1) NMDA receptors, which bind glutamate and

    the glutamate analogN-methyl-D-aspartate (NMDA) and 2) non-NMDA receptors, which are

    selectively agonized by kainate, AMPA, and quisqualate, but not NMDA.

    Non-NMDA Receptors

    Glutamate binding onto a non-NMDA receptor opens non-selective cation channels more

    permeable to sodium (Na+) and potassium (K+) ions than calcium (Ca2+) (27). Glutamate

    binding elicits a rapidly activating inward current at membrane potentials negative to 0 mV

    and an outward current at potentials positive to 0 mV. Kainate, quisqualate, and AMPA (-

    amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) are the specific agonists at these

    receptors; CNQX (6-cyano-7-nitroquinoxaline-2,3-dione), NBQX (1,2,3,4-tetrahydro-6-

    Page 2

    Glutamate and Glutamate Receptors in the Vertebrate Retina

    Webvision

    W

    ebvision

    Webvision

    Webvision

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    20/47

    nitro-2,3-dione-benzo[f]quinoxaline-7-sulfonamide), and DNQX (6,7-dinitroquinoxaline-2,3-

    dione) are the antagonists.

    In retina, non-NMDA receptors have been identified on horizontal cells, OFF-bipolar cells,

    amacrine cells, and ganglion cells (see below). Patch clamp recordings (28-32) indicate that

    AMPA, quisqualate, and/or kainate application can evoke currents in these cells. However, the

    kinetics of the ligand-gated currents differ. AMPA- and quisqualate-elicited currents rapidly

    desensitize, whereas kainate-gated currents do not (Fig. 7a). The desensitization at AMPA/quisqualate receptors can be reduced (Fig. 7b) by adding cyclothiazide (33), which stabilizes

    the receptor in an active (or non-desensitized) state (33,34).

    Each non-NMDA receptor is formed from the co-assembly of several subunits (25,35,36). To

    date, seven subunits (named GluR1 through GluR7) have been cloned (22,35-40). Expression

    of subunit clones inXenopus oocytes revealed that GluR5, GluR6, and GluR7 (along with

    subunits KA1 and KA2) co-assemble to form kainate(-preferring) receptors, whereas GluR1,

    GluR2, GluR3, and GluR4 are assembled into AMPA(-preferring) receptors (25).

    NMDA Receptors

    Glutamate binding onto an NMDA receptor also opens non-selective cation channels, resulting

    in a conductance increase. However, the high conductance channel associated with these

    receptors is more permeable to Ca2+ than Na+ ions (27), and NMDA-gated currents typicallyhave slower kinetics than kainate- and AMPA-gated channels. As the name suggests, NMDA

    is the selective agonist at these receptors. The compounds MK-801, AP-5 (2-amino-5-

    phosphonopentanoic acid), and AP-7 (2-amino-7-phosphoheptanoic acid) are NMDA receptor

    antagonists.

    NMDA receptors are structurally complex, with separate binding sites for glutamate, glycine,

    magnesium ions (Mg2+), zinc ions (Zn2+), and a polyamine recognition site (Fig. 6b). There

    is also an antagonist binding site for PCP and MK-801 (41). The glutamate, glycine, and

    magnesium binding sites are important for receptor activation and gating of the ion channel.

    In contrast, the zinc and polyamine sites are not needed for receptor activation but affect the

    efficacy of the channel. Zinc blocks the channel in a voltage-independent manner (42). The

    polyamine site (43,44) binds compounds such as spermine or spermidine, either potentiating

    (43,44) or inhibiting (44) the activity of the receptor, depending on the combination of subunitsforming each NMDA receptor (44).

    To date, five subunits (NR1, NR2a, N2b, N2c, and N2d) of NMDA receptors have been cloned

    (45-49). As with non-NMDA receptors, NMDA receptor subunits can co-assemble as

    homomers (i.e., five NR1 subunits) (23,49) or heteromers (one NR1 + four NR2 subunits)

    (23,46-48). However, all functional NMDA receptors express the NR1 subunit (23,25,46).

    The glutamate, glycine, and Mg2+ binding sites confer both ligand-gated and voltage-gated

    properties onto NMDA receptors. NMDA receptors are ligand gated because the binding of

    glutamate (ligand) is required to activate the channel. In addition, micromolar concentrations

    of glycine must also be present (Fig. 8) (50,51). The requirement for both glutamate and glycine

    makes them co-agonists (51) at NMDA receptors.

    Mg2+ ions provide a voltage-dependent block of NMDA-gated channels (52). This can be seen

    in the current-voltage (I-V) relationship presented in Fig. 9 (from Nowak et al. (52)). I-V curves

    plotted from currents recorded in the presence of Mg2+ have a characteristic J-shape (Fig. 9,

    dotted line), whereas a linear relationship is calculated in Mg2+-free solutions (Fig. 9, solid

    line). At negative membrane potentials, Mg2+ ions occupy the binding site, causing less current

    to flow through the channel. As the membrane depolarizes, the Mg2+ block is removed (52).

    Page 3

    Glutamate and Glutamate Receptors in the Vertebrate Retina

    Webvision

    W

    ebvision

    Webvision

    Webvision

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    21/47

    Retinal ganglion cells and some amacrine cell types express functional NMDA receptors in

    addition to non-NMDA receptors (i.e., 29,53-57). The currents elicited through these different

    iGluR types can be distinguished pharmacologically. Non-NMDA receptor antagonists block

    a transient component of the ganglion cell light response, whereas NMDA receptor antagonists

    block a more sustained component (29,53,57,58). These findings suggest that the currents elicited

    through colocalized NMDA and non-NMDA receptors mediate differential contributions to

    the ON- and OFF-light responses observed in ganglion cells (53).

    Metabotropic Glutamate Receptors

    Unlike ionotropic receptors, which are directly linked to an ion channel, metabotropic receptors

    are coupled to their associated ion channel through a second messenger pathway. Ligand

    (glutamate) binding activates a G-protein and initiates an intracellular cascade (59).

    Metabotropic glutamate receptors (mGluRs) are not co-assembled from multiple subunits but

    are one polypeptide (Fig. 5b). To date, eight mGluRs (mGluR1 through mGluR8) have been

    cloned (60-66). These receptors are classified into three groups (I, II, and III) based on structural

    homology, agonist selectivity, and their associated second messenger cascade (Table 1)

    (reviewed in Nakanishi (67), Knopel et al. (68), Pin and Bockaert (69), and Pin and Duvoisin

    (70)).

    In brief, Group I mGluRs (mGluR1 and mGluR5) are coupled to the hydrolysis of fatty acids

    and the release of calcium from internal stores. Quisqualate and trans-ACPD are Group I

    agonists. Group II (mGluR2 and mGluR3) and Group III (mGluR4, mGluR6, mGluR7, and

    mGluR8) receptors are considered inhibitory because they are coupled to the downregulation

    of cyclic nucleotide synthesis (70). L-CCG-1 and trans-ACPD agonize Group II receptors; L-

    AP4 (also called APB) selectively agonizes Group III receptors.In situ hybridization studies

    have revealed that the mRNAs encoding Groups I, II, and III mGluRs are present in retina (see

    below); however, with the exception of the APB receptor, the function of all of these receptor

    types in retina has not been characterized.

    APB Receptor

    In contrast to non-NMDA and NMDA receptors, glutamate binding onto an APB receptor

    elicits a conductance decrease (71-73) because of the closure of cGMP-gated, non-selective

    cation channels (74) (Fig. 10).

    APB application selectively blocks the ON-pathway in the retina (Fig. 11) (73), i.e., ON-bipolar

    cell responses and the ON-responses in amacrine cells (75) and ganglion cells (29,76,77) are

    eliminated by APB. Experimental evidence (73,78) suggests that the APB receptor is localized

    to ON-bipolar cell dendrites. Inhibition of amacrine and ganglion cell light responses,

    therefore, is due to a decrease in the input from ON-bipolar cells, not a direct effect on

    postsynaptic receptors.

    APB (2-amino-4-phosphobutyric acid, also called L-AP4) is the selective agonist for all Group

    III mGluRs (mGluR4, mGluR6, mGluR7, and mGluR8). So, which is the APB receptor located

    on ON-bipolar cell dendrites? MGluR4, mGluR7, and mGluR8 expression has been observed

    in both the inner nuclear layer and the ganglion cell layer (61,79), suggesting that these mGluRs

    are associated with more than one cell type. In contrast, mGluR6 expression has been localizedto the inner nuclearmlayer (INL) (64,79) and the outer plexiform layer (OPL) (80), where bipolar

    cell somata and dendrites are located. Furthermore, ON-responses are abolished in mice lacking

    mGluR6 expression (81). These mutants also display abnormal ERG b-waves, suggesting an

    inhibition of the ON-retinal pathway at the level of bipolar cells (81). Taken together, these

    findings suggest that the APB receptor on ON-bipolar cells is mGluR6.

    Page 4

    Glutamate and Glutamate Receptors in the Vertebrate Retina

    Webvision

    W

    ebvision

    Webvision

    Webvision

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    22/47

    Glutamate Transporters and Transporter-like Receptors

    Glutamate transporters have been identified on photoreceptors (15,21,82) and Muller cells

    (15,16). From glutamate labeling studies, the average concentration of glutamate in

    photoreceptors, bipolar cells, and ganglion cells is 5 mM (10). Physiological studies using

    isolated cells indicate that only M levels of glutamate are required to activate glutamate

    receptors (32,83,84). Thus, the amount of glutamate released into the synaptic cleft is several

    orders of magnitude higher than the concentration required to activate most postsynapticreceptors. High-affinity glutamate transporters located on adjacent neurons and surrounding

    glial cells rapidly remove glutamate from the synaptic cleft to prevent cell death (17). Five

    glutamate transporters, EAAT-1 (or GLAST), EAAT-2 (or GLT-1), EAAT-3 (or EAAC-1),

    EAAT-4, and EAAT-5, have been cloned (85-90).

    Glutamate transporters are pharmacologically distinct from both iGluRs and mGluRs. L-

    Glutamate, L-aspartate, and D-aspartate are substrates for the transporters (21,82,91); glutamate

    receptor agonists (20,21,82,91) and antagonists (82,92) are not. Glutamate uptake can be blocked

    by the transporter blockers dihydrokainate (DHKA) and DL-threo--hydroxyaspartate (HA)

    (82,92).

    Glutamate transporters incorporate glutamate into Muller cells along with the co-transport of

    three Na+ ions (91,93) and the antiport of one K+ ion (93,94) and either one OH or one

    HCO3- ion (94) (Fig. 12). The excess sodium ions generate a net positive inward current, which

    drives the transporter (91,93). More recent findings indicate that a glutamate-elicited chloride

    current is also associated with some transporters (85,95).

    It should be noted that the glutamate transporters located in the plasma membrane of neuronal

    and glial cells (discussed in this section) are different from the glutamate transporters located

    on synaptic vesicles within presynaptic terminals (see General Overview of Synaptic

    Transmission). The transporters in the plasma membrane transport glutamate in a Na+- and

    voltage-dependent manner independent of chloride (17,91,93). L-Glutamate, L-aspartate, and D-

    aspartate are substrates for these transporters (91). In contrast, the vesicular transporter

    selectively concentrates glutamate into synaptic vesicles in a Na+-independent, ATP-dependent

    manner (4-6) that requires chloride (4,6).

    Glutamate receptors with transporter-like pharmacology have been described in photoreceptors

    (96-98) and ON-bipolar cells (99,100). These receptors are coupled to a chloride current. The

    pharmacology of these receptors is similar to that described for glutamate transporters, because

    the glutamate-elicited current is: 1) dependent upon external Na+; 2) reduced by transporter

    blockers; and 3) insensitive to glutamate agonists and antagonists. However, altering internal

    Na+ concentration does not change the reversal potential (100) or the amplitude (96,99) of the

    glutamate-elicited current, suggesting that the receptor is distinct from glutamate transporters.

    At the photoreceptor terminals, the glutamate-elicited chloride current may regulate membrane

    potential and subsequent voltage-gated channel activity (99). Postsynaptically, this receptor is

    believed to mediate conductance changes underlying photoreceptor input to ON-cone bipolar

    cells (99).

    Localization of Glutamate Receptor Types in the RetinaPhotoreceptor, bipolar, and ganglion cells compose the vertical transduction pathway in the

    retina. This pathway is modulated by lateral inputs from horizontal cells in the distal retina and

    amacrine cells in the proximal retina (Fig. 13). As described in the previous sections,

    photoreceptor, bipolar, and ganglion cells show glutamate immunoreactivity. Glutamate

    responses have been electrically characterized in horizontal and bipolar cells, which are

    postsynaptic to photoreceptors, and in amacrine and ganglion cells, which are postsynaptic to

    Page 5

    Glutamate and Glutamate Receptors in the Vertebrate Retina

    Webvision

    W

    ebvision

    Webvision

    Webvision

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    23/47

    bipolar cells. Taken together, these results suggest that glutamate is the neurotransmitter

    released by neurons in the vertical pathway. Recent in situ hybridization and

    immunocytochemical studies have localized the expression of iGluR subunits, mGluRs, and

    glutamate transporter proteins in the retina. These findings are summarized below.

    Retinal Neurons Expressing Ionotropic Glutamate Receptors

    In both higher and lower vertebrates, electrophysiological recording techniques have identified

    ionotropic glutamate receptors on the neurons composing the OFF-pathway (Table 2). In the

    distal retina, OFF-bipolar cells (Fig. 14) (84,101,102) and horizontal cells (Fig. 15) (32,103,104)

    respond to kainate, AMPA, and quisqualate application, but not NMDA nor APB. (However,

    NMDA receptors have been identified on catfish horizontal cells (105,106), and APB-induced

    hyperpolarizations have been reported in some fish horizontal cells (107-109)).

    Non-NMDA agonists also stimulate both amacrine cells (Fig. 16a) (28,54,55) and ganglion cells

    (Fig. 16b) (29,31,53,57,58). Ganglion cells responses to NMDA have been observed

    (29,53,55-57), whereas NMDA responses have been recorded in only some types of amacrine

    cells (28,54,55) but see Hartveit and Veruki (110).

    Consistent with this physiological data, antibodies to the different non-NMDA receptor

    subunits differentially label all retinal layers (Table 3) (111-114), and mRNAs encoding the

    different non-NMDA iGluR subunits are similarly expressed (115-117). In contrast, mRNAs

    encoding NMDA subunits are expressed predominantly in the proximal retina, where amacrine

    and ganglion cells are located (INL, IPL, GCL) (Table 3) (111,115), although mRNA encoding

    the NR2a subunit (111) has been observed in the OPL and antibodies to the NR2d (118) and the

    NR1 subunits (112) label rod bipolar cells.

    Retinal Neurons Expressing Metabotropic Glutamate Receptors

    All metabotropic glutamate receptors, except mGluR3, have been identified in retina either

    through antibody staining (113,114,119,120) orin situ hybridization (61,64,79). MGluRs are

    differentially expressed throughout the retina, specifically in the outer plexiform layer, inner

    nuclear layer, inner plexiform layer, and the ganglion cell layer (Table 4). Although different

    patterns of mGluR expression have been observed in the retina, only the APB receptor on ON-

    bipolar cells has been physiologically examined.

    Retinal Neurons Expressing Glutamate Transporters

    The glutamate transporters GLAST, EAAC1, and GLT-1have been identified in retina (Table

    5). GLAST (L-glutamate/L-aspartate transporter) immunoreactivity is found in all retinal layers

    (121) but not in neuronal tissue. GLAST is localized to Muller cell membranes (121-124). In

    contrast, EAAC-1 (excitatory amino acid carrier-1) antibodies do not label Muller cells or

    photoreceptors. EAAC-1 immunoreactivity is observed in ganglion and amacrine cells in

    chicken, rat, goldfish, and turtle retinas. In addition, bipolar cells positively labeled with

    EAAC-1 antibody in lower vertebrates, and immunopositive horizontal cells were observed in

    rat (90). GLT-1 (glutamate transporter-1) proteins have been identified in monkey (125), rat

    (124), and rabbit (126) bipolar cells. In addition, a few amacrine cells were weakly labeled with

    the GLT-1 antibody in rat (124), as were photoreceptor terminals in rabbit (126).

    Summary and Conclusions

    Histological analyses of presynaptic neurons and physiological recordings from postsynaptic

    cells suggest that photoreceptor, bipolar, and ganglion cells release glutamate as their

    neurotransmitter. Multiple glutamate receptor types are present in the retina. These receptors

    Page 6

    Glutamate and Glutamate Receptors in the Vertebrate Retina

    Webvision

    W

    ebvision

    Webvision

    Webvision

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    24/47

    are pharmacologically distinct and differentially distributed. IGluRs directly gate ion channels

    and mediate rapid synaptic transmission through either kainate/AMPA or NMDA receptors.

    Glutamate binding onto iGluRs opens cation channels, depolarizing the postsynaptic cell

    membrane. Neurons within the OFF-pathway (horizontal cells, OFF-bipolar cells, amacrine

    cells, and ganglion cells) express functional iGluRs. mGluRs are coupled to G-proteins.

    Glutamate binding onto mGluRs can have a variety of effects, depending on the second

    messenger cascade to which the receptor is coupled. The APB receptor, found on ON-bipolar

    cell dendrites, is coupled to the synthesis of cGMP. At these receptors, glutamate decreasescGMP formation, leading to the closure of ion channels. Glutamate transporters, found on glial

    and photoreceptor cells, are also present at glutamatergic synapses (Fig. 17). Transporters

    remove excess glutamate from the synaptic cleft to prevent neurotoxicity. Thus, postsynaptic

    responses to glutamate are determined by the distribution of receptors and transporters at

    glutamatergic synapses which, in retina, determine the conductance mechanisms underlying

    visual information processing within the ON- and OFF-pathways.

    Figure 1.Structure of the glutamate molecule.

    Page 7

    Glutamate and Glutamate Receptors in the Vertebrate Retina

    Webvision

    W

    ebvision

    Webvision

    Webvision

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    25/47

    Figure 2.Glutamate immunoreactivity.

    Page 8

    Glutamate and Glutamate Receptors in the Vertebrate Retina

    Webvision

    W

    ebvision

    Webvision

    Webvision

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    26/47

    Figure 3.Autoradiogram of glutamate uptake through glutamate transporters.

    Page 9

    Glutamate and Glutamate Receptors in the Vertebrate Retina

    Webvision

    W

    ebvision

    Webvision

    Webvision

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    27/47

    Figure 4.Glutamate receptor agonists and antagonists.

    Page 10

    Glutamate and Glutamate Receptors in the Vertebrate Retina

    Webvision

    W

    ebvision

    Webvision

    Webvision

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    28/47

    Figure 5.

    Ionotropic and metabotropic glutamate receptors and channels. From Kandel et al. (127).

    Figure 6.

    Page 11

    Glutamate and Glutamate Receptors in the Vertebrate Retina

    Webvision

    W

    ebvision

    Webvision

    Webvision

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    29/47

    Comparison between NMDA and non-NMDA receptors. From Kandel et al. (127).

    Figure 7.Whole-cell patch clamp to show quisqualate- and kainate-gated currents.

    Figure 8.

    Page 12

    Glutamate and Glutamate Receptors in the Vertebrate Retina

    Webvision

    W

    ebvision

    Webvision

    Webvision

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    30/47

    NMDA receptor activation.

    Figure 9.

    Mg2+ ions block NMDA receptor channels.

    Figure 10.Whole-cell current traces to show kinetics of APB receptor-gated currents.

    Page 13

    Glutamate and Glutamate Receptors in the Vertebrate Retina

    Webvision

    W

    ebvision

    Webvision

    Webvision

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    31/47

    Figure 11.Intracellular recordings to show that APB selectively antagonizes the ON-pathways.

    Page 14

    Glutamate and Glutamate Receptors in the Vertebrate Retina

    Webvision

    W

    ebvision

    Webvision

    Webvision

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    32/47

    Figure 12.Glutamate transporters in Muller cells are electrogenic.

    Figure 13.The types of neurons in the vertebrate retina.

    Page 15

    Glutamate and Glutamate Receptors in the Vertebrate Retina

    Webvision

    W

    ebvision

    Webvision

    Webvision

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    33/47

    Figure 14.Whole-cell currents in OFF bipolar cells.

    Figure 15.

    Page 16

    Glutamate and Glutamate Receptors in the Vertebrate Retina

    Webvision

    W

    ebvision

    Webvision

    Webvision

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    34/47

    Whole-cell currents in horizontal cells.

    Figure 16.Glutamate receptors on amacrine and ganglion cells.

    Page 17

    Glutamate and Glutamate Receptors in the Vertebrate Retina

    Webvision

    W

    ebvision

    Webvision

    Webvision

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    35/47

    Figure 17.The ribbon glutamatergic synapse in the retina.

    Page 18

    Glutamate and Glutamate Receptors in the Vertebrate Retina

    Webvision

    W

    ebvision

    Webvision

    Webvision

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    36/47

    Table 1

    Metabotropic glutamate receptor groups (from Pin and Duvoisin (70)).

    Group mGluR Agonist(s) Intracellular pathway

    I mGluR1, mGluR5 quisqualate, ACPD Increase phospholipase C activity, increase cAMP levels, increase

    protein kinase A activity

    II mGluR2, mGluR3 L-CCG-1, ACPD Decrease cAMP levels

    III mGluR4, mGluR6. mGluR7, mGluR8 L-AP4 (APB) Decrease cAMP or cGMP levels

    Page 19

    Glutamate and Glutamate Receptors in the Vertebrate Retina

    Webvision

    W

    ebvision

    Webvision

    Webvision

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    37/47

    Table 2

    Glutamate receptor types on retinal neurons, electrophysiological measurements

    Retinal cell

    type

    Non-NMDA

    receptor

    NMDA

    receptor

    mGluR Glutamate

    receptor with

    transporter-

    like

    pharmacology

    Species Reference

    Photoreceptors ++ (cones) Salamander Eliasof & Werblin (82); Picaud et al (98).

    ++ (rods) Salamander Grant & Werblin (96)

    OFF-bipolar

    cells

    ++ Mudpuppy Slaughter & Miller (73,128)

    ++ Cat Sasaki & Kaneko (84)

    ++ Salamander Hensley et al. (58)

    ++ Rat Euler et al. (102)

    ++ Mudpuppy Slaughter & Miller (128)

    ON-bipolar cells ++ ++

    (APB)

    Mudpuppy Slaughter & Miller (73,128)

    ++

    (APB)

    ++ White perch Grant & Dowling (99,100)

    ++

    (APB)

    Salamander Hirano & MacLeish (129)

    ++ (L-

    AP4)

    Salamander Hensley et al. (58)

    ++

    (AP-4)

    Rat Euler et al. (101)

    ++ (APB

    and

    cGMP)

    Salamander Nawy & Jahr (74)

    ++ (APB

    and

    cGMP)

    Cat de la Villa et al. (130)

    Horizontal cells ++ White perch Zhou et al. (32)

    ++ Mudpuppy Slaughter & Miller (128)

    ++ Salamander Yang & Wu (104)

    ++ ++ Catfish O'Dell & Christensen (106); Eliasof & Jahr

    (105)

    Amacrine cells ++ (AII) Rat Boos et al. (28)

    ++ ++ Mudpuppy Slaughter & Miller (128)

    ++ ++ Rabbit Massey & Miller (55

    )

    ++ ++ Rat Harveit & Veruki (110)

    ++ (transient

    & sustained

    AC)

    ++

    (transient

    AC)

    Salamander Dixon & Copenhagen (54)

    Ganglion cells ++ ++ Salamander Diamond & Copenhagen (53); Mittman et al

    (57); Hensley et al (58).

    Page 20

    Glutamate and Glutamate Receptors in the Vertebrate Retina

    Webvision

    W

    ebvision

    Webvision

    Webvision

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    38/47

    Retinal cell

    type

    Non-NMDA

    receptor

    NMDA

    receptor

    mGluR Glutamate

    receptor with

    transporter-

    like

    pharmacology

    Species Reference

    ++ ++ Primates Cohen & Miller (29)

    ++ ++ Rat Aizenman et al. (83)

    ++ ++ Mudpuppy Slaughter & Miller (128)

    ++ ++ Cat Cohen & Miller (29)

    ++ ++ Rabbit Massey & Miller (55,56)

    Page 21

    Glutamate and Glutamate Receptors in the Vertebrate Retina

    Webvision

    W

    ebvision

    Webvision

    Webvision

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    39/47

    Table 3

    Ionotropic glutamate receptor expression in retinal neurons and retinal layers, immunocytochemistry,

    and in situ hybridization

    Retinal cell type

    or layer

    Non-NMDA receptor subunits NMDA receptor subunits Species Reference

    Photoreceptors GluR6/7 (single cone outer segments) Goldfish Peng et al. (113

    )

    GluR1 (cone pedicles) Cat Pourcho et al. (114)

    OPL GluR2, GluR2/3, GluR6/7 Rat Peng et al. (113)

    NR2A (punctate) Cat Harveit et al. (111)

    GluR2, GluR2/3 (photoreceptors) Goldfish Peng et al. (113)

    Bipolar cells GluR2 (Mb cells) Goldfish Peng et al. (113)

    GluR2, GluR2/3 Rat Peng et al. (113)

    NR2D (RBC) Rat Wenzel et al. (118)

    GluR2 and/or GluR4 NR1 (RBC) Rat Hughes (112)

    GluR2 (RBC) Rat Hughes et al. (117)

    Horizontal cells GluR6/7 Goldfish Peng et al. (113)

    GluR2/3 Cat Pourcho et al. (114)

    INL GluR2/3, GluR6/7 Rat Peng et al. (113)

    NR2A (inner) Rat Hartveit et al. (111)

    GluR1, 2, 5 > GluR4 (outer third),

    GluR1, 2, 5 (middle third), GluR1-5

    (inner third)

    Rat Hughes et al. (117)

    GluR1-7 Rat, cat Hamassaki-Britto et al. (116)

    KA2 (homogeneous), GluR6 (inner),

    GluR7 (inner two-thirds)

    NR1 (homogeneous), NR2A-

    B (inner third, patchy), NR2C

    (inner two-thirds)

    Rat Brandstatter et al. (115)

    IPL GluR1, GluR2/3, GluR6/7 Rat Peng et al. (113)

    NR2A Rat, cat, rabbit,

    monkey

    Harveit et al. (111)

    Amacrine cells GluR6 NR2A-C Rat Brandstatter et al. (115)

    GluR2/3 Cat Pourcho et al. (114)

    GluR1, GluR2/3 Rat Peng et al. (113)

    Ganglion cells GluR1 Rat Peng et al. (113)

    GCL GluR2/3, GluR6/7 Rat Peng et al. (113)

    GluR1-5 Rat Hughes et al. (117

    )

    GluR1-7 Rat, cat Hamassaki-Britto et al. (115)

    GluR6/7, KA2 NR1, NR2A-C Rat Brandstatter et al. (115)

    Muller cells GluR4 Rat Peng et al. (113)

    Page 22

    Glutamate and Glutamate Receptors in the Vertebrate Retina

    Webvision

    W

    ebvision

    Webvision

    Webvision

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    40/47

    Table 4

    Metabotropic glutamate receptor expression in retinal neurons and retinal layers, immunocytochemistry,

    and in situ hybridization

    Retinal cell type or

    layer

    Group I Group II Group III Species Reference

    OPL mGluR1alpha, mGluR5a (RBCdendrites)

    Rat Koulen et al. (120

    )

    mGluR6 (RBC

    dendrites)

    Rat Nomura et al. (80)

    INL mGluR8 Mouse Duvoisin et al. (61)

    mGluR6 Rat Nakajima et al. (64)

    mGluR5 (BC, HC), mGluR1 (AC) mGluR2 (AC) mGluR6 (RBC),

    mGluR7 (BC),

    mGluR4, 7 (AC)

    Rat Hartveit et al. (79)

    IPL mGluR1alpha Rat Peng et al. (113)

    mGluR7 (CBC

    terminals; AC

    dendrites; few GC

    dendrites)

    Rat Brandstatter et al. (115)

    mGluR1alpha, mGluR5a (AC

    dendrites)

    Rat Koulen et al. (120)

    Amacrine cells mGluR1alpha Rat Peng et al. (113)

    mGluR1alpha Cat Pourcho et al. (114)

    Ganglion cells mGluR1alpha Rat Peng et al. (113)

    GCL mGluR8 Mouse Duvoisin et al. (61)

    mGluR1alpha mGluR2/3 Cat Pourcho et al. (114)

    mGluR1 mGluR2 mGluR4, 7 Rat Hartveit et al. (79)

    Page 23

    Glutamate and Glutamate Receptors in the Vertebrate Retina

    Webvision

    W

    ebvision

    Webvision

    Webvision

  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    41/47

    Table 5

    Glutamate transporters in retinal neurons and retinal layers, immunocytochemical localizations

    Retinal cell type EAAC-1 GLAST GLT-1 Species Reference

    Photoreceptors + (cone soma

    to pedicles)

    Rabbit Massey et al. (126)

    OPL ++ Rat Rauen et al. (124)

    ++ (rod

    spherules >

    cone pedicles)

    Rabbit Massey et al. (126)

    Horizontal cells ++ Rat Schultz & Stell (90); Rauen et al (124).

    Bipolar cells ++ (2 types of

    CBCs)

    Rabbit Massey et al. (126)

    ++ (faint) ++ Rat Rauen et al. (124)

    ++ Turtle, salamander Schultz & Stell (90)

    ++ (DB2, flat

    midget bipolar

    cells)

    Monkey Grunert et al. (125)

    IPL ++ (diffuse) Rabbit Massey et al. (126)

    ++ ++ Rat Rauen et al. (124)

    ++ Goldfish,

    salamander, turtle,

    chicken, rat

    Schultz & Stell (90)

    Amacrine cells ++ ++ Rat Rauen et al. (124)

    ++ Schultz & Stell (90)

    Ganglion cells ++ Chicken, rat,

    goldfish, turtle

    Schultz & Stell (90)

    ++ Rat Rauen et al. (124)

    Muller cells ++ Rat Rauen et al. (124); Lehre et al (123); Deroiche & Rauen

    (122)

    References

    1. Massey SC. Cell types using glutamate as a neurotransmitter in the vertebrate retina. Prog Retinal Res

    1990;9:399425.

    2. Erulkar SD. Chemically mediated synaptic transmission: an overview. In: Siegel GJ, Agranoff BJ,

    Albers RW, Molinoff PB, editors. Basic neurochemistry, 5th ed. New York: Raven Press; 1994. p.

    181-208.

    3. Stryer L. Biochemistry. 3rd ed.. New York: W.H. Freeman; 1988.

    4. Fykse EM, Fonnum F. Amino acid neurotransmission: dynamics of vesicular uptake. Neurochem Res

    1996;21:10531060. [PubMed: 8897468]5. Naito S, Ueda T. Adenosine triphosphate-dependent uptake of glutamate into protein I-associated

    synaptic vesicles. J Biol Chem 1983;258:696699. [PubMed: 6130088]

    6. Tabb JS, Ueda T. Phylogenetic studies on the synaptic vesicle glutamate transporter. J Neurosci

    1991;11:18221828. [PubMed: 2045887]

    7. Ehinger B, Ottersen OP, Storm-Mathisen J, Dowling JE. Bipolar cells in the turtle retina are strongly

    immunoreactive for glutamate. Proc Natl Acad Sci U S A 1988;85:83218325. [PubMed: 2903503]

    Page 24

    Glutamate and Glutamate Receptors in the Vertebrate Retina

    Webvision

    W

    ebvision

    Webvision

    Webvision

    http://www.ncbi.nlm.nih.gov/pubmed/2903503http://www.ncbi.nlm.nih.gov/pubmed/2045887http://www.ncbi.nlm.nih.gov/pubmed/6130088http://www.ncbi.nlm.nih.gov/pubmed/8897468
  • 7/27/2019 IVMS-NMDA Receptors, Glutamate, Glycine, Serine and Neurobiology

    42/47

    8. Jojich L, Pourcho RG. Glutamate immunoreactivity in the cat retina: a quantitative study. Vis Neurosci

    1996;13:117133. [PubMed: 8730994]

    9. Kalloniatis M, Fletcher EL. Immunocytochemical localization of the amino acid neurotransmitters in

    the chicken retina. J Comp Neurol 1993;336:174193. [PubMed: 7902364]

    10. Marc RE, Liu W-LS, Kalloniatis M, Raiguel SF, Van Haesendonck E. Patterns of glutamate

    immunoreactivity in the goldfish retina. J Neurosci 1990;10:40064034. [PubMed: 1980136]

    11. Van Haesendonck E, Missotten L. Glutamate-like immunoreactivity in the retina of a marine teleost,

    the dragonet. Neurosci Lett 1990;111:281286. [PubMed: 2336203]12. Yang C-Y, Yazulla S. Glutamate-, GABA-, and GAD-immunoreactivities co-localize in bipolar cells

    of tiger salamander retina. Vis Neurosci 1994;11:11931203. [PubMed: 7841126]

    13. Yang C-Y. Glutamate immunoreactivity in the tiger salamander retina differentiates between GABA-

    immunoreactive and glycine-immunoreactive amacrine cells. J Neurocytol 1996;25:391403.

    [PubMed: 8866240]

    14. Yazulla S. GABAergic neurons in the retina. Prog Retinal Res 1986;5:152.

    15. Marc RE, Lam DMK. Uptake of aspartic and glutamic acid by photoreceptors in goldfish retina. Proc

    Natl Acad Sci U S A 1981;78:71857189. [PubMed: 6118867]

    16. Yang JH, Wu SM. Characterization of glutamate transporter function in the tiger salamander retina.

    Vision Res 1997;37:827838. [PubMed: 9156180]

    17. Kanai Y, Smith CP, Hediger MA. A new family of neurotransmi