Top Banner
IR2184 ( 4 )( S ) & (PbF) Typical Connection HALF-BRIDGE DRIVER Features Floating channel designed for bootstrap operation Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout for both channels 3.3V and 5V input logic compatible Matched propagation delay for both channels Logic and power ground +/- 5V offset. Lower di/dt gate driver for better noise immunity Output source/sink current capability 1.4A/1.8A Also available LEAD-FREE (PbF) IR21844 IR2184 www.irf.com 1 Data Sheet No. PD60174 revG (Refer to Lead Assignments for correct configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. Packages 14-Lead PDIP IR21844 8-Lead SOIC IR2184S 14-Lead SOIC IR21844S 8-Lead PDIP IR2184 Description The IR2184(4)(S) are high voltage, high speed power MOSFET and IGBT drivers with dependent high and low side referenced output channels. Pro- prietary HVIC and latch immune CMOS technologies enable rugge- dized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. IR2181/IR2183/IR2184 Feature Comparison
24
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ir2184

IR2184(4)(S) & (PbF)

Typical Connection

HALF-BRIDGE DRIVERFeatures• Floating channel designed for bootstrap operation

Fully operational to +600VTolerant to negative transient voltagedV/dt immune

• Gate drive supply range from 10 to 20V

• Undervoltage lockout for both channels

• 3.3V and 5V input logic compatible

• Matched propagation delay for both channels

• Logic and power ground +/- 5V offset.

• Lower di/dt gate driver for better noise immunity

• Output source/sink current capability 1.4A/1.8A

• Also available LEAD-FREE (PbF)

IR21844

IR2184

www.irf.com 1

Data Sheet No. PD60174 revG

(Refer to Lead Assignments for correct

configuration). This/These diagram(s) show

electrical connections only. Please refer to

our Application Notes and DesignTips for

proper circuit board layout.

Packages

14-Lead PDIP

IR21844

8-Lead SOIC

IR2184S14-Lead SOIC

IR21844S

8-Lead PDIP

IR2184

DescriptionThe IR2184(4)(S) are high voltage,high speed power MOSFET and IGBTdrivers with dependent high and lowside referenced output channels. Pro-prietary HVIC and latch immuneCMOS technologies enable rugge-dized monolithic construction. Thelogic input is compatible with standardCMOS or LSTTL output, down to 3.3Vlogic. The output drivers feature ahigh pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can beused to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600volts.

! "#"

"!$" %! &''

*797

*797:& "

&79&**

*79; "<

*79;:& ="

$>:?< &79&**

*79: "<

*79::& ="

$>:?< &9&*@

IR2181/IR2183/IR2184 Feature Comparison

Page 2: ir2184

IR2184(4)(S) & (PbF)

2 www.irf.com

Symbol Definition Min. Max. Units

VB High side floating absolute voltage -0.3 625

VS High side floating supply offset voltage VB - 25 VB + 0.3

VHO High side floating output voltage VS - 0.3 VB + 0.3

VCC Low side and logic fixed supply voltage -0.3 25

VLO Low side output voltage -0.3 VCC + 0.3

DT Programmable dead-time pin voltage (IR21844 only) VSS - 0.3 VCC + 0.3

VIN Logic input voltage (IN & SD) VSS - 0.3 VSS + 10

VSS Logic ground (IR21844 only) VCC - 25 VCC + 0.3

dVS/dt Allowable offset supply voltage transient — 50 V/ns

PD Package power dissipation @ TA ≤ +25°C (8-lead PDIP) — 1.0

(8-lead SOIC) — 0.625

(14-lead PDIP) — 1.6

(14-lead SOIC) — 1.0

RthJA Thermal resistance, junction to ambient (8-lead PDIP) — 125

(8-lead SOIC) — 200

(14-lead PDIP) — 75

(14-lead SOIC) — 120

TJ Junction temperature — 150

TS Storage temperature -50 150

TL Lead temperature (soldering, 10 seconds) — 300

V

°C

°C/W

W

Absolute Maximum RatingsAbsolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parametersare absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under boardmounted and still air conditions.

Recommended Operating ConditionsThe input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within therecommended conditions. The VS and VSS offset rating are tested with all supplies biased at 15V differential.

Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design TipDT97-3 for more details).Note 2: IN and SD are internally clamped with a 5.2V zener diode.

VB High side floating supply absolute voltage VS + 10 VS + 20

VS High side floating supply offset voltage Note 1 600

VHO High side floating output voltage VS VB

VCC Low side and logic fixed supply voltage 10 20

VLO Low side output voltage 0 VCC

VIN Logic input voltage (IN & SD) VSS VSS + 5

DT Programmable dead-time pin voltage (IR21844 only) VSS VCC

VSS Logic ground (IR21844 only) -5 5

TA Ambient temperature -40 125 °C

V

Symbol Definition Min. Max. Units

Page 3: ir2184

IR2184(4)(S) & (PbF)

www.irf.com 3

Dynamic Electrical CharacteristicsVBIAS (VCC, VBS) = 15V, VSS = COM, CL = 1000 pF, TA = 25°C, DT = VSS unless otherwise specified.

Symbol Definition Min. Typ. Max. Units Test Conditions

ton Turn-on propagation delay — 680 900 VS = 0V

toff Turn-off propagation delay — 270 400 VS = 0V or 600V

tsd Shut-down propagation delay — 180 270

MTon Delay matching, HS & LS turn-on — 0 90

MToff Delay matching, HS & LS turn-off — 0 40

tr Turn-on rise time — 40 60 VS = 0V

tf Turn-off fall time — 20 35 VS = 0V

DT Deadtime: LO turn-off to HO turn-on(DTLO-HO) & 280 400 520 RDT= 0

HO turn-off to LO turn-on (DTHO-LO) 4 5 6 µsec RDT = 200k

MDT Deadtime matching = DTLO - HO - DTHO-LO — 0 50 RDT=0

— 0 600 RDT = 200k

nsec

nsec

Static Electrical CharacteristicsVBIAS (VCC, VBS) = 15V, VSS = COM, DT= VSS and TA = 25°C unless otherwise specified. The VIL, VIH and IINparameters are referenced to VSS /COM and are applicable to the respective input leads: IN and SD. The VO, IO and Ron

parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

Symbol Definition Min. Typ. Max. Units Test Conditions

VIH Logic “1” input voltage for HO & logic “0” for LO 2.7 — — VCC = 10V to 20V

VIL Logic “0” input voltage for HO & logic “1” for LO — — 0.8 VCC = 10V to 20V

VSD,TH+ SD input positive going threshold 2.7 — — VCC = 10V to 20V

VSD,TH- SD input negative going threshold — — 0.8 VCC = 10V to 20V

VOH High level output voltage, VBIAS - VO — — 1.2 IO = 0A

VOL Low level output voltage, VO — — 0.1 IO = 0A

ILK Offset supply leakage current — — 50 VB = VS = 600V

IQBS Quiescent VBS supply current 20 60 150 VIN = 0V or 5V

IQCC Quiescent VCC supply current 0.4 1.0 1.6 mA VIN = 0V or 5V

IIN+ Logic “1” input bias current — 25 60 IN = 5V, SD = 0V

IIN- Logic “0” input bias current — — 1.0 IN = 0V, SD = 5V

VCCUV+ VCC and VBS supply undervoltage positive going 8.0 8.9 9.8

VBSUV+ threshold

VCCUV- VCC and VBS supply undervoltage negative going 7.4 8.2 9.0

VBSUV- threshold

VCCUVH Hysteresis 0.3 0.7 —

VBSUVH

IO+ Output high short circuit pulsed current 1.4 1.9 — VO = 0V,

PW ≤ 10 µs

IO- Output low short circuit pulsed current 1.8 2.3 — VO = 15V,

PW ≤ 10 µs

V

µA

µA

V

A

Page 4: ir2184

IR2184(4)(S) & (PbF)

4 www.irf.com

Functional Block Diagrams

2184

SD

UVDETECT

DELAY

IN VS

HO

VB

PULSEFILTER

HVLEVEL

SHIFTER

R

R

S

Q

UVDETECT

PULSEGENERATOR

VSS/COMLEVELSHIFT

VSS/COMLEVELSHIFT

+5V

DEADTIME

COM

LO

VCC

21844

SD

UVDETECT

DELAY

IN

DT

VSS

VS

HO

VB

PULSEFILTERHV

LEVELSHIFTER

R

R

S

Q

UVDETECT

PULSEGENERATOR

VSS/COMLEVELSHIFT

VSS/COMLEVELSHIFT

+5V

DEADTIME

COM

LO

VCC

Page 5: ir2184

IR2184(4)(S) & (PbF)

www.irf.com 5

14-Lead PDIP 14-Lead SOIC

IR21844 IR21844S

Lead Assignments

8-Lead PDIP 8-Lead SOIC

Lead DefinitionsSymbol Description

IN Logic input for high and low side gate driver outputs (HO and LO), in phase with HO (referenced to COM

for IR2184 and VSS for IR21844)

SD Logic input for shutdown (referenced to COM for IR2184 and VSS for IR21844)

DT Programmable dead-time lead, referenced to VSS. (IR21844 only)

VSS Logic Ground (21844 only)

VB High side floating supply

HO High side gate drive output

VS High side floating supply return

VCC Low side and logic fixed supply

LO Low side gate drive output

COM Low side return

IR2184 IR2184S

1

2

3

4

8

7

6

5

IN

SD

COM

LO

VB

HO

VS

VCC

1

2

3

4

8

7

6

5

IN

SD

COM

LO

VB

HO

VS

VCC

1

2

3

4

5

6

7

14

13

12

11

10

9

8

IN

SD

VSS

DT

COM

LO

VCC

VB

HO

VS

1

2

3

4

5

6

7

14

13

12

11

10

9

8

IN

SD

VSS

DT

COM

LO

VCC

VB

HO

VS

Page 6: ir2184

IR2184(4)(S) & (PbF)

6 www.irf.com

Figure 1. Input/Output Timing Diagram Figure 2. Switching Time Waveform Definitions

^_

'''

<` <`

q` q`

7` 7`

^_

Figure 5. Delay Matching Waveform Definitions

<` <`

7`

q`

^_

^_

Figure 3. Shutdown Waveform Definitions

!

<`

q`

Figure 4. Deadtime Waveform Definitions

<` <`

q`

7`

q`

7`

Page 7: ir2184

IR2184(4)(S) & (PbF)

www.irf.com 7

400

600

800

1000

1200

1400

-50 -25 0 25 50 75 100 125

Temperature (oC)

Turn

-on

Prop

agat

ion D

elay

(ns)

Typ.

Max.

Figure 4A. Turn-on Propagation Delay vs. Temperature

400

600

800

1000

1200

1400

10 12 14 16 18 20

Supply Voltage (V)

Turn

-on

Prop

agat

ion D

elay

(ns)

Figure4B. Turn-on Propagation Delay vs. Supply Voltage

Typ.

Max.

100

200

300

400

500

600

700

-50 -25 0 25 50 75 100 125

Temperature (oC)

Turn

-off

Prop

agat

ion D

elay

(ns)

Typ.

Max.

Figure 5A. Turn-off Propagation Delay vs. Temperature

100

200

300

400

500

600

700

10 12 14 16 18 20

Supply Voltage (V)

Turn

-off

Prop

agat

ion D

elay

(ns)

Figure 5B. Turn-off Propagation Delay vs. Supply Voltage

Typ.

Max.

Page 8: ir2184

IR2184(4)(S) & (PbF)

8 www.irf.com

0

100

200

300

400

500

-50 -25 0 25 50 75 100 125

Temperature (oC)

SD P

ropa

gatio

n De

lay (n

s)

Typ.

Max.

Figure 6A. SD Propagation Delay vs. Temperature

0

100

200

300

400

500

10 12 14 16 18 20

Supply Voltage (V)

SD P

ropa

gatio

n De

lay (n

s)

Figure 6B. SD Propagation Delayvs. Supply Voltage

Max.

Typ.

0

20

40

60

80

100

120

-50 -25 0 25 50 75 100 125

Temperature (oC)

Turn

-on

Rise

Tim

e (n

s)

Typ.

Max.

Figure 7A. Turn-on Rise Time vs. Temperature

0

20

40

60

80

100

120

10 12 14 16 18 20

Supply Voltage (V)

Turn

-on

Rise

Tim

e (n

s)

Figure 7B. Turn-on Rise Time vs. Supply Voltage

Typ.

Max.

Page 9: ir2184

IR2184(4)(S) & (PbF)

www.irf.com 9

0

20

40

60

80

-50 -25 0 25 50 75 100 125

Temperature (oC)

Turn

-off

Fall T

ime

(ns)

Typ

Max.

Figure 8A. Turn-off Fall Time vs. Temperature

0

20

40

60

80

10 12 14 16 18 20

Supply Voltage (V)

Turn

-off

Fall T

ime

(ns)

Figure 8B. Turn-off Fall Time vs. Supply Voltage

Typ.

Max.

100

300

500

700

900

1100

-50 -25 0 25 50 75 100 125

Temperature (oC)

Dead

time

(ns)

Min.

Figure 9A. Deadtime vs. Temperature

Typ.

Max.

100

300

500

700

900

1100

10 12 14 16 18 20

Supply Voltage (v)

Dead

uime

(ns)

Figure 9B. Deadtime vs. Supply Voltage

Typ.

Max.

Min.

Page 10: ir2184

IR2184(4)(S) & (PbF)

10 www.irf.com

0

1

2

3

4

5

6

7

0 50 100 150 200

RDT (KΗ)

Dead

time

( Ηs)

Figure 9C. Deadtime vs. RDT

Typ.

Max.

Min.

0

1

2

3

4

5

6

-50 -25 0 25 50 75 100 125

Temperature (oC)

Logic

"1" I

nput

Volt

age

(V)

Min.

Figure 10A. Logic "1" Input Voltage vs. Temperature

0

1

2

3

4

5

6

10 12 14 16 18 20

Supply Voltage (V)

Logic

"1" I

nput

Volt

age

(V)

Figure 10B. Logic "1" Input Voltage vs. Supply Voltage

Min.

0

1

2

3

4

5

6

-50 -25 0 25 50 75 100 125

Temperature (oC)

Logic

"0" I

nput

Volt

age

(V)

Max.

Figure 11A. Logic "0" Input Voltage vs. Temperature

Page 11: ir2184

IR2184(4)(S) & (PbF)

www.irf.com 11

0

1

2

3

4

5

6

10 12 14 16 18 20

Supply Voltage (V)

Logic

"0" I

nput

Volt

age

(V)

Figure 11B. Logic "0" Input Voltage vs. Supply Voltage

Max.

0

1

2

3

4

5

6

-50 -25 0 25 50 75 100 125

Temperature (oC)

SD In

put P

ositiv

e G

oing

Thre

shold

(V)

Min.

Figure 12A. SD Input Positive Going Threshold vs. Temperature

0

1

2

3

4

5

6

10 12 14 16 18 20

Supply Voltage (V)

SD In

put P

ositiv

e G

oing

Thre

shold

(V)

Figure 12B. SD Input Positive Going Threshold vs. Supply Voltage

Min.

0

1

2

3

4

5

-50 -25 0 25 50 75 100 125

Temperature (oC)

SD In

put N

egat

ive G

oing

Thre

shold

(V)

Max.

Figure 13A. SD Input Negative Going Threshold vs. Temperature

Page 12: ir2184

IR2184(4)(S) & (PbF)

12 www.irf.com

0

1

2

3

4

5

10 12 14 16 18 20

Supply Voltage (V)

SD In

put N

egat

ive G

oing

Thre

shold

(V)

Figure 13B. SD Input Negative Going Threshold vs. Supply Voltage

Max.

0

1

2

3

4

5

-50 -25 0 25 50 75 100 125

Temperature (oC)

High

Lev

el O

utpu

t (V)

Max.

Figure 14A. High Level Output vs. Temperature

0

1

2

3

4

5

10 12 14 16 18 20

Supply Voltage (V)

High

Lev

el O

utpu

t (V)

Figure 14B. High Level Output vs. Supply Voltage

Max.

0.0

0.1

0.2

0.3

0.4

0.5

-50 -25 0 25 50 75 100 125

Temperature (oC)

Low

Lev

el O

utpu

t (V)

Max.

Figure 15A. Low Level Output vs. Temperature

Page 13: ir2184

IR2184(4)(S) & (PbF)

www.irf.com 13

0.0

0.1

0.2

0.3

0.4

0.5

10 12 14 16 18 20

Supply Voltage (V)

Low

Leve

l Out

put (

V)

Figure 15B. Low Level Output vs. Supply Voltage

Max.

0

100

200

300

400

500

-50 -25 0 25 50 75 100 125

Temperature (oC)

Offs

et S

upply

Lea

kage

Cur

rent

(ΗA

)Max.

Figure 16A. Offset Supply Leakage Current vs. Temperature

0

100

200

300

400

500

100 200 300 400 500 600

VB Boost Voltage (V)

Offs

et S

upply

Lea

kage

Cur

rent

(ΗA

)

Figure 16B. Offset Supply Leakage Current vs.VB Boost Voltage

Max.

0

50

100

150

200

250

-50 -25 0 25 50 75 100 125

Temperature (oC)

VBS

Sup

ply C

urre

nt (

ΗA)

Min.

Figure 17A. VBS Supply Current vs. Temperature

Typ.

Max.

Page 14: ir2184

IR2184(4)(S) & (PbF)

14 www.irf.com

0

50

100

150

200

250

10 12 14 16 18 20

VBS Floating Supply Voltage (V)

VBS

Sup

ply C

urre

nt (

ΗA)

Figure 17B. VBS Supply Current vs. VBS Floating Supply Voltage

Typ.

Max.

Min.

0

1

2

3

4

5

-50 -25 0 25 50 75 100 125

Temperature (oC)

VCC

Sup

ply C

urre

nt (m

A)

Min.

Figure 18A. VCC Supply Current vs. Temperature

Typ.

Max.

0

1

2

3

4

5

10 12 14 16 18 20

VCC Supply Voltage (V)

VCC

Sup

ply C

urre

nt (m

A)

Figure 18B. VCC Supply Current vs. VCC Supply Voltage

Typ.

Max.

Min.

0

20

40

60

80

100

120

-50 -25 0 25 50 75 100 125

Temperature (oC)

Logic

"1" I

nput

Bias

Cur

rent

(ΗA

)

Figure 19A. Logic "1" Input Bias Current vs. Temperature

Typ.

Max.

Page 15: ir2184

IR2184(4)(S) & (PbF)

www.irf.com 15

0

20

40

60

80

100

120

10 12 14 16 18 20

Supply Voltage (V)

Logic

"1" I

nput

Bias

Cur

rent

(ΗA

)

Figure 19B. Logic "1" Input Bias Current vs. Supply Voltage

Typ.

Max.

0

1

2

3

4

5

-50 -25 0 25 50 75 100 125

Temperature (oC)

Logic

"0" I

nput

Bias

Cur

rent

(ΗA

)

Max.

Figure 20A. Logic "0" Input Bias Current vs. Temperature

0

1

2

3

4

5

10 12 14 16 18 20

Supply Voltage (V)

Logic

"0" I

nput

Bias

Cur

rent

(ΗA

)

Figure 20B. Logic "0" Input Bias Current vs. Supply Voltage

Max.

6

7

8

9

10

11

12

-50 -25 0 25 50 75 100 125

Temperature (oC)

VCC

and

VBS

UV

Thre

shold

(+) (

V)

Min.

Figure 21. VCC and VBS Undervoltage Threshold (+) vs. Temperature

Typ.

Max.

Page 16: ir2184

IR2184(4)(S) & (PbF)

16 www.irf.com

6

7

8

9

10

11

12

-50 -25 0 25 50 75 100 125

Temperature (oC)

VCC

and

VBS

UVT

hres

hold

(-) (V

)

Min.

Figure 22. VCC and VBS Undervoltage Threshold (-) vs. Temperature

Typ.

Max.

0

1

2

3

4

5

-50 -25 0 25 50 75 100 125

Temperature (oC)

Out

put S

ourc

e Cu

rrent

(A)

Min.

Figure 23A. Output Source Current vs. Temperature

Typ.

0

1

2

3

4

5

10 12 14 16 18 20

Supply Voltage (V)

Out

put S

ourc

e Cu

rrent

(A)

Figure 23B. Output Source Current vs. Supply Voltage

Typ.

Min.

1.0

2.0

3.0

4.0

5.0

-50 -25 0 25 50 75 100 125

Temperature (oC)

Out

put S

ink C

urre

nt (A

)

Min.

Figure 24A. Output Sink Current vs. Temperature

Typ.

Page 17: ir2184

IR2184(4)(S) & (PbF)

www.irf.com 17

0

1

2

3

4

5

10 12 14 16 18 20

Supply Voltage (V)

Out

put S

ink C

urre

nt (A

)

Figure 24B. Output Sink Current vs. Supply Voltage

Typ.

Min.

20

40

60

80

100

120

140

1 10 100 1000

Frequency (KHz)

Tem

prat

ure

(o C)

140v

70v

0v

20

40

60

80

100

120

140

1 10 100 1000

Frequency (KHz)

Tem

pera

ture

(o C)

140v

70v

0v

20

40

60

80

100

120

140

1 10 100 1000

Frequency (KHz)

Tem

pera

ture

(o C)

140v

70v

0v

Fig ure 21. IR 2181 vs . Fre qu en cy (IRFBC 20), R

gate=33Ω, V

C C=15V

Fig ure 22. IR 2181 vs. Freq ue ncy (IR FB C 30), R

gate=22Ω, V

C C=15V

Fig ure 23. IR 2181 vs. Freq ue ncy (IR FB C 40), R

gate=15Ω, V

C C=15V

Page 18: ir2184

IR2184(4)(S) & (PbF)

18 www.irf.com

20

40

60

80

100

120

140

1 10 100 1000

Frequency (KHz)

Tem

pera

ture

(o C)

70v

0v

140v

20

40

60

80

100

120

140

1 10 100 1000

Frequency (KHz)

Tem

pera

ture

(o C)

140v

70v

0v

20

40

60

80

100

120

140

1 10 100 1000

Frequency (KHz)

Tem

pera

ture

(o C)

140v

70v

0v

20

40

60

80

100

120

140

1 10 100 1000

Frequency (KHz)

Tem

pera

ture

(o C)

140v

70v

0v

Fig ure 24. IR 2181 vs . Fre qu en cy (IRFPE50), R

gate=10Ω, V

C C=15V

Fig ure 25. IR 21814 vs. Freq ue ncy (IR FB C 20), R

gate=33Ω, V

C C=15V

Fig ure 26. IR 21814 vs . Fre qu ency (IRFB C 30), R

gate=22Ω, V

C C=15V

Fig ure 27. IR 21814 vs. Freq uen cy (IRFBC 40), R

gate=15Ω, V

C C=15V

Page 19: ir2184

IR2184(4)(S) & (PbF)

www.irf.com 19

20

40

60

80

100

120

140

1 10 100 1000

Frequency (KHz)

Tem

pera

ture

(o C)

70v

0v

140v

20

40

60

80

100

120

140

1 10 100 1000

Frequency (KHz)

Tem

pera

ture

(o C)

140v

70v

0v

20

40

60

80

100

120

140

1 10 100 1000

Frequency (KHz)

Tem

pera

ture

(o C) 140v

70v

0v

20

40

60

80

100

120

140

1 10 100 1000

Frequency (KHz)

Tem

pera

ture

(o C)

0v

140v 70v

Fig ure 28. IR 21814 vs. Fre qu ency (IRFPE50), R

gate=10Ω, V

C C=15V

Fig ure 29. IR 2181s vs . Fre qu en cy (IRFBC 20), R

gate=33Ω, V

C C=15V

Fig ure 30. IR 2181s vs. Freq ue ncy (IR FB C 30), R

gate=22Ω, V

C C=15V

Fig ure 31. IR 2181s vs. Freq ue ncy (IR FB C 40), R

gate=15Ω, V

C C=15V

Page 20: ir2184

IR2184(4)(S) & (PbF)

20 www.irf.com

20

40

60

80

100

120

140

1 10 100 1000

Frequency (KHz)

Tem

pret

ure

(o C)

140V 70V 0V

20

40

60

80

100

120

140

1 10 100 1000

Frequency (KHz)

Tem

pera

ture

(o C)

140v

70v

0v

20

40

60

80

100

120

140

1 10 100 1000

Frequency (KHz)

Tem

pera

ture

(o C)

140v

70v

0v

20

40

60

80

100

120

140

1 10 100 1000

Frequency (KHz)

Tem

pera

ture

(o C)

140v

70v

0v

Figure 35. IR21814s vs. Frequency (IRFBC40), Rgate=15Ω , VCC=15V

Figure 34. IR21814s vs. Frequency (IRFBC30), Rgate=22Ω , VCC=15V

Figure 33. IR21814s vs. Frequency (IRFBC20), Rgate=33Ω , VCC=15V

Figure 32. IR2181s vs. Frequency (IRFPE50), Rgate=10Ω , VCC=15V

Page 21: ir2184

IR2184(4)(S) & (PbF)

www.irf.com 21

20

40

60

80

100

120

140

1 10 100 1000

Frequency (KHz)

Tem

pera

ture

(o C)

140v 70v

0v

Figure 36. IR21814s vs. Frequency (IRFPE50), Rgate=10Ω , VCC=15V

Page 22: ir2184

IR2184(4)(S) & (PbF)

22 www.irf.com

01-601401-3003 01 (MS-001AB)8-Lead PDIP

01-602701-0021 11 (MS-012AA)8-Lead SOIC

8 7

5

6 5

D B

E

A

e6X

H

0.25 [.010] A

6

431 2

4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.

NOTES:1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.2. CONTROLLING DIMENSION: MILLIMETER3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

7

K x 45°

8X L 8X c

y

FOOTPRINT

8X 0.72 [.028]

6.46 [.255]

3X 1.27 [.050] 8X 1.78 [.070]

5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.

6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].

0.25 [.010] C A B

e1A

A18X b

C

0.10 [.004]

e 1

D

E

y

b

A

A1

H

K

L

.189

.1497

.013

.050 BASIC

.0532

.0040

.2284

.0099

.016

.1968

.1574

.020

.0688

.0098

.2440

.0196

.050

4.80

3.80

0.33

1.35

0.10

5.80

0.25

0.40

1.27 BASIC

5.00

4.00

0.51

1.75

0.25

6.20

0.50

1.27

MIN MAXMILLIMETERSINCHESMIN MAX

DIM

e

c .0075 .0098 0.19 0.25

.025 BASIC 0.635 BASIC

Page 23: ir2184

IR2184(4)(S) & (PbF)

www.irf.com 23

01-601901-3063 00 (MS-012AB)14-Lead SOIC (narrow body)

01-601001-3002 03 (MS-001AC)14-Lead PDIP

Page 24: ir2184

IR2184(4)(S) & (PbF)

24 www.irf.com

Basic Part (Non-Lead Free)8-Lead PDIP IR2184 order IR21848-Lead SOIC IR2184S order IR2184S14-Lead PDIP IR21844 order IR2184414-Lead SOIC IR21844 order IR21844S

Leadfree Part8-Lead PDIP IR2184 order IR2184PbF8-Lead SOIC IR2184S order IR2184SPbF14-Lead PDIP IR21844 order IR21844PbF14-Lead SOIC IR21844 order IR21844SPbF

ORDER INFORMATION

LEADFREE PART MARKING INFORMATION

Lead Free ReleasedNon-Lead FreeReleased

Part number

Date code

IRxxxxxx

YWW?

?XXXXPin 1Identifier

IR logo

Lot Code(Prod mode - 4 digit SPN code)

Assembly site codePer SCOP 200-002

P? MARKING CODE

Thisproduct has been designed and qualified for the industrial market.Qualification Standards can be found on IR’s Web Site http://www.irf.com

Data and specifications subject to change without notice.IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

4/4/2006