Top Banner
M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 1 Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL [email protected] 13th ICFA Beam Dynamics Mini Workshop “Beam-Induced Pressure Rise in Rings” BNL, Dec. 8–12, 2003 Lawrence Berkeley National Laboratory My gratitude to: A. Adelmann, G. Arduini, M. Blaskiewicz, O. Brüning, Y. H. Cai, R. Cimino, I. Collins, O. Gröbner, K. Harkay, S. Heifets, N. Hilleret, J. M. Jiménez, R. Kirby, G. Lambertson, R. Macek, K. Ohmi, M. Pivi, G. Rumolo, F. Zimmermann.
51

Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

Jan 12, 2016

Download

Documents

tobit

Lawrence Berkeley National Laboratory. Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL [email protected] 13th ICFA Beam Dynamics Mini Workshop “Beam-Induced Pressure Rise in Rings” BNL, Dec. 8–12, 2003. My gratitude to: - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 1

Issues in the Formation and Dissipationof the Electron Cloud

Miguel A. Furman, [email protected]

13th ICFA Beam Dynamics Mini Workshop“Beam-Induced Pressure Rise in Rings”

BNL, Dec. 8–12, 2003

Lawrence Berkeley National Laboratory

My gratitude to:

A. Adelmann, G. Arduini, M. Blaskiewicz, O. Brüning, Y. H. Cai, R. Cimino, I. Collins, O. Gröbner, K. Harkay, S. Heifets, N. Hilleret, J. M. Jiménez, R. Kirby,G. Lambertson, R. Macek, K. Ohmi, M. Pivi, G. Rumolo, F. Zimmermann.

Page 2: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 2

Summary• Motivation: better understand electron cloud (EC) dynamics

– in particular: effect of secondary electron process

• Tools:– simulations (mostly code POSINST – Furman and Pivi); other codes by Ohmi, Zimmermann,

Rumolo, Blaskiewicz, Adelmann,... also take SE into account

– electron detectors (APS, SPS, PSR, RHIC – Harkay, Jiménez, Macek, Browman, Zhang,...)

• EC formation– primary processes: photoelectrons, residual gas ionization, beam-particle losses

– secondary electron emission (SEY): may lead to beam-induced multipatcing (BIM)

– examples:

• sensitivity to secondary emission yield (E0) (E0=incident electron energy)

• secondary emission spectrum d/dE (E=emitted electron energy)

• EC dissipation– focus: mostly PSR, also APS and SPS: role of (0)

• Scrubbing effect and conclusions

Lawrence Berkeley National Laboratory

Page 3: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 3

Tools• Simulation

– detailed model for and d/dE– input data: measurements by R. Kirby, N. Hilleret, R. Cimino, I. Collins and

others• St. St., Cu, Al, TiN

– electron cloud is dynamical– beam is a prescribed function of time, space

• Electron detectors– RFA (Harkay and Rosenberg, NIMPR A453, 507 (2000); PRSTAB 6, 034402)

• installed at APS, PSR, BEPC, ANL IPNS RCS

• measure Iew and d/dE at chamber wall (“prompt” electrons)

– “sweeping detector” at PSR (Browman, Macek)• installed at PSR• measure EC density in the bulk (“swept” electrons)

– strip detector at SPS, COLDEX, PUs• (Jiménez et al., PAC03)• strip detector in an adjustable B field

Lawrence Berkeley National Laboratory

(ROAB003; ROPA007)

(ROAB003)

(TOPC003; TPPB054)

PAC03 refs. in blue

Page 4: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 4

EC formation: basics

• Electron charge conservation in a given chamber section– assuming no antechamber, no net end-losses

– assumes 3 primary processes: • photoelectrons

• residual gas ionization

• beam-particle losses

Assume: =beam line density Z=beam particle chargep=chamber x-section perimeter

Iew=e– flux at wall [A/m2]

=primary production rate [m–1]

per beam particleLawrence Berkeley National Laboratory

(M. Blaskiewicz)

Page 5: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 5

EC formation: primary e– rate of creation

Lawrence Berkeley National Laboratory

vb = beam speed

Yeff = eff. quantum efficiency (e– yield per )

i = ioniz. cross-section per beam particle

pvac = vac. pressure

T = temperature

eff = eff. e– yield per (beam particle)-wall collision

n'bpl = beam particle loss rate per unit length per beam particle

• Electron production rate per beam particle per unit length of beam trajectory:

Page 6: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 6

Secondary e– emission

Simulation (Furman-Pivi, PRSTAB 5, 124404):– event=one electron-wall collision– instantaneous generation of n secondaries (or absorption)– include E0 and 0 dependence– detailed phenomenological model for and d/dE

Three main components of emitted electrons:

elastics:

rediffused:

true secondaries:

NB: d/dE is different for e, r and ts!!!

Lawrence Berkeley National Laboratory

Page 7: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 7

Two sample measurements of the SEY

2.0

1.5

1.0

0.5

0.010009008007006005004003002001000

E0 [eV]

measured data (R. Kirby) model fit (Furman-Pivi)

E0ts=0E0tspk=310dtspk=1.22powts=1.813P1epk=0.5P1einf=0.07E0epk=0powe=0.9E0w=100P1rinf=0.74Ecr=40qr=1

Stainless steel sample (data R. Kirby) 2.0

1.5

1.0

0.5

0.010009008007006005004003002001000

E0 [eV]

fit (Furman-Pivi) measured data

E0tspk=276.812dtspk=1.8848powts=1.54033E0ts=0P1epk=0.496229P1einf=0.02E0epk=0powe=1E0w=60.8614P1rinf=0.2Ecr=0.0409225qr=0.104045

Copper sample (Hilleret data)

Lawrence Berkeley National Laboratory

Cu St. steel

• caveat: samples not fully conditioned!

(N. Hilleret; R. Kirby)

Page 8: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 8

PSR simulation: sensitivity to max

Lawrence Berkeley National Laboratory

• stainless steel chamber, field-free region, • dominant primary process: proton losses:

beam signal(arb. units)

0.1

1

10

100

1000

line density [nC/m]

2.0x10-6

1.81.61.41.21.00.80.60.40.20.0

runtime [s]

beam line density EC line density (deltamax=1.5) EC line density (deltamax=1.7)

PSR simulation, field-free regionnsteps=1000 or 2000, macrop=500, nkicks=1001prot. loss rate=4.44e-8, yield=100

aver. beam neutralization

max=1.5, (0)=0.36

max=1.7, (0) = 0.4

aver. electron line density vs. time

(see also RPPB035)

Page 9: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 9

PSR simulation: sensitivity to max

Lawrence Berkeley National Laboratory

beam signal(arb. units)

e– flux at the wall vs. time

101

2

3

4

5

6

789102

2

3

4

5

6

789103

2

3

4

5

6

789104

electron wall current [micro-A/cm**2]

2.0x10-6

1.81.61.41.21.00.80.60.40.20.0

tsm [s]

electron-wall current (dpk=1.5) electron-wall current (dpk=1.7) beam signal (arb. units)

PSR simulation, field-free regionnsteps=1000 or 2000, macrop=500, nkicks=1001prot. loss rate=4.44e-8, yield=100

max=1.7, (0) = 0.4

max=1.5, (0)=0.36

Page 10: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 10

PSR simulation: sensitivity to max

300

250

200

150

100

50

0

electron energy at wall [eV]

2.0x10-6

1.81.61.41.21.00.80.60.40.20.0

tsm [s]

Ek0_sm15 (dpk=1.5) Ek0_sm17 (dpk=1.7) beam signal (arb. units)

PSR simulation, field-free regionnsteps=1000 or 2000, macrop=500, nkicks=1001prot. loss rate=4.44e-8, yield=100

Lawrence Berkeley National Laboratory

electron-wall collision energy vs. time

Page 11: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 11

PSR simulation-contd.

8000

6000

4000

2000

0

beam potential [V]

2.0x10-6

1.81.61.41.21.00.80.60.40.20.0

timekick [s]

PSR simulation, field-free regionnsteps=1000 or 2000, macrop=500, nkicks=1001prot. loss rate=4.44e-8, yield=100

Lawrence Berkeley National Laboratory

beam potential well vs. time

Page 12: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 12

Sample spectrum: d/dE

• Depends on material and state of conditioning – St. St. sample, E0=300 eV, normal incidence, (Kirby-King, NIMPR A469, 1 (2001))

0.08

0.06

0.04

0.02

0.00300250200150100500

Secondary electron energy [eV]

Secondary energy spectrum St. St., E0=300 eV, normal incidence

true secondaries(area[0,50]=1.17)

backscattered(area[295,305]=0.12)

rediffused(area[50,295]=0.75)

Lawrence Berkeley National Laboratory

st. steel sample= 2.04e = 6%r = 37%ts =57%

e+r =43%

– Hilleret’s group CERN: Baglin et al, CERN-LHC-PR 472. – Other measurements: Cimino and Collins, 2003)

Cu sample= 2.05e = 1%r = 9%ts =90%

e+r =10%

Page 13: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 13

Sensitivity to relative ratios of e, r and ts: LHC

Lawrence Berkeley National Laboratory

• LHC simulation max fixed at 2.05;

• dominated by photoelectrons; electron line density vs. time (LHC arc dipole)

7

6

5

4

3

2

1

0

aver. electron line density [nC/m]

1.4x10-61.21.00.80.60.40.20.0

timeW [s]

aver. beam neutralization level

beam signal (arb. units) Copper, true sec. only Copper Stainless st.

LHC arc dipole simulation average line density

photoelectrons: outer edge only

n'e() =6.3 -4 / ,e e m max=2.05

e+r = 43%

e+r = 10%

e+r = 0

(Furman-PiviEPAC02)

max=2.05

(see also: TPPB054)

Page 14: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 14

Sensitivity to relative ratios of e, r and ts: LHC

2000

1500

1000

500

0

electron-wall collision energy [eV]

1.4x10-61.21.00.80.60.40.20.0

time_sm [s]

beam signal (arb. units) Copper Stainless st. Copper, true sec. only

LHC arc dipole simulation electron-wall collision energy

photoelectrons: outer edge only

n'e() =6.3 -4 / ,e e m max=2.05

Lawrence Berkeley National Laboratory

e–-wall collision energy vs. time (LHC arc dipole)

e+r = 43%

e+r = 10%

e+r = 0

Page 15: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 15

Sensitivity to relative ratios of e, r and ts: LHC

2.0

1.5

1.0

0.5

0.0

effective SEY

1.4x10-61.21.00.80.60.40.20.0

time_sm [s]

beam signal (arb. units) Copper Stainless Copper, true sec. only

LHC arc dipole simulation effective SEY

photoelectrons: outer edge only

n'e() =6.3 -4 / ,e e m max=2.05

Lawrence Berkeley National Laboratory

effective SEY vs. time (LHC arc dipole)

e+r = 43%

e+r = 10%

e+r = 0

Page 16: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 16

800

600

400

200

0

aver. power deposition [W/m]

1.4x10-6

1.21.00.80.60.40.20.0

time_sm [s]

LHC arc dipole simulation: electron-cloud power deposition

photoelectrons: outer edge only

n'e() =6.3 -4 / ,e e m max=2.05

( . )beam signal arb unitsCopper Stainless steel , .Copper true sec only

. 0.5< <1.2Aver power deposition in t μs

:11 /copper W m. .:152 /st st W m

, :2.1 / .copper TS only W m

Sensitivity to relative ratios of e, r and ts: LHC

Lawrence Berkeley National Laboratory

power deposition vs. time (LHC arc dipole)

e+r = 10%

800

600

400

200

01.060x10

-61.0501.0401.0301.020

time_sm [s]

e+r = 0

e+r = 43%

Page 17: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 17

EC formation: beam-induced multipacting (BIM)

Lawrence Berkeley National Laboratory

• train of short bunches, each of charge Q=NZe, separated by sb

• t = e– chamber traversal time

• b = chamber radius (or half-height if rectangular)

The parameter defines 3 regimes:

If G = 1 and eff > 1, EC can grow dramatically (O. Gröbner, ISR; 1977)

e−

e−

e−

e−

+ + + + + +

γ or p

(also for solenoidal fieldif T/2=sb/c: WOAA004)

Page 18: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 18

BIM in the APS

120

100

80

60

40

20

0

aver. electron-wall current [nA/cm

2]

35302520151050

bunch spacing sB [RF buckets]

measured simulated

APS, positron beam

Detector Current vs. Bunch Spacing

(10 bunches, 2 mA/bunch in all cases; measurements courtesy K. Harkay, ANL)

region of BIM

sB=d2/(reN), b<d<a

Lawrence Berkeley National Laboratory

(Furman, Pivi, Harkay, Rosenberg, PAC01)

time-averaged e– flux at wall vs. bunch spacing

measuredsimulated

• e+ beam, 10-bunch train, field-free region

(see also: RPPG002)

Page 19: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 19

BIM for long bunches: case of PSR• bunch length >> t

– a portion the EC phase space is in resonance with the “bounce frequency”

– “trailing edge multipacting” (Macek; Blaskiewicz, Danilov, Alexandrov,…)

Lawrence Berkeley National Laboratory

ED42Y electron detector signal 8μC/pulse beam

435 μA/cm2

(simulation input)

electron signal

measured (R. Macek) simulated (M. Pivi)

(max=2.05)

(ROAB003; RPPB035)

Page 20: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 20

BIM for long bunches: case of PSR-contd.

head

truncated bunch(nominal charge)

nominalbunch

tail

L=150 ns

• simulated “experiment” in trailing edge multipacting: — truncate bunch tail at fixed bunch charge

Lawrence Berkeley National Laboratory

• suppresses the resonance • hard to put into practice! (M. Pivi)

bunch profile

aver. e– line density

(RPPG024)

Page 21: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 21

EC dissipation - simplest analysis

Lawrence Berkeley National Laboratory

N

N’2b

If not monoenergetic and not along a straight line, then

• beam has been extracted, or gap between bunches• field-free region, or constant B field • assume monoenergetic blob of electrons• neglect space-charge forces

where K=f(angles)≈1.1–1.2

simulations show that this formulaworks to within ~20%

and = dissipation time

Page 22: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 22

EC dissipation in PSR after beam extraction

• “Sweeping e– detector”– measures electrons in the bulk ≈ 200 ns eff ≈ 0.5 if E = 2–4 eV

– since eff ≈ (0), you infer (0)

– well supported by simulations (see next slide)

(Macek and Browman)

Lawrence Berkeley National Laboratory

(RPPB035)

Page 23: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 23Lawrence Berkeley National Laboratory

EC dissipation after beam extraction: PSR simulation

0.01

0.1

1

10

100

1000

line density [nC/m]

2.0x10-61.81.61.41.21.00.80.60.40.20.0

time [s]

EC line density beam line density

exponential decay(slope=2e-07 s)

PSRdissip3

aver. neutralization level

PSR simulationfield-free section, N=5e13

p loss rate=4e-6/m, yield=100 e/pNB: primary e– rateis 100 x nominal

input SEY:

max = 1.7 (0) = 0.4

EC line density vs. time (field-free region)

slope = 200 ns

Page 24: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 24

EC dissipation after beam extraction: PSR simulation

0.1

1

10

100

1000

electron energy [eV]

2.0x10-6

1.81.61.41.21.00.80.60.40.20.0

tsm [s]

collision energy per electron absorbed energy per electron beam signal (arb. units)

PSR simulationfield-free section, N=5e13

p loss rate=4e-6/m, yield=100 e/p

PSRdissip3

e–-wall collision energy vs. time (field-free region)

Lawrence Berkeley National Laboratory

Page 25: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 25Lawrence Berkeley National Laboratory

EC dissipation after beam extraction: SPS simulation

0.01

0.1

1

10

line density [nC/m]

2.4x10-62.22.01.81.61.41.21.00.80.60.40.20.0

time [s]

EC line density beam line density

exponential decayslope=1.7e-07 [s]

SPS_P1e_4_nb72a.dir

av. beam neutralization level

SPS simulationP=1e-4 Torr, B=0.2 T, N=8e10,

rect. chamber (a,b)=(7.7,2.25) cm

NB: pvac is>> nominal

• stainless steel chamber, dipole magnet, B = 0.2 T, • dominant primary process: residual gas ionization;

slope = 170 ns

input SEY:

max = 1.9 (0) = 0.5

Page 26: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 26Lawrence Berkeley National Laboratory

EC dissipation after beam extraction: SPS simulation

0.1

1

10

100

1000

electron energy [eV]

2.4x10-6

2.22.01.81.61.41.21.00.80.60.40.20.0

tsm [s]

collision energy per electron absorbed energy per electron

SPS simulationP=1e-4 Torr, B=0.2 T, N=8e10,

rect. chamber (a,b)=(7.7,2.25) cm SPS_P1e_4_nb72a.dir

e–-wall collision energy vs. time (B-field region)

Page 27: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 27

Conditioning effects: beam scrubbing

• Decrease of SEY by e– bombardment– self-conditioning effect for a storage ring: “beam scrubbing”

• SPS ECE studies (M. Jiménez; F. Zimmermann):– 3+ years of dedicated EC studies with dedicated instrumentation

– scrubbing very efficient; favorable effects seen in:• vacuum pressure

• in-situ SEY measurements

• electron flux at wall

– e– energy distribution in good agreement with simulations above 30 eV

– TiZrV coating fully suppresses multipacting after activation

Lawrence Berkeley National Laboratory

(see also: MOPA001; TPPB054)

(TOPC003)

Page 28: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 28

Conditioning effects: beam scrubbing

• PSR “prompt” e– signal (BIM) is subject to conditioning: (R. Macek)– signal is stronger for st.st. than for TiN

– sensitive to location and N

– signal does not saturate as N increases up to ~8x1013

– conditioning: down by factor ~5 in sector 4 after few weeks (low current)

• PSR “swept” e– signal is not:– signal saturates beyond N~5x1013

– ≈ 200 ns, independent of:

• N

• location

• conditioning state

• st. st. or TiN

• Tentative conclusion: beam scrubbing conditions max but leaves (0) unchanged

Lawrence Berkeley National Laboratory

(ROAB003; RPPB035)

Page 29: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 29

Conditioning effects–contd.

• consistent with bench results for Cu found at CERN!

– the result (0)≈1 seems unconventional

– if validated, it could have a significant unfavorable effect on the EC power deposition in the LHC

• because electrons survive longer in between bunches

Lawrence Berkeley National Laboratory

(R. Cimino and I. Collins, proc. ASTEC2003, Daresbury Jan. 03)

Copper SEY (CERN)

Page 30: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 30

Conclusions

• A consistent picture of the ECE is emerging for– low-energy machines (long bunch, intense beam)

– high-energy machines (short, well separated bunches)

– methodical measurements and simulation benchmarks at APS, PSR and SPS are paying off

– some interesting surprises along the way

• Quantitative predictions are becoming more reliable– we are growing older but wiser

Lawrence Berkeley National Laboratory

Page 31: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 31

Additional material

Lawrence Berkeley National Laboratory

Page 32: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 32

Page 33: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 33

Page 34: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 34Lawrence Berkeley National Laboratory

2.5

2.0

1.5

1.0

0.5

0.010009008007006005004003002001000

E0 [eV]

delta_SS (Kirby data) delta_e delta_r delta_ts delta_er (=delta_e+delta_r) delta_tot delta_tsp

E0ts=0E0tspk=310dtspk=1.22powts=1.813P1epk=0.5P1einf=0.07E0epk=0powe=0.9E0w=100P1rinf=0.74Ecr=40qr=1

SEY for stainless steel, normal incidence(data courtesy R. Kirby, SLAC standard 304 rolled sheet,chemically etched and passivated but not conditioned)

Page 35: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 35

2.5

2.0

1.5

1.0

0.5

0.010009008007006005004003002001000

E0 [eV]

delta_e delta_r delta_ts delta_er (=delta_e+delta_r) delta_tot delta_tsp deltaCuhilleret

E0tspk=276.812dtspk=1.8848powts=1.54033E0ts=0P1epk=0.496229P1einf=0.02E0epk=0powe=1E0w=60.8614P1rinf=0.2Ecr=0.0409225qr=0.104045

SEY for Cu, normal incidence (Data courtesy N. Hilleret for chemically cleaned but not in-situ vacuum baked samples) (macro hilleret_fit_mauro)

Lawrence Berkeley National Laboratory

Page 36: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 36

2.0

1.5

1.0

0.5

0.010009008007006005004003002001000

E0 [eV]

fit (Furman-Pivi) measured data

E0tspk=276.812dtspk=1.8848powts=1.54033E0ts=0P1epk=0.496229P1einf=0.02E0epk=0powe=1E0w=60.8614P1rinf=0.2Ecr=0.0409225qr=0.104045

Copper sample (Hilleret data)

Lawrence Berkeley National Laboratory

Page 37: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 37

2.0

1.5

1.0

0.5

0.010009008007006005004003002001000

E0 [eV]

measured data (R. Kirby) model fit (Furman-Pivi)

E0ts=0E0tspk=310dtspk=1.22powts=1.813P1epk=0.5P1einf=0.07E0epk=0powe=0.9E0w=100P1rinf=0.74Ecr=40qr=1

Stainless steel sample (data R. Kirby)

Lawrence Berkeley National Laboratory

Page 38: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 38Lawrence Berkeley National Laboratory

0.08

0.06

0.04

0.02

0.00350300250200150100500

Esec [eV]

dde_300_ss_abs (Kirby data, renormalized to delta(300)=2.04489) ddeRV_totp_bin

dele=0.0916988delr=0.739591delts=1.21947deltot=2.05076int_ddeRV_tot=2.06258int_ddeRV_totp=1.83298int_ddeRV_totp_bin=2.0676delout=2.05075delpout=1.81494delpbinout=2.05076deltsout=1.21947deltspout=0.983654

maxsec=10E0=300 eVpr=0.4sige=-1 eVsigee=1.88287

pnpar[1]=1.6pnpar[2]=2pnpar[3]=1.8pnpar[4]=4.7pnpar[5]=1.8pnpar[6]=2.4pnpar[7]=1.8pnpar[8]=1.8pnpar[9]=2.3pnpar[10]=1.8

enpar[1]=3.9enpar[2]=6.2enpar[3]=13enpar[4]=8.8enpar[5]=6.25enpar[6]=2.25enpar[7]=9.2enpar[8]=5.3enpar[9]=17.8enpar[10]=10

Emission energy spectrum, E0=300 eVstainless steel, normal incidence(data courtesy R. Kirby, SLAC standard 304 rolled sheet,chemically etched and passivated but not conditioned)

NOTE: rediffused+backscattered~50%(assuming low-energy cutoff=50 eV)

Page 39: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 39

NOTE: rediffused+backscattered~5%(assuming low-energy cutoff=50 eV)

Lawrence Berkeley National Laboratory

Page 40: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 40Lawrence Berkeley National Laboratory

Page 41: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 41Lawrence Berkeley National Laboratory

Page 42: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 42Lawrence Berkeley National Laboratory

Current parameter values from fits to data

Page 43: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 43

Q: is the electron emitted spectrum Maxwellian? A: only approximately.

Fits to data, however, imply pn~1.8–5, depending on n and material

Lawrence Berkeley National Laboratory

definition of Maxwellian spectrum:

dN

d3p∝ exp−E kT( ), E =

p2

2me

⇒dNdE

∝ E1/2 exp−E kT( )≡Epn−1exp−E εn( )

⇒ pn =3 2

Page 44: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 44

2.5

2.0

1.5

1.0

0.5

0.010009008007006005004003002001000

E0 [eV]

delta_e delta_r delta_ts delta_er (=delta_e+delta_r) delta_tot delta_tsp deltaCuhilleret

E0tspk=276.812dtspk=2.1powts=1.54033E0ts=0P1epk=0P1einf=0E0epk=0powe=1E0w=60.8614P1rinf=0Ecr=0.0409225qr=0.104045

SEY for Cu, normal incidence (data courtesy N. Hilleret)

true secondaries only

(macro hilleret_fit_mauro_TS_only)

Lawrence Berkeley National Laboratory

backscattered and rediffused electronsartificially suppressed (true secondaries only)

Page 45: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 45

BIM for long bunches: case of PSR

• bunch length >> t

Lawrence Berkeley National Laboratory

ED02X electron detector signal 8μC/pulse beam

ED42Y electron detector signal 8μC/pulse beam

145 μA/cm2 435 μA/cm2

Page 46: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 46Lawrence Berkeley National Laboratory

Effect of bunch shortening (PSR simulation; M. Pivi)• truncate the bunch tail to reduce trailing-edge multipacting

truncated bunch(nominal charge)

nominal bunch

head

tail

Page 47: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 47Lawrence Berkeley National Laboratory

Effect of bunch shortening (PSR simulation; M. Pivi) – contd.

L=254 ns (nom..)

L=200 ns

L=180 ns

L=150 ns

Page 48: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 48

100

80

60

40

20

0

W/m

350x10-9

300250200150100500

time_sm [s]

curr (beam current, arb. units) avPD_sm_Cu (Copper) avPD_sm_SS (Stainless) avPD_sm_Cu_ts (Copper, true sec. only)

LHC arc dipole simulation average power deposition

time-averaged power deposition:Copper: 0.59 W/mStainless: 5.7 W/mCopper, TS: 0.01 W/m

Lawrence Berkeley National Laboratory

Page 49: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 49

2.0

1.5

1.0

0.5

0.0

nC/m

350x10-9

300250200150100500

timeW [s]

curr (beam current, arb. units) avlineden_Cu (Copper) avlineden_SS (Stainless) avlineden_Cu_ts (Copper, true sec. only)

LHC arc dipole simulation average line density

(Y'=0.05; phels. produced at outer edge only)

Lawrence Berkeley National Laboratory

Page 50: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 50

2.0

1.5

1.0

0.5

0.0

W/m

350x10-9

300250200150100500

time_sm [s]

curr (beam current, arb. units) avPD_sm_Cu (Copper) avPD_sm_Cu_ts (Copper, true sec. only)

LHC arc dipole simulationpower deposition

(Y'=0.05; phels. produced at outer edge only)

time-averaged power deposition:Copper: 0.59 W/mCopper, TS: 0.01 W/m

Lawrence Berkeley National Laboratory

(detailed view for copper only)

Page 51: Issues in the Formation and Dissipation of the Electron Cloud Miguel A. Furman, LBNL

M. A. Furman, BNL, Dec. 8-12, 2003, “Electron Cloud ...” p. 51Lawrence Berkeley National Laboratory

800

600

400

200

0

eV

350x10-9

300250200150100500

time_sm [s]

curr (beam current, arb. units) E0_sm_Cu (Copper) E0_sm_SS (Stainless) E0_sm_Cu_ts (Copper, true sec. only)

LHC arc dipole simulation electron-wall collision energy