Top Banner
Fluid Phase Equilibria 251 (2007) 8–16 Isothermal vapour–liquid equilibrium for cyclic ethers with 1-chloropentane Beatriz Giner, Ana Villares, Santiago Mart´ ın, Carlos Lafuente, F´ elix M. Royo Departamento de Qu´ ımica Org´ anica-Qu´ ımica F´ ısica, Facultad de Ciencias, Universidad de Zaragoza, Ciudad Universitaria, Zaragoza 50009, Spain Received 26 September 2006; received in revised form 25 October 2006; accepted 30 October 2006 Available online 7 November 2006 Abstract Isothermal vapour–liquid equilibrium measurements for mixtures containing cyclic ethers: tetrahydrofuran, tetrahydropyran, 1,3-dioxolane or 1,4-dioxane and 1-chloropentane at the temperatures of 298.15, 313.15 and 328.15 K are reported. The thermodynamic consistency of the VLE measurements was satisfactorily checked with the van Ness method. Activity coefficients were correlated with Wilson, NRTL, and UNIQUAC equations. The calculated excess Gibbs functions for tetrahydrofuran and tetrahydropyran are negative over the whole composition range while for 1,3-dioxolane and 1,4-dioxane the excess Gibbs functions are positive. © 2006 Elsevier B.V. All rights reserved. Keywords: Isothermal; Vapour–liquid equilibrium; Cyclic ethers; 1-Chloropentane 1. Introduction We have previously reported measurements on isobaric vapour–liquid equilibrium of mixtures containing a cyclic ether and normal and branched chloroalkanes [1–5]. Now we start the determination of vapour–liquid equilibrium of these kind of mixtures at isothermal conditions that provides more interesting information from a theoretical point of view. Here we present isothermal vapour–liquid equilibrium measurements for the mixtures formed by a cyclic ether: tetrahy- drofuran, tetrahydropyran, 1,3-dioxolane or 1,4-dioxane with 1-chloropentane at the temperatures of 298.15, 313.15 and 328.15 K. The VLE experimental results have been checked for thermodynamic consistency and the corresponding activity coef- ficients and excess Gibbs functions have been correlated with the following equations: Wilson [6], NRTL [7] and UNIQUAC [8]. To our knowledge, the VLE data for these mixtures have not been reported before. Corresponding author. Tel.: +34 976761198; fax: +34 976761202. E-mail address: [email protected] (F.M. Royo). 2. Experimental 2.1. Chemicals The liquids used were: tetrahydrofuran (better than 99.5 mol%), 1,3-dioxolane, 1,4-dioxane and 1-chloropentane (better than 99 mol%) obtained from Aldrich and tetrahydropy- ran (better than 99 mol%) provided by Acros. No additional purification has been carried out. A comparison between exper- imental densities and vapour pressures and literature values [9–14] at 298.15 K is reported in Table 1. 2.2. Methods The vapour–liquid equilibrium was studied using an all-glass dynamic recirculating type still that was equipped with a Cottrell pump. It is a commercial unit (Labodest model) built in Ger- many by Fischer. The equilibrium temperature were measured to an accuracy of ±0.01 K by means of a thermometer (model F25 with a PT100 probe) from Automatic Systems Laborato- ries, and the pressure in the still was measured with a Digiquartz 735-215A-102 pressure transducer from Paroscientific equipped with a Digiquartz 735 display unit. The uncertainty of the pres- sure measurements is ±0.005 kPa. Equipment and experimental procedure has been previously described [15,16]. The vapour 0378-3812/$ – see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.fluid.2006.10.024
9

Isothermal vapour–liquid equilibrium for cyclic ethers with 1-chloropentane

May 13, 2023

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Isothermal vapour–liquid equilibrium for cyclic ethers with 1-chloropentane

A

1me1©

K

1

vatmi

md13tfit[

b

0d

Fluid Phase Equilibria 251 (2007) 8–16

Isothermal vapour–liquid equilibrium for cyclicethers with 1-chloropentane

Beatriz Giner, Ana Villares, Santiago Martın, Carlos Lafuente, Felix M. Royo ∗Departamento de Quımica Organica-Quımica Fısica, Facultad de Ciencias, Universidad de Zaragoza,

Ciudad Universitaria, Zaragoza 50009, Spain

Received 26 September 2006; received in revised form 25 October 2006; accepted 30 October 2006Available online 7 November 2006

bstract

Isothermal vapour–liquid equilibrium measurements for mixtures containing cyclic ethers: tetrahydrofuran, tetrahydropyran, 1,3-dioxolane or,4-dioxane and 1-chloropentane at the temperatures of 298.15, 313.15 and 328.15 K are reported. The thermodynamic consistency of the VLE

easurements was satisfactorily checked with the van Ness method. Activity coefficients were correlated with Wilson, NRTL, and UNIQUAC

quations. The calculated excess Gibbs functions for tetrahydrofuran and tetrahydropyran are negative over the whole composition range while for,3-dioxolane and 1,4-dioxane the excess Gibbs functions are positive.

2006 Elsevier B.V. All rights reserved.

tane

2

2

9(rpi[

2

dpmt

eywords: Isothermal; Vapour–liquid equilibrium; Cyclic ethers; 1-Chloropen

. Introduction

We have previously reported measurements on isobaricapour–liquid equilibrium of mixtures containing a cyclic ethernd normal and branched chloroalkanes [1–5]. Now we starthe determination of vapour–liquid equilibrium of these kind of

ixtures at isothermal conditions that provides more interestingnformation from a theoretical point of view.

Here we present isothermal vapour–liquid equilibriumeasurements for the mixtures formed by a cyclic ether: tetrahy-

rofuran, tetrahydropyran, 1,3-dioxolane or 1,4-dioxane with-chloropentane at the temperatures of 298.15, 313.15 and28.15 K. The VLE experimental results have been checked forhermodynamic consistency and the corresponding activity coef-cients and excess Gibbs functions have been correlated with

he following equations: Wilson [6], NRTL [7] and UNIQUAC8].

To our knowledge, the VLE data for these mixtures have noteen reported before.

∗ Corresponding author. Tel.: +34 976761198; fax: +34 976761202.E-mail address: [email protected] (F.M. Royo).

Fr7wsp

378-3812/$ – see front matter © 2006 Elsevier B.V. All rights reserved.oi:10.1016/j.fluid.2006.10.024

. Experimental

.1. Chemicals

The liquids used were: tetrahydrofuran (better than9.5 mol%), 1,3-dioxolane, 1,4-dioxane and 1-chloropentanebetter than 99 mol%) obtained from Aldrich and tetrahydropy-an (better than 99 mol%) provided by Acros. No additionalurification has been carried out. A comparison between exper-mental densities and vapour pressures and literature values9–14] at 298.15 K is reported in Table 1.

.2. Methods

The vapour–liquid equilibrium was studied using an all-glassynamic recirculating type still that was equipped with a Cottrellump. It is a commercial unit (Labodest model) built in Ger-any by Fischer. The equilibrium temperature were measured

o an accuracy of ±0.01 K by means of a thermometer (model25 with a PT100 probe) from Automatic Systems Laborato-ies, and the pressure in the still was measured with a Digiquartz

35-215A-102 pressure transducer from Paroscientific equippedith a Digiquartz 735 display unit. The uncertainty of the pres-

ure measurements is ±0.005 kPa. Equipment and experimentalrocedure has been previously described [15,16]. The vapour

Page 2: Isothermal vapour–liquid equilibrium for cyclic ethers with 1-chloropentane

B. Giner et al. / Fluid Phase Equilibria 251 (2007) 8–16 9

Table 1Physical properties of the pure compounds, comparison of their densities and vapour pressures with literature values at 298.15 K and cross second virial coefficients

Compound T (K) ρ (kg m−3) P (Pa) V(×106 m3 mol−1)

B(×106 m3 mol−1)

B12

(×106 m3 mol−1)

Experimental Literature Experimental Literature

Tetrahydrofuran298.15 881.95 881.97 [9] 21,610 21,610 [12] 81.759 −1170 −1378313.15 865.36 40,615 83.326 −978 −1219328.15 848.68 70,615 84.964 −868 −1110

Tetrahydropyran298.15 878.81 879.16 [10] 9,560 9,536 [13] 98.011 −1179 −1383313.15 863.67 18,660 99.729 −1091 −1283328.15 848.29 33,945 101.537 −1013 −1193

1,3-Dioxolane298.15 1058.62 1058.66 [11] 13,535 13,563 [13] 69.977 −906 −1224313.15 1039.88 26,830 71.238 −837 −1135328.15 1020.86 49,010 72.566 −776 −1055

1,4-Dioxane298.15 1027.87 1027.97 [12] 4,900 4,950 [12] 85.717 −1190 −1389313.15 1010.69 10,170 87.174 −1102 −1289328.15 993.75 19,540 88.620 −1022 −1198

1298.15 877.00 877.00 [12] 4,055 4,020 [14] 121.545 −1610

pe

ss[wutv

c

3

TF

i(1lsP(

bdtmdptg

and UNIQUAC equations, the mixture nonrandomness parame-ter α12 in the NRTL equation was fixed at 0.3. Estimation of theadjustable parameters of the equations was based on minimiza-tion using the Simplex method [19] of the following objective

-Chloropentane 313.15 861.52 8,450328.15 846.33 16,400

ressures of the pure compounds at work temperatures are gath-red in Table 1.

The composition of both phases has been analyzed by mea-uring simultaneously the density and the speed of sound of theample, the procedure has been described in a previous paper5]. Densities and speed of sound of the samples were measuredith an Anton Paar DA-48 densimeter, which was calibratedsing deionized twice distilled water and dry air. The error inhe determination of the mole fraction composition of liquid andapour phases is estimated to be ±0.0004.

The proper operation of the different devices was periodicallyhecked and rearranged if necessary.

. Results and discussion

The vapour–liquid equilibrium data, P, x1, y1 are given inable 2 and the pressure-composition diagrams are shown inigs. 1–4.

The system 1,4-dioxane with 1-chloropentane shows max-mum pressure azeotropes at the temperatures of 298.15 Kx1az = 0.706, Paz = 5250 Pa), 313.15 K (x1az = 0.706, Paz =0,840 Pa) and 328.15 K (x1az = 0.730, Paz = 20,600 Pa). Theocation of the azeotropic points were made using y1 − x1 ver-us x1 diagrams to determine x1az at y1 − x1 = 0 together with

versus x1 diagrams, where P should be a maximum at x1azFig. 5).

Thermodynamic consistency of the experimental results haseen checked using van Ness method [17] described by Fre-enslund et al. [18] using a third order Legendre polynomial forhe excess Gibbs functions. This method considers that experi-

ental data are thermodynamically consistent if mean absolute

eviation between calculated and measured vapour phase com-ositions, �y, is lower than 0.01. All the studied mixtures arehermodynamically consistent and values of �P and �y areathered in Table 3.

Fee

123.729 −1497125.950 −1393

Activity coefficients were correlated with the Wilson, NRTL

ig. 1. P–x1–y1 diagram for tetrahydrofuran (1) + 1-chloropentane (2): (�, �)xperimental data at 298.15 K; (©, �) experimental data at 313.15 K; (�, �)xperimental data at 328.15 K; (—) Wilson equation.

Page 3: Isothermal vapour–liquid equilibrium for cyclic ethers with 1-chloropentane

10 B. Giner et al. / Fluid Phase Equilibria 251 (2007) 8–16

Table 2Isothermal VLE data of the binary mixtures: experimental pressure, P, liquid-phase, x1, and vapour-phase, y1 mole fractions and correlated activity coefficients γ i,and excess Gibbs function, GE

P (Pa) x1 y1 γ1 γ2 GE (J mol−1)

Tetrahydrofuran (1) + 1-chloropentane (2) at 298.15 K5,000 0.0800 0.2422 0.717 0.998 −695,665 0.1381 0.3857 0.737 0.995 −1156,615 0.2100 0.5227 0.761 0.988 −1657,750 0.2903 0.6362 0.790 0.976 −2129,325 0.3915 0.7554 0.826 0.953 −257

10,605 0.4644 0.8110 0.853 0.931 −27811,590 0.5201 0.8479 0.874 0.909 −28713,225 0.6042 0.9007 0.905 0.870 −28715,390 0.7099 0.9372 0.941 0.806 −26217,260 0.7955 0.9593 0.967 0.741 −21718,870 0.8700 0.9854 0.985 0.676 −15820,920 0.9696 0.9950 0.999 0.574 −44

Tetrahydrofuran (1) + 1-chloropentane (2) at 313.15 K10,030 0.0765 0.2268 0.731 0.999 −6611,615 0.1450 0.3727 0.755 0.994 −11913,245 0.2101 0.5001 0.779 0.988 −16215,170 0.2813 0.6087 0.805 0.977 −20217,850 0.3762 0.7116 0.840 0.957 −24320,140 0.4468 0.7825 0.865 0.937 −26222,515 0.5200 0.8346 0.891 0.911 −27224,595 0.5798 0.8705 0.912 0.886 −27128,010 0.6727 0.9195 0.942 0.840 −25432,720 0.7943 0.9516 0.974 0.765 −19835,745 0.8711 0.9749 0.989 0.708 −14139,495 0.9687 0.9948 0.999 0.628 −40

Tetrahydrofuran (1) + 1-chloropentane (2) at 328.15 K19,120 0.0765 0.2089 0.741 0.999 −6621,910 0.1479 0.3630 0.765 0.995 −12124,470 0.2101 0.4759 0.787 0.989 −16227,380 0.2745 0.5713 0.809 0.980 −19931,600 0.3645 0.6863 0.841 0.962 −23935,705 0.4418 0.7534 0.868 0.942 −26240,065 0.5200 0.8198 0.895 0.916 −27343,150 0.5724 0.8520 0.912 0.895 −27449,115 0.6686 0.9056 0.942 0.849 −25857,370 0.7962 0.9525 0.975 0.771 −19962,095 0.8665 0.9715 0.989 0.721 −14768,680 0.9700 0.9942 0.999 0.636 −39

Tetrahydropyran (1) + 1-chloropentane (2) at 298.15 K4,315 0.0597 0.1174 0.887 0.999 −194,670 0.1349 0.2396 0.908 0.997 −395,040 0.2101 0.3667 0.926 0.993 −545,360 0.2737 0.4370 0.939 0.988 −646,045 0.4007 0.5973 0.961 0.977 −746,960 0.5452 0.7512 0.979 0.961 −747,245 0.6095 0.7902 0.985 0.953 −707,590 0.6834 0.8400 0.991 0.943 −628,095 0.7501 0.8834 0.994 0.934 −538,745 0.8683 0.9483 0.998 0.918 −319,225 0.9413 0.9862 1.000 0.907 −15

Tetrahydropyran (1) + 1-chloropentane (2) at 313.15 K8,970 0.0601 0.1144 0.926 1.000 −139,645 0.1310 0.2296 0.934 0.999 −26

10,335 0.2101 0.3547 0.943 0.997 −3810,925 0.2731 0.4476 0.950 0.995 −4712,420 0.4182 0.6082 0.965 0.986 −6013,700 0.5396 0.7242 0.976 0.976 −6314,365 0.6102 0.7764 0.982 0.968 −6215,045 0.6818 0.8241 0.988 0.958 −5815,860 0.7483 0.8736 0.992 0.948 −51

Page 4: Isothermal vapour–liquid equilibrium for cyclic ethers with 1-chloropentane

B. Giner et al. / Fluid Phase Equilibria 251 (2007) 8–16 11

Table 2 (Continued )

P (Pa) x1 y1 γ1 γ2 GE (J mol−1)

17,095 0.8667 0.9403 0.998 0.925 −3318,080 0.9471 0.9822 1.000 0.907 −15

Tetrahydropyran (1) + 1-chloropentane (2) at 328.15 K17,245 0.0602 0.1051 0.897 1.000 −1918,255 0.1280 0.2209 0.910 0.998 −3719,475 0.2102 0.3352 0.924 0.995 −5620,500 0.2735 0.4170 0.935 0.991 −6722,630 0.3986 0.5709 0.954 0.981 −8224,810 0.5347 0.6971 0.971 0.966 −8726,420 0.6101 0.7677 0.980 0.955 −8327,580 0.6734 0.8162 0.985 0.945 −7829,095 0.7470 0.8674 0.991 0.932 −6731,315 0.8625 0.9375 0.997 0.908 −4333,165 0.9449 0.9770 1.000 0.889 −19

1,3-Dioxolane (1) + 1-chloropentane (2) at 298.15 K5,100 0.0602 0.2526 1.581 1.001 726,060 0.1190 0.3841 1.515 1.006 1357,400 0.2224 0.5601 1.408 1.021 2298,850 0.3393 0.6741 1.303 1.053 3069,410 0.4025 0.7215 1.252 1.077 335

10,050 0.4679 0.7656 1.204 1.110 35410,900 0.5780 0.8232 1.134 1.186 35911,275 0.6244 0.8410 1.109 1.227 35111,910 0.7249 0.8803 1.062 1.344 30912,250 0.7886 0.9021 1.038 1.442 26512,945 0.8964 0.9449 1.010 1.672 15413,240 0.9458 0.9685 1.003 1.815 87

1,3-Dioxolane (1) + 1-chloropentane (2) at 313.15 K10,420 0.0595 0.2366 1.545 1.001 7112,065 0.1132 0.3667 1.488 1.005 12814,525 0.2041 0.5237 1.399 1.017 21317,570 0.3453 0.6658 1.279 1.052 30818,890 0.4075 0.7148 1.232 1.076 33419,735 0.4547 0.7616 1.200 1.098 34821,550 0.5764 0.8180 1.126 1.175 35622,345 0.6285 0.8379 1.100 1.218 34623,655 0.7219 0.8853 1.059 1.319 30724,430 0.7832 0.9009 1.037 1.405 26625,720 0.8957 0.9455 1.009 1.620 15226,285 0.9458 0.9687 1.003 1.750 85

1,3-Dioxolane (1) + 1-chloropentane (2) at 328.15 K19,635 0.0596 0.2142 1.429 1.001 6122,190 0.1130 0.3394 1.389 1.004 11026,630 0.2058 0.5013 1.324 1.013 18531,295 0.3240 0.6430 1.247 1.035 25935,945 0.4617 0.7430 1.168 1.080 30938,760 0.5567 0.7956 1.120 1.128 31840,660 0.6255 0.8240 1.090 1.174 31143,000 0.7209 0.8723 1.053 1.260 27844,440 0.7874 0.8988 1.033 1.339 23845,595 0.8383 0.9210 1.020 1.414 19746,835 0.8959 0.9452 1.009 1.519 14047,925 0.9469 0.9693 1.002 1.634 77

1,4-Dioxane (1) + 1-chloropentane (2) at 298.15 K4,320 0.0795 0.1345 1.504 1.002 854,555 0.1635 0.2563 1.429 1.009 1644,680 0.2102 0.3010 1.390 1.016 2024,790 0.2702 0.3596 1.342 1.027 2455,080 0.3946 0.4703 1.250 1.064 3125,120 0.4700 0.5306 1.200 1.098 3355,215 0.5697 0.6024 1.140 1.161 3445,275 0.7074 0.7039 1.072 1.296 310

Page 5: Isothermal vapour–liquid equilibrium for cyclic ethers with 1-chloropentane

12 B. Giner et al. / Fluid Phase Equilibria 251 (2007) 8–16

Table 2 (Continued )

P (Pa) x1 y1 γ1 γ2 GE (J mol−1)

5,210 0.8015 0.7804 1.036 1.440 2495,175 0.8422 0.8103 1.024 1.521 2135,095 0.9196 0.8905 1.007 1.723 1244,975 0.9728 0.9595 1.001 1.911 46

1,4-Dioxane (1) + 1-chloropentane (2) at 313.15 K8,990 0.0798 0.1337 1.484 1.002 879,410 0.1596 0.2407 1.414 1.009 1639,710 0.2100 0.3001 1.371 1.016 2059,980 0.2702 0.3562 1.324 1.027 248

10,400 0.3881 0.4694 1.239 1.061 31110,570 0.4702 0.5324 1.186 1.097 33610,825 0.5697 0.5982 1.129 1.157 34310,830 0.7063 0.7120 1.066 1.282 30710,755 0.7987 0.7803 1.033 1.410 24810,695 0.8417 0.8189 1.021 1.486 20910,525 0.9196 0.8957 1.006 1.663 12010,355 0.9726 0.9620 1.001 1.820 45

1,4-Dioxane (1) + 1-chloropentane (2) at 328.15 K17,260 0.0799 0.1253 1.382 1.001 7417,990 0.1551 0.2256 1.337 1.006 13618,450 0.2098 0.2903 1.305 1.011 17718,925 0.2734 0.3568 1.269 1.020 21819,635 0.3816 0.4506 1.210 1.044 27220,020 0.4701 0.5338 1.165 1.074 29920,370 0.5691 0.6131 1.118 1.123 31020,630 0.7058 0.7114 1.063 1.230 28320,570 0.7949 0.7780 1.034 1.338 23420,455 0.8412 0.8264 1.021 1.412 198

f[

F

tp

TR�

S

T

T

1

1

p

P

20,100 0.9198 0.899919,810 0.9724 0.9640

unction in terms of experimental and calculated pressure values20]:

=n∑(

Pexptl − Pcal

Pexptl

)2

(1)

i=1 i

he calculated pressure is obtained taken into account the vapour-hase non-ideality and the variation of the Gibbs function of the

able 3esults of the thermodynamic consistency test; average deviation in pressureP and average deviation in vapour phase composition �y

ystem T (K) �P (Pa) �y

etrahydrofuran298.15 17 0.0036313.15 12 0.0035328.15 29 0.0020

etrahydropyran298.15 26 0.0064313.15 28 0.0029328.15 63 0.0032

,3-Dioxolane298.15 25 0.0056313.15 31 0.0069328.15 39 0.0044

,4-Dioxane + 1-chloropentane298.15 13 0.0059313.15 22 0.0053328.15 17 0.0028

δ

wtp

tcl

[[uumT

win

1.006 1.579 1151.001 1.733 43

ure compounds with pressure as follows:

cal =2∑

i=1

xiγipoi exp

[(V o

i − Bii)(P − poi ) − (1 − yi)2Pδij

RT

]

(2)

ij = 2Bij − Bii − Bjj (3)

here xi and yi are the liquid and vapour phase composi-ions, γ i are the activity coefficients, P is the total pressure,oi are the vapour-pressures of the pure compounds, Bii are

he second virial coefficients, Bij is the cross second virialoefficient and V o

i are the molar volumes of the saturatediquids.

The second virial coefficients were taken from TRC tables21] for tetrahydrofuran or calculated using the PRSV-EoS22,23], the cross second virial coefficients were estimatedsing a suitable mixing rule and the molar volumes of sat-rated pure liquids were obtained from our own densityeasurements. The values of all these properties are given inable 1.

The adjustable parameters, A12 and A21 of the equations alongith the average deviation in P, �P, and the average deviation

n y, �y, are listed in Table 4. The correlated parameters doot show any temperature dependence. As one can see in this

Page 6: Isothermal vapour–liquid equilibrium for cyclic ethers with 1-chloropentane

B. Giner et al. / Fluid Phase Equilibria 251 (2007) 8–16 13

Fee

tw

egtT

tctpFTtnua

1fvaa

it

Fee

dcacsttsdctdtfiamcta[ten

ig. 2. P–x1–y1 diagram for tetrahydropyran (1) + 1-chloropentane (2): (�, �)xperimental data at 298.15 K; (©, �) experimental data at 313.15 K; (�, �)xperimental data at 328.15 K; (—) Wilson equation.

able all the equations correlated the activity coefficients quiteell.The activity coefficients together with the corresponding

xcess Gibbs function calculated using the Wilson equation areathered in Table 2, the results obtained with the rest of the equa-ions are very similar. The calculated excess Gibbs functions at= 298.15 K are plotted in Fig. 5.The excess Gibbs functions for the mixtures containing

etrahydrofuran and tetrahydropyran are negative over the wholeomposition range being the GE values for the mixture withetrahydrofuran appreciably higher in absolute value. The tem-erature behaviour of excess Gibbs functions is quite complex.or tetrahydrofuran the minimum GE values are shown at= 298.15 K and at the temperatures of 313.15 and 328.5 K

he excess Gibbs functions decreases in absolute value and areearly the same while for tetrahydropyran the minimum GE val-es are reached at 328.15 K and the lowest ones in absolute valuere shown at T = 313.15 K.

The behaviour of the mixtures containing 1,3-dioxolane and,4-dioxane are very similar showing positive excess Gibbsunctions, although for the mixture with 1,3-dioxolane the GE

alues are slightly higher. For both cyclic diethers the GE valuest the temperatures 298.15 and 313.15 K are nearly equal while

t T = 328.15 K the excess Gibbs function decrease.

It can be pointed out that the excess Gibbs functions strongly influenced by the structure of cyclic ether, forhe cyclic monoethers GE is negative while for the cyclic

uenc

ig. 3. P–x1–y1 diagram for 1,3-dioxolane (1) + 1-chloropentane (2): (�, �)xperimental data at 298.15 K; (©, �) experimental data at 313.15 K; (�, �)xperimental data at 328.15 K; (—) Wilson equation.

iethers GE is positive. The excess Gibbs functions observedan be explained taking into account three factors: (i)

positive contribution coming from the weakness of thehloroalkane–chloroalkane interactions, this contribution isimilar for all the systems; (ii) another positive contribution dueo the disruption of the ether–ether interactions, these interac-ions in the pure ethers become progressively stronger in theequence [11,24–26]: tetrahydropyran < tetrahydrofuran < 1,4-ioxane < 1,3-dioxolane, so the magnitude of the positiveontribution increases following the same sequence. That is,he GE values for the mixtures containing 1,4-dioxane and 1,3-ioxolane must be higher than those for the mixtures containingetrahydropyran and tetrahydrofuran as the results show; (iii)nally, a negative contribution due to the Cl–O specific inter-ction, the heteroassociation has major importance for cycliconoethers than for cyclic diethers [26,27], and between the

yclic monoethers it is well known that the donor ability ofhe oxygen atom to interact with the chlorine atom that acts ascceptor is bigger for tetrahydrofuran than for tetrahydropyran16,28,29]. This negative contribution for the mixtures con-aining tetrahydrofuran and tetrahydropyran is large enough toxceed the above mentioned positive contributions and lead toegative excess Gibbs functions, being the absolute GE val-

es for tetrahydropyran lower than for tetrahydrofuran. Thexistence of this specific interaction is also supported by theegative HE values showed for the mixture tetrahydrofuran + 1-hloropentane [30].
Page 7: Isothermal vapour–liquid equilibrium for cyclic ethers with 1-chloropentane

14 B. Giner et al. / Fluid Phase Equilibria 251 (2007) 8–16

Table 4Correlation parameters and average deviation in pressure, �T, and average deviation in vapour phase composition, �y

Equation A12 (J mol−1) A21 (J mol−1) �P (Pa) �y

Tetrahydrofuran (1) + 1-chloropentane (2) at 298.15 KWilsona −773.71 48.31 20 0.0033NRTLb 2315.09 −2702.57 34 0.0030UNIQUACc 444.47 −720.47 19 0.0034

Tetrahydrofuran (1) + 1-chloropentane (2) at 313.15 KWilson −401.53 −453.08 25 0.0032NRTL 1950.56 −2465.03 26 0.0032UNIQUAC 52.67 −364.96 26 0.0032

Tetrahydrofuran (1) + 1-chloropentane (2) at 328.15 KWilson −456.40 −373.87 29 0.0020NRTL 2375.13 −2744.20 27 0.0020UNIQUAC 117.27 −426.27 29 0.0020

Tetrahydropyran (1) + 1-chloropentane (2) at 298.15 KWilson 1231.21 −1406.65 24 0.0066NRTL −1357.41 1264.26 24 0.0065UNIQUAC −682.34 682.34 26 0.0065

Tetrahydropyran (1) + 1-chloropentane (2) at 313.15 KWilson −587.12 587.12 35 0.0031NRTL 1179.88 −1261.29 37 0.0030UNIQUAC 649.98 −649.98 35 0.0031

Tetrahydropyran (1) + 1-chloropentane (2) at 328.15 KWilson 158.79 −487.75 71 0.0027NRTL 307.76 −627.64 71 0.0027UNIQUAC −126.54 19.74 71 0.0028

1,3-Dioxolane (1) + 1-chloropentane (2) at 298.15 KWilson 1370.81 359.88 25 0.0057NRTL 2149.7 −423.8 24 0.0059UNIQUAC −224.01 976.81 25 0.0058

1,3-Dioxolane (1) + 1-chloropentane (2) at 313.15 KWilson 1423.10 278.93 42 0.0069NRTL 2134.67 −436.54 45 0.0071UNIQUAC −271.92 1035.24 44 0.0070

1,3-Dioxolane (1) + 1-chloropentane (2) at 328.15 KWilson 1194.43 401.89 41 0.0042NRTL 2468.04 −833.35 38 0.0043UNIQUAC −174.35 851.1 40 0.0042

1,4-Dioxane (1) + 1-chloropentane (2) at 298.15 KWilson 619.57 1146.01 15 0.0049NRTL 2577.79 −776.71 14 0.0050UNIQUAC 432.22 68.07 14 0.0049

1,4-Dioxane (1) + 1-chloropentane (2) at 298.15 KWilson 724.46 977.85 24 0.0038NRTL 2421.41 −690.97 24 0.0041UNIQUAC 299.53 194.08 24 0.0040

1,4-Dioxane (1) + 1-chloropentane (2) at 298.15 KWilson 383.05 1331.55 17 0.0026NRTL 2955.86 −1178.97 16 0.0027UNIQUAC 639.69 −158.82 17 0.0026

a Aij = λij − λii.b Aij = gij − gii.c Aij = uij − uii.

Page 8: Isothermal vapour–liquid equilibrium for cyclic ethers with 1-chloropentane

B. Giner et al. / Fluid Phase Eq

Fig. 4. P–x1–y1 diagram for 1,4-dioxane (1) + 1-chloropentane (2): (�, �)experimental data at 298.15 K; (©, �) experimental data at 313.15 K; (�, �)experimental data at 328.15 K; (—) Wilson equation.

Fig. 5. Excess Gibbs functions, GE, for cyclic ethers (1) + 1-chloropentane (2)at 298.15 K: tetrahydrofuran (—); tetrahydropyran (– – –); 1,3-dioxolane (- - -);1,4-dioxane (· · ·).

LA

BBgGp

PRTuV

xy

γ

λ

ρ

Sace

A

Gct

R

[

[

[

[[

uilibria 251 (2007) 8–16 15

ist of symbols12, A21 adjustable parameters for VLE correlation equations

(J mol−1)ii second virial coefficient of component i (m3 mol−1)ij cross second virial coefficient cm3 mol−1)ij − gii parameters for NRTL equation (J mol−1)E excess Gibbs function (J mol−1)oi vapour pressure of component i (Pa)

total pressure (Pa)molar gas constant (= 8.31447 J mol−1 K−1)temperature (K)

ij − uii parameters for UNIQUAC equation (J mol−1)oi molar volume of component i (m3 mol−1)i mole fraction of component i in the liquid phasei mole fraction of component i in the vapour phase

reek letters12 nonrandomness parameter in the NRTL equationi activity coefficient of component i

average deviationij − λii parameters for Wilson equation (J mol−1)

density (kg m−3)

ubscriptsz azeotropical calculatedxptl experimental

cknowledgements

Authors thank for financial assistance from Diputacioneneral de Aragon. B. Giner wishes to thank Ministerio de Edu-

acion y Ciencia for the F.P.I. grant and A. Villares wishes tohank Ministerio de Educacion y Ciencia for the F.P.U. grant.

eferences

[1] A. Reyes, M. Haro, I. Gascon, H. Artigas, C. Lafuente, J. Chem. Eng. Data48 (2003) 887–891.

[2] B. Giner, A. Reyes, M. Haro, S. Martın, F.M. Royo, Phys. Chem. Liq. 42(2004) 173–183.

[3] B. Giner, H. Artigas, I. Gascon, P. Cea, F.M. Royo, Phys. Chem. Liq. 43(2005) 299–307.

[4] B. Giner, M.C. Lopez, P. Cea, C. Lafuente, F.M. Royo, Fluid Phase Equi-libria 232 (2005) 50–56.

[5] B. Giner, S. Martın, M. Haro, H. Artigas, C. Lafuente, Ind. Eng. Chem.Res. 44 (2005) 6981–6988.

[6] G.M. Wilson, J. Am. Chem. Soc. 86 (1964) 127–130.[7] H. Renon, J.M. Prausnitz, AIChE J. 14 (1968) 135–144.[8] D.S. Abrams, J.M. Prausnitz, AIChE J. 21 (1975) 116–128.[9] O. Kiyohara, P.J. D’Arcy, G. Benson, Can. J. Chem. 57 (1979) 1006–1010.10] A. Inglese, J.P.E. Grolier, E. Wilhelm, J. Chem. Eng. Data 28 (1983)

124–127.11] P. Brocos, E. Calvo, A. Amigo, R. Bravo, M. Pintos, A.H. Roux, G. Roux-

Desgranges, J. Chem. Eng. Data 43 (1998) 112–116.12] J.A. Riddick, W.B. Bunger, T.K. Sakano, Organic Solvents. Physical Prop-

erties and Methods of Purification (Techniques of Chemistry, vol. II), 3rded., Wiley-Interscience, New York, 1986.

13] S. Cabani, G. Conti, L. Lepori, Trans. Faraday Soc. 67 (1971) 1943–1950.14] H.I. Paul, J. Krug, B. Gutsche, H. Knapp, J. Chem. Eng. Data 31 (1986)

448–456.

Page 9: Isothermal vapour–liquid equilibrium for cyclic ethers with 1-chloropentane

1 se Eq

[

[

[[

[[

[

[[[

[

[

6 B. Giner et al. / Fluid Pha

15] H. Artigas, C. Lafuente, M.C. Lopez, F.M. Royo, J.S. Urieta, J. Chem. Eng.Data 39 (1994) 729–732.

16] B. Giner, S. Martın, H. Artigas, M.C. Lopez, C. Lafuente, J. Phys. Chem.B 110 (2006) 17683–17690.

17] H.C. Van Ness, S.M. Byer, R.E. Gibbs, AIChE J. 19 (1973) 238–244.18] A. Fredenslund, J. Gmehling, P. Rasmussen, Vapor–Liquid Equilibria

Using UNIFAC, Elsevier, Amsterdam, 1977.19] J.A. Nelder, R.A. Mead, Comput. J. 7 (1965) 308–313.

20] N. Silverman, D.P. Tassios, Ind. Eng. Chem. Process Des. Dev. 23 (1984)

586–589.21] TRC Thermodynamic Tables-Non-Hydrocarbons, Selected Values of Prop-

erties of Chemical Compounds; Thermodynamic Research Center, TexasA&M University College Station, TX, 1973.

[[[[

uilibria 251 (2007) 8–16

22] D.Y. Peng, D.B. Robinson, Ind. Eng. Chem. Fund. 15 (1976) 59–64.23] R. Stryjek, J.H. Vera, Can. J. Chem. Eng. 64 (1986) 323–333.24] M.D. Guillen, C. Gutierrez Losa, J. Chem. Thermodyn. 10 (1978) 567–

576.25] I. Gascon, H. Artigas, S. Martın, P. Cea, C. Lafuente, J. Chem. Thermodyn.

34 (2002) 1351–1361.26] J.A. Gonzalez, I. Mozo, I. Garcıa de la Fuente, J.C. Cobos, V.A. Durov,

Fluid Phase Equilibria 245 (2006) 168–184.

27] T.M. Letcher, P.U. Govender, J. Chem. Eng. Data 40 (1995) 1097–1100.28] S. Searles, M. Tamres, J. Am. Chem. Soc. 73 (1951) 3704–3706.29] E.M. Arnett, C.Y. Wu, J. Am. Chem. Soc. 84 (1962) 1684–1688.30] J. Biros, A. Zivny, J. Pouchly, J. Chim. Phys. Phys.-Chim. Biol. 72 (1975)

385–389.