Top Banner

of 38

Iterative Techniques in Matrix Algebra

Aug 07, 2018

Download

Documents

Juan Juan
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/20/2019 Iterative Techniques in Matrix Algebra

    1/107

    Iterative Techniques in Matrix Algebra

    Jacobi & Gauss-Seidel Iterative Techniques II

    Numerical Analysis (9th Edition)

    R L Burden & J D Faires

    Beamer Presentation Slidesprepared byJohn Carroll

    Dublin City University

    c 2011 Brooks/Cole, Cengage Learning

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    2/107

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Outline

    1   The Gauss-Seidel Method

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 2 / 38

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    3/107

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Outline

    1   The Gauss-Seidel Method

    2   The Gauss-Seidel Algorithm

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 2 / 38

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    4/107

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Outline

    1   The Gauss-Seidel Method

    2   The Gauss-Seidel Algorithm

    3   Convergence Results for General Iteration Methods

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 2 / 38

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    5/107

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Outline

    1   The Gauss-Seidel Method

    2   The Gauss-Seidel Algorithm

    3   Convergence Results for General Iteration Methods

    4   Application to the Jacobi & Gauss-Seidel Methods

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 2 / 38

    G S id l M h d G S id l Al i h C R l I i

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    6/107

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Outline

    1   The Gauss-Seidel Method

    2   The Gauss-Seidel Algorithm

    3   Convergence Results for General Iteration Methods

    4   Application to the Jacobi & Gauss-Seidel Methods

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 3 / 38

    G S id l M th d G S id l Al ith C R lt I t t ti

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    7/107

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    The Gauss-Seidel Method

    Looking at the Jacobi MethodA possible improvement to the Jacobi Algorithm can be seen by

    re-considering

    x (k )i    =   1a ii 

    n  j =1 j =i 

    −a ij x (k −1) j 

    + b i 

    ,   for i  = 1, 2, . . . , n 

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 4 / 38

    Gauss Seidel Method Gauss Seidel Algorithm Convergence Results Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    8/107

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    The Gauss-Seidel Method

    Looking at the Jacobi MethodA possible improvement to the Jacobi Algorithm can be seen by

    re-considering

    x (k )i    =   1a ii 

    n  j =1 j =i 

    −a ij x (k −1) j 

    + b i 

    ,   for i  = 1, 2, . . . , n 

    The components of  x(k −1) are used to compute all the

    components x (k )i    of  x(k ).

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 4 / 38

    Gauss Seidel Method Gauss Seidel Algorithm Convergence Results Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    9/107

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    The Gauss-Seidel Method

    Looking at the Jacobi MethodA possible improvement to the Jacobi Algorithm can be seen by

    re-considering

    x (k )i    =   1a ii 

    n  j =1 j =i 

    −a ij x (k −1) j 

    + b i 

    ,   for i  = 1, 2, . . . , n 

    The components of  x(k −1) are used to compute all the

    components x (k )i    of  x(k ).

    But, for i  > 1, the components x (k )1   , . . . , x 

    (k )i −1  of  x

    (k ) have already

    been computed and are expected to be better approximations to

    the actual solutions x 1, . . . , x i −1  than are x (k −1)1   , . . . , x 

    (k −1)i −1   .

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 4 / 38

    Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    10/107

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    The Gauss-Seidel Method

    Instead of using

    x (k )i    =

      1

    a ii 

    n  j =1 j =i 

    −a ij x 

    (k −1) j 

    + b i 

    ,   for i  = 1, 2, . . . , n 

    it seems reasonable, then, to compute x (k )i    using these most recently

    calculated values.

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 5 / 38

    Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation

    http://find/http://goback/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    11/107

    Gauss Seidel Method   Gauss Seidel Algorithm   Convergence Results   Interpretation

    The Gauss-Seidel Method

    Instead of using

    x (k )i    =

      1

    a ii 

    n  j =1 j =i 

    −a ij x 

    (k −1) j 

    + b i 

    ,   for i  = 1, 2, . . . , n 

    it seems reasonable, then, to compute x (k )i    using these most recently

    calculated values.

    The Gauss-Seidel Iterative Technique

    x (k )i    =

      1

    a ii 

    i −1 j =1

    (a ij x (k )

     j    ) −n 

     j =i +1

    (a ij x (k −1)

     j    ) + b i 

    for each i  = 1, 2, . . . , n .

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 5 / 38

    Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    12/107

    Gauss Seidel Method   Gauss Seidel Algorithm   Convergence Results   Interpretation

    The Gauss-Seidel Method

    Example

    Use the Gauss-Seidel iterative technique to find approximate solutionsto

    10x 1 −   x 2 +   2x 3   = 6

    −x 1 + 11x 2 −   x 3 + 3x 4  = 25

    2x 1 −   x 2 + 10x 3 −   x 4  = −113x 2 −   x 3 + 8x 4  = 15

    ,

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 6 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://goforward/http://find/http://goback/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    13/107

    g g p

    The Gauss-Seidel Method

    Example

    Use the Gauss-Seidel iterative technique to find approximate solutionsto

    10x 1 −   x 2 +   2x 3   = 6

    −x 1 + 11x 2 −   x 3 + 3x 4  = 25

    2x 1 −   x 2 + 10x 3 −   x 4  = −113x 2 −   x 3 + 8x 4  = 15

    ,

    starting with  x = (0, 0, 0, 0)t 

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 6 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    14/107

    g g p

    The Gauss-Seidel Method

    Example

    Use the Gauss-Seidel iterative technique to find approximate solutionsto

    10x 1 −   x 2 +   2x 3   = 6

    −x 1 + 11x 2 −   x 3 + 3x 4  = 25

    2x 1 −   x 2 + 10x 3 −   x 4  = −113x 2 −   x 3 + 8x 4  = 15

    ,

    starting with  x = (0, 0, 0, 0)t  and iterating until

    x(k )

    −x(k −1)

    ∞x(k )∞

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    15/107

    The Gauss-Seidel Method

    Example

    Use the Gauss-Seidel iterative technique to find approximate solutionsto

    10x 1 −   x 2 +   2x 3   = 6

    −x 1 + 11x 2 −   x 3 + 3x 4  = 25

    2x 1 −   x 2 + 10x 3 −   x 4  = −113x 2 −   x 3 + 8x 4  = 15

    ,

    starting with  x = (0, 0, 0, 0)t  and iterating until

    x(k )

    −x(k −1)

    ∞x(k )∞

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    16/107

    The Gauss-Seidel Method

    Solution (1/3)

    For the Gauss-Seidel method we write the system, for each

    k  = 1, 2, . . . as

    x (k )1   =   110x (k −1)2   −   15

    x (k −1)3   +  35

    x (k )2   =

      1

    11x (k )1   +

      1

    11x (k −1)3   −

      3

    11x (k −1)4   +

     25

    11

    x (k )3   = −

    1

    5 x (k )1   +

      1

    10 x (k )2   +

      1

    10 x (k −1)4   −

     11

    10

    x (k )4   =   −

      3

    8x (k )2   +

      1

    8x (k )3   +

     15

    8

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 7 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    17/107

    The Gauss-Seidel Method

    Solution (2/3)

    When  x(0) = (0,  0,  0,  0)t , we havex(1) = (0.6000,  2.3272,  −0.9873,  0.8789)t .

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 8 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    18/107

    The Gauss-Seidel Method

    Solution (2/3)

    When  x(0) = (0,  0,  0,  0)t , we havex(1) = (0.6000,  2.3272,  −0.9873,  0.8789)t . Subsequent iterations givethe values in the following table:

    k    0 1 2 3 4 5

    x (k )1   0.0000 0.6000 1.030 1.0065 1.0009 1.0001

    x (k )

    2

      0.0000 2.3272 2.037 2.0036 2.0003 2.0000

    x (k )

    3   0.0000   −0.9873   −1.014   −1.0025   −1.0003   −1.0000

    x (k )4   0.0000 0.8789 0.984 0.9983 0.9999 1.0000

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 8 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    19/107

    The Gauss-Seidel Method

    Solution (3/3)

    Becausex(5) − x(4)∞

    x(5)∞ =

     0.0008

    2.000   = 4 × 10−4

    x(5) is accepted as a reasonable approximation to the solution.

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 9 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    20/107

    The Gauss-Seidel Method

    Solution (3/3)

    Becausex(5) − x(4)∞

    x(5)∞ =

     0.0008

    2.000   = 4 × 10−4

    x(5) is accepted as a reasonable approximation to the solution.

    Note that, in an earlier example, Jacobi’s method required twice as

    many iterations for the same accuracy.

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 9 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    21/107

    The Gauss-Seidel Method: Matrix Form

    Re-Writing the Equations

    To write the Gauss-Seidel method in matrix form,

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 10 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    22/107

    The Gauss-Seidel Method: Matrix Form

    Re-Writing the Equations

    To write the Gauss-Seidel method in matrix form, multiply both sides of

    x (k )i    =   1a ii 

    −i −1 j =1

    (a ij x (k ) j    ) −

    n  j =i +1

    (a ij x (k −1) j    ) + b i 

    by a ii  and collect all k th iterate terms,

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 10 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    23/107

    The Gauss-Seidel Method: Matrix Form

    Re-Writing the Equations

    To write the Gauss-Seidel method in matrix form, multiply both sides of

    x (k )i    =  1

    a ii 

    i −1 j =1

    (a ij x (k ) j    ) −

    n  j =i +1

    (a ij x (k −1) j    ) + b i 

    by a ii  and collect all k th iterate terms, to give

    a i 1x (k )1   + a i 2x (

    k )2   + · · · + a ii x (

    k )i    = −a i ,i +1x (

    k −

    1)i +1   − · · · − a in x (

    k −

    1)n    + b i 

    for each i  = 1, 2, . . . , n .

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 10 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    24/107

    The Gauss-Seidel Method: Matrix Form

    Re-Writing the Equations (Cont’d)

    Writing all n  equations gives

    a11x(k)1   =   −a12x

    (k−1)2   − a13x

    (k−1)3   − · · · − a1nx

    (k−1)n   + b1

    a21x(k)

    1  +   a

    22x(k)

    2  =   −a

    23x(k−1)

    3  − · · · − a

    2nx(k−1)

    n  + b

    2

    .

    .

    .

    an1x(k)1   +   an2x

    (k)2   + · · · + annx

    (k)n   =   bn

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 11 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    25/107

    The Gauss-Seidel Method: Matrix Form

    Re-Writing the Equations (Cont’d)

    Writing all n  equations gives

    a11x(k)1   =   −a12x

    (k−1)2   − a13x

    (k−1)3   − · · · − a1nx

    (k−1)n   + b1

    a21x(k)

    1  +   a

    22x(k)

    2  =   −a

    23x(k−1)

    3  − · · · − a

    2nx(k−1)

    n  + b

    2

    .

    .

    .

    an1x(k)1   +   an2x

    (k)2   + · · · + annx

    (k)n   =   bn

    With the definitions of D , L, and U  given previously, we have the

    Gauss-Seidel method represented by

    (D − L)x(k ) = U x(k −1) + b

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 11 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    26/107

    The Gauss-Seidel Method: Matrix Form

    (D − L)x(k ) = U x(k −1) + b

    Re-Writing the Equations (Cont’d)

    Solving for  x(k ) finally gives

    x(k ) = (D − L)−1U x(k −1) + (D − L)−1b,   for each k  = 1, 2, . . .

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 12 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    27/107

    The Gauss-Seidel Method: Matrix Form

    (D − L)x(k ) = U x(k −1) + b

    Re-Writing the Equations (Cont’d)

    Solving for  x(k ) finally gives

    x(k ) = (D − L)−1U x(k −1) + (D − L)−1b,   for each k  = 1, 2, . . .

    Letting T g  = (D − L)−1U  and  cg  = (D − L)

    −1b, gives the Gauss-Seidel

    technique the form

    x(k ) = T g x(k −1) + cg 

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 12 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    28/107

    The Gauss-Seidel Method: Matrix Form

    (D − L)x(k ) = U x(k −1) + b

    Re-Writing the Equations (Cont’d)

    Solving for  x(k ) finally gives

    x(k ) = (D − L)−1U x(k −1) + (D − L)−1b,   for each k  = 1, 2, . . .

    Letting T g  = (D − L)−1U  and  cg  = (D − L)

    −1b, gives the Gauss-Seidel

    technique the form

    x(k ) = T g x(k −1) + cg 

    For the lower-triangular matrix D − L to be nonsingular, it is necessaryand sufficient that a ii  = 0, for each i  = 1, 2, . . . , n .

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 12 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    29/107

    Outline

    1   The Gauss-Seidel Method

    2   The Gauss-Seidel Algorithm

    3   Convergence Results for General Iteration Methods

    4   Application to the Jacobi & Gauss-Seidel Methods

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 13 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    30/107

    Gauss-Seidel Iterative Algorithm (1/2)

    To solve Ax =  b given an initial approximation  x(0):

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 14 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://goforward/http://find/http://goback/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    31/107

    Gauss-Seidel Iterative Algorithm (1/2)

    To solve Ax =  b given an initial approximation  x(0):

    INPUT   the number of equations and unknowns n ;

    the entries a ij 

    , 1 ≤

     i , j  ≤

     n  of the matrix A;

    the entries b i , 1 ≤  i  ≤ n  of  b;

    the entries XO i , 1 ≤ i  ≤ n  of  XO =  x(0);

    tolerance TOL;

    maximum number of iterations N .

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 14 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    32/107

    Gauss-Seidel Iterative Algorithm (1/2)

    To solve Ax =  b given an initial approximation  x(0):

    INPUT   the number of equations and unknowns n ;

    the entries a ij 

    , 1 ≤

     i , j  ≤

     n  of the matrix A;

    the entries b i , 1 ≤  i  ≤ n  of  b;

    the entries XO i , 1 ≤ i  ≤ n  of  XO =  x(0);

    tolerance TOL;

    maximum number of iterations N .

    OUTPUT   the approximate solution x 1, . . . , x n  or a message

    that the number of iterations was exceeded.

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 14 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    33/107

    Gauss-Seidel Iterative Algorithm (2/2)

    Step 1 Set k  = 1

    Step 2 While (k  ≤ N ) do Steps 3–6:

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 15 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    34/107

    Gauss-Seidel Iterative Algorithm (2/2)

    Step 1 Set k  = 1

    Step 2 While (k  ≤ N ) do Steps 3–6:

    Step 3 For i  = 1, . . . , n 

    set x i  =  1

    a ii 

    −i −1

     j =1

    a ij x  j  −n 

     j =i +1

    a ij XO  j  + b i 

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 15 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    35/107

    Gauss-Seidel Iterative Algorithm (2/2)

    Step 1 Set k  = 1

    Step 2 While (k  ≤ N ) do Steps 3–6:

    Step 3 For i  = 1, . . . , n 

    set x i  =  1

    a ii 

    −i −1

     j =1

    a ij x  j  −n 

     j =i +1

    a ij XO  j  + b i 

    Step 4 If ||x − XO|| 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    36/107

    Gauss-Seidel Iterative Algorithm (2/2)

    Step 1 Set k  = 1

    Step 2 While (k  ≤ N ) do Steps 3–6:

    Step 3 For i  = 1, . . . , n 

    set x i  =  1

    a ii 

    −i −1

     j =1

    a ij x  j  −n 

     j =i +1

    a ij XO  j  + b i 

    Step 4 If ||x − XO|| 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    37/107

    Gauss-Seidel Iterative Algorithm (2/2)

    Step 1 Set k  = 1

    Step 2 While (k  ≤ N ) do Steps 3–6:

    Step 3 For i  = 1, . . . , n 

    set x i  =  1

    a ii 

    −i −1

     j =1

    a ij x  j  −n 

     j =i +1

    a ij XO  j  + b i 

    Step 4 If ||x − XO|| 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    38/107

    Gauss-Seidel Iterative Algorithm (2/2)

    Step 1 Set k  = 1

    Step 2 While (k  ≤ N ) do Steps 3–6:

    Step 3 For i  = 1, . . . , n 

    set x i  =  1

    a ii 

    −i −1

     j =1

    a ij x  j  −n 

     j =i +1

    a ij XO  j  + b i 

    Step 4 If ||x − XO|| 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    39/107

    Gauss-Seidel Iterative Algorithm

    Comments on the Algorithm

    Step 3 of the algorithm requires that a ii  = 0, for eachi  = 1, 2, . . . , n .

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 16 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    G S id l It ti Al ith

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    40/107

    Gauss-Seidel Iterative Algorithm

    Comments on the Algorithm

    Step 3 of the algorithm requires that a ii  = 0, for eachi  = 1, 2, . . . , n . If one of the  a ii  entries is 0 and the system isnonsingular, a reordering of the equations can be performed so

    that no a ii  = 0.

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 16 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Ga ss Seidel Iterati e Algorithm

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    41/107

    Gauss-Seidel Iterative Algorithm

    Comments on the Algorithm

    Step 3 of the algorithm requires that a ii  = 0, for eachi  = 1, 2, . . . , n . If one of the  a ii  entries is 0 and the system isnonsingular, a reordering of the equations can be performed so

    that no a ii  = 0.

    To speed convergence, the equations should be arranged so that

    a ii  is as large as possible.

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 16 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Gauss Seidel Iterative Algorithm

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    42/107

    Gauss-Seidel Iterative Algorithm

    Comments on the Algorithm

    Step 3 of the algorithm requires that a ii  = 0, for eachi  = 1, 2, . . . , n . If one of the  a ii  entries is 0 and the system isnonsingular, a reordering of the equations can be performed so

    that no a ii  = 0.

    To speed convergence, the equations should be arranged so that

    a ii  is as large as possible.

    Another possible stopping criterion in Step 4 is to iterate until

    x(k ) − x(k −1)

    x(k )

    is smaller than some prescribed tolerance.

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 16 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Gauss Seidel Iterative Algorithm

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    43/107

    Gauss-Seidel Iterative Algorithm

    Comments on the Algorithm

    Step 3 of the algorithm requires that a ii  = 0, for eachi  = 1, 2, . . . , n . If one of the  a ii  entries is 0 and the system isnonsingular, a reordering of the equations can be performed so

    that no a ii  = 0.

    To speed convergence, the equations should be arranged so that

    a ii  is as large as possible.

    Another possible stopping criterion in Step 4 is to iterate until

    x(k ) − x(k −1)

    x(k )

    is smaller than some prescribed tolerance.

    For this purpose, any convenient norm can be used, the usual

    being the l ∞ norm.

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 16 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Outline

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    44/107

    Outline

    1   The Gauss-Seidel Method

    2   The Gauss-Seidel Algorithm

    3   Convergence Results for General Iteration Methods

    4   Application to the Jacobi & Gauss-Seidel Methods

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 17 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    45/107

    Convergence Results for General Iteration Methods

    Introduction

    To study the convergence of general iteration techniques, we need

    to analyze the formula

    x(k ) = T x(k −1) + c,   for each k  = 1, 2, . . .

    where  x(0) is arbitrary.

    The following lemma and the earlier   Theorem on convergent

    matrices provide the key for this study.

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 18 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://goforward/http://find/http://goback/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    46/107

    Convergence Results for General Iteration Methods

    Lemma

    If the spectral radius satisfies  ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    47/107

    Convergence Results for General Iteration Methods

    Lemma

    If the spectral radius satisfies  ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    48/107

    Convergence Results for General Iteration Methods

    Lemma

    If the spectral radius satisfies  ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    49/107

    Convergence Results for General Iteration Methods

    Lemma

    If the spectral radius satisfies  ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    50/107

    Convergence Results for General Iteration Methods

    Proof (2/2)Let

    S m  = I  + T  + T 2 + · · · + T m 

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 20 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    51/107

    Convergence Results for General Iteration Methods

    Proof (2/2)Let

    S m  = I  + T  + T 2 + · · · + T m 

    Then

    (I − T )S m  = (1 + T  + T 2 + · · · + T m ) − (T  + T 2 + · · · + T m +1) = I − T m +1

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 20 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    52/107

    Convergence Results for General Iteration Methods

    Proof (2/2)Let

    S m  = I  + T  + T 2 + · · · + T m 

    Then

    (I − T )S m  = (1 + T  + T 2 + · · · + T m ) − (T  + T 2 + · · · + T m +1) = I − T m +1

    and, since T   is convergent, the   Theorem on convergent matrices

    implies that

    limm →∞(I  − T )S m  =   limm →∞(I  − T m +1) = I 

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 20 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    53/107

    g

    Proof (2/2)Let

    S m  = I  + T  + T 2 + · · · + T m 

    Then

    (I − T )S m  = (1 + T  + T 2 + · · · + T m ) − (T  + T 2 + · · · + T m +1) = I − T m +1

    and, since T   is convergent, the   Theorem on convergent matrices

    implies that

    limm →∞(I  − T )S m  =   limm →∞(I  − T m +1) = I 

    Thus, (I  − T )−1 = limm →∞ S m  = I  + T  + T 2 + · · · =

    ∞ j =0 T 

     j 

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 20 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    54/107

    g

    Theorem

    For any  x(0) ∈   IRn , the sequence {x(k )}∞k =0  defined by

    x(k )

    = T x(k −1)

    +c

    ,   for each k  ≥ 1

    converges to the unique solution of

    x =  T x + c

    if and only if ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    55/107

    g

    Proof (1/5)First assume that ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    56/107

    g

    Proof (1/5)First assume that ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    57/107

    Proof (1/5)First assume that ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    58/107

    Proof (1/5)

    First assume that ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    59/107

    Proof (1/5)

    First assume that ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    60/107

    Proof (1/5)

    First assume that ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    61/107

    Proof (2/5)The previous lemma implies that

    limk →∞

    x(k ) =   lim

    k →∞

    T k x(0) +

     j =0

    T  j 

    c

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 23 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/http://goback/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    62/107

    Proof (2/5)The previous lemma implies that

    limk →∞

    x(k ) =   lim

    k →∞

    T k x(0) +

     j =0

    T  j 

    c

    =   0 + (I  − T )−1c

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 23 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    63/107

    Proof (2/5)The previous lemma implies that

    limk →∞

    x(k ) =   lim

    k →∞

    T k x(0) +

     j =0

    T  j 

    c

    =   0 + (I  − T )−1c

    = (I  − T )−1c

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 23 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    64/107

    Proof (2/5)The previous lemma implies that

    limk →∞

    x(k ) =   lim

    k →∞

    T k x(0) +

     j =0

    T  j 

    c

    =   0 + (I  − T )−1c

    = (I  − T )−1c

    Hence, the sequence {x(k )} converges to the vector  x ≡  (I  − T )−1cand  x =  T x + c.

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 23 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    65/107

    Proof (3/5)

    To prove the converse, we will show that for any  z ∈   IRn , we havelimk →∞ T 

    k z =  0.

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 24 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://goforward/http://find/http://goback/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    66/107

    Proof (3/5)

    To prove the converse, we will show that for any  z ∈   IRn , we havelimk →∞ T 

    k z =  0.

    Again, by the theorem on convergent matrices, this is equivalentto ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    67/107

    Proof (3/5)

    To prove the converse, we will show that for any  z ∈   IRn , we havelimk →∞ T 

    k z =  0.

    Again, by the theorem on convergent matrices, this is equivalentto ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    68/107

    Proof (3/5)

    To prove the converse, we will show that for any  z ∈   IRn , we havelimk →∞ T 

    k z =  0.

    Again, by the theorem on convergent matrices, this is equivalentto ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    69/107

    Proof (3/5)

    To prove the converse, we will show that for any  z ∈   IRn , we havelimk →∞ T 

    k z =  0.

    Again, by the theorem on convergent matrices, this is equivalentto ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    70/107

    Proof (4/5)

    Also,

    x − x(k ) = (T x + c) −

    T x(k −1) + c

     = T x − x(k −1)

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 25 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://goforward/http://find/http://goback/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    71/107

    Proof (4/5)

    Also,

    x − x(k ) = (T x + c) −

    T x(k −1) + c

     = T x − x(k −1)

    sox − x(k ) =   T 

    x − x(k −1)

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 25 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    72/107

    Proof (4/5)

    Also,

    x − x(k ) = (T x + c) −

    T x(k −1) + c

     = T x − x(k −1)

    sox − x(k ) =   T 

    x − x(k −1)

    =   T 2x − x(k −2)

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 25 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://goforward/http://find/http://goback/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    73/107

    Proof (4/5)

    Also,

    x − x(k ) = (T x + c) −

    T x(k −1) + c

     = T x − x(k −1)

    sox − x(k ) =   T 

    x − x(k −1)

    =   T 2x − x(k −2)

    =

      ...

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 25 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    74/107

    Proof (4/5)

    Also,

    x − x(k ) = (T x + c) −

    T x(k −1) + c

     = T x − x(k −1)

    sox − x(k ) =   T 

    x − x(k −1)

    =   T 2x − x(k −2)

    =

      ...

    =   T k x − x(0)

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 25 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    75/107

    Proof (4/5)

    Also,

    x − x(k ) = (T x + c) −

    T x(k −1) + c

     = T x − x(k −1)

    sox − x(k ) =   T 

    x − x(k −1)

    =   T 2x − x(k −2)

    =

      ...

    =   T k x − x(0)

    =   T k z

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 25 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    76/107

    Proof (5/5)

    Hence

    limk →∞

    T k z   =   limk →∞

    T k x − x(0)

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 26 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    77/107

    Proof (5/5)

    Hence

    limk →∞

    T k z   =   limk →∞

    T k x − x(0)

    =   limk →∞

    x − x(k )

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 26 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    78/107

    Proof (5/5)

    Hence

    limk →∞

    T k z   =   limk →∞

    T k x − x(0)

    =   limk →∞

    x − x(k )

    =   0

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 26 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    79/107

    Proof (5/5)

    Hence

    limk →∞

    T k z   =   limk →∞

    T k x − x(0)

    =   limk →∞

    x − x(k )

    =   0

    But  z ∈   IRn  was arbitrary, so by the theorem on convergentmatrices, T   is convergent and ρ(T ) <   1.

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 26 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    80/107

    Corollary

    T  

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    81/107

    Corollary

    T  

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    82/107

    Corollary

    T  

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    83/107

    Corollary

    T  

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    84/107

    1   The Gauss-Seidel Method

    2   The Gauss-Seidel Algorithm

    3   Convergence Results for General Iteration Methods

    4   Application to the Jacobi & Gauss-Seidel Methods

    Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 28 / 38 Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    85/107

    Using the Matrix Formulations

    We have seen that the Jacobi and Gauss-Seidel iterative techniques

    can be written

    x(k ) =   T  j x

    (k −1) + c j    and

    x(k ) =   T g x(k −1) + cg 

    Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 29 / 38 Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    http://goforward/http://find/http://goback/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    86/107

    Using the Matrix Formulations

    We have seen that the Jacobi and Gauss-Seidel iterative techniques

    can be written

    x(k ) =   T  j x

    (k −1) + c j    and

    x(k ) =   T g x(k −1) + cg 

    using the matrices

    T  j  = D −1(L + U )   and   T g  = (D − L)

    −1U 

    respectively.

    Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 29 / 38 Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    87/107

    Using the Matrix Formulations

    We have seen that the Jacobi and Gauss-Seidel iterative techniques

    can be written

    x(k ) =   T  j x

    (k −1) + c j    and

    x(k ) =   T g x(k −1) + cg 

    using the matrices

    T  j  = D −1(L + U )   and   T g  = (D − L)

    −1U 

    respectively. If ρ(T  j ) or ρ(T g ) is less than 1, then the correspondingsequence {x(k )}∞k =0  will converge to the solution  x of Ax =  b.

    Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 29 / 38 Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    88/107

    Example

    For example, the Jacobi method has

    x(k ) = D −1(L + U )x(k −1) + D −1b,

    Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 30 / 38 Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    89/107

    Example

    For example, the Jacobi method has

    x(k ) = D −1(L + U )x(k −1) + D −1b,

    and, if {x(k )}∞k =0

     converges to  x,

    Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 30 / 38 Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    90/107

    Example

    For example, the Jacobi method has

    x(k ) = D −1(L + U )x(k −1) + D −1b,

    and, if {x(k )}∞k =0

     converges to  x, then

    x =  D −1(L + U )x + D −1b

    Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 30 / 38 Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    91/107

    Example

    For example, the Jacobi method has

    x(k ) = D −1(L + U )x(k −1) + D −1b,

    and, if {x(k )}∞k =0

     converges to  x, then

    x =  D −1(L + U )x + D −1b

    This implies that

    D x = (L + U )x + b   and   (D − L − U )x =  b

    Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 30 / 38 Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    92/107

    Example

    For example, the Jacobi method has

    x(k ) = D −1(L + U )x(k −1) + D −1b,

    and, if {x(k )}∞k =0

     converges to  x, then

    x =  D −1(L + U )x + D −1b

    This implies that

    D x = (L + U )x + b   and   (D − L − U )x =  b

    Since D − L − U  = A, the solution  x satisfies Ax =  b.

    Numerical Analysis (Chapter 7) Jacobi & Gauss Seidel Methods II R L Burden & J D Faires 30 / 38 Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    93/107

    The following are easily verified sufficiency conditions for convergence

    of the Jacobi and Gauss-Seidel methods.

    Numerical Analysis (Chapter 7) Jacobi & Gauss Seidel Methods II R L Burden & J D Faires 31 / 38 Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    94/107

    The following are easily verified sufficiency conditions for convergence

    of the Jacobi and Gauss-Seidel methods.

    Theorem

    If A is strictly diagonally dominant, then for any choice of  x(0), both the

    Jacobi and Gauss-Seidel methods give sequences {x(k )}∞k =0  thatconverge to the unique solution of Ax =  b.

    Numerical Analysis (Chapter 7) Jacobi & Gauss Seidel Methods II R L Burden & J D Faires 31 / 38 Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    95/107

    Is Gauss-Seidel better than Jacobi?

    Numerical Analysis (Chapter 7) Jacobi & Gauss Seidel Methods II R L Burden & J D Faires 32 / 38 Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    96/107

    Is Gauss-Seidel better than Jacobi?

    No general results exist to tell which of the two techniques, Jacobi

    or Gauss-Seidel, will be most successful for an arbitrary linear

    system.

    Numerical Analysis (Chapter 7) Jacobi & Gauss Seidel Methods II R L Burden & J D Faires 32 / 38

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    97/107

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    S

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    98/107

    (Stein-Rosenberg) Theorem

    If a ij  ≤ 0, for each i  = j  and a ii   > 0, for each i  = 1, 2, . . . , n , then oneand only one of the following statements holds:

    (i)   0 ≤  ρ(T g ) < ρ(T  j ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    99/107

    (Stein-Rosenberg) Theorem

    If a ij  ≤ 0, for each i  = j  and a ii   > 0, for each i  = 1, 2, . . . , n , then oneand only one of the following statements holds:

    (i)   0 ≤  ρ(T g ) < ρ(T  j ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    100/107

    Two Comments on the Thoerem

    For the special case described in the theorem, we see from part

    (i), namely

    0 ≤ ρ(T g ) < ρ(T  j ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    101/107

    Two Comments on the Thoerem

    For the special case described in the theorem, we see from part

    (i), namely

    0 ≤ ρ(T g ) < ρ(T  j ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    102/107

    Two Comments on the Thoerem

    For the special case described in the theorem, we see from part

    (i), namely

    0 ≤ ρ(T g ) < ρ(T  j ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    103/107

    Two Comments on the Thoerem

    For the special case described in the theorem, we see from part

    (i), namely

    0 ≤ ρ(T g ) < ρ(T  j ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    104/107

    Eigenvalues & Eigenvectors: Convergent Matrices

    Theorem

    The following statements are equivalent.

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    105/107

    g q

    (i)   A is a convergent matrix.

    (ii)   limn →∞ An  = 0, for some natural norm.

    (iii)   limn →∞ An  = 0, for all natural norms.

    (iv)   ρ(A) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    106/107

    Let g  ∈ C [a , b ] be such that g (x ) ∈ [a , b ], for all x   in [a , b ]. Suppose, inaddition, that g  exists on (a , b ) and that a constant 0  

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    107/107

    Corrollary to the Fixed-Point Convergence Result

    If g  satisfies the hypothesis of the Fixed-Point   Theorem then

    |p n  − p | ≤   k n 

    1 − k |p 1 − p 0|

    Return to the Corollary to the Convergence Theorem for General Iterative Methods

    http://goforward/http://find/http://goback/