Top Banner
Ion Energy Ion Energy Distributions from a Distributions from a Permanent-Magnet Permanent-Magnet Helicon Thruster Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014
31

Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

Jan 04, 2016

Download

Documents

Ronald Booker
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

Ion Energy Distributions Ion Energy Distributions from a Permanent-Magnet from a Permanent-Magnet

Helicon Thruster Helicon Thruster

Francis F. Chen, UCLA

Low Temperature Plasma Physics Webinar, January 17, 2014

Page 2: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

The “New Stubby” helicon source

Antenna: 1 turn at 27 MHz, 3 turns at 13 MHz.

Aluminum top plate

Note “skirt”

Page 3: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

The top plate reflects the backward wave

Page 4: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

The B-field is from a Neodymium magnet

The magnet is 5” OD, 3” ID, and 1” thick. We use the almost uniform field below the stagnation point.

Page 5: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

The tube was designed with the HELIC code

Lc

a b

h

Loop antenna

Helical antenna

B0

D. Arnush, Role of Trivelpiece-Gould Waves in Antenna Helicon Wave Coupling, Phys. Plasmas 7, 3042 (2000).

Page 6: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

Sample loading curves from HELIC

0.0

0.5

1.0

1.5

2.0

1E+11 1E+12 1E+13n (cm-3)

R (

ohm

s)

200

150

100

50

B (G) 13 MHzH= 2 cm

0.0

0.5

1.0

1.5

2.0

1E+11 1E+12 1E+13n (cm-3)

R (

ohm

s)

200

150

100

50

B (G) 27 MHzH = 1.5 cm

R should be > 1 at operating density

Page 7: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

UCLA

Operating point on “Low-field peak”

Page 8: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

Different magnet arrays were calculated

Page 9: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

Final design: single 3 x 5 x 1” magnet

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

-10 -8 -6 -4 -2 0 2 4 6 8 10

Page 10: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

Setting the antenna at 60 G

0

50

100

150

200

250

300

0 2 4 6 8 10 12z (in.)

Bz

(G)

0.92

0.52

0.0

r (in.)

D

Page 11: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

Discharge with the original magnet

Page 12: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

Downstream density vs B and Prf

0

2

4

6

8

10

12

0 25 50 75 100 125 150 175 200B (G)

n1

1

1000

800

600400

200

Prf (W)

This shows that only 30 - 60 G is necessary.

Page 13: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

Only an off-the-shelf magnet is needed

The magnet is 4” OD,

2” ID, and 1/2” thick

The plasma potential is set by grounding the top plate.

Page 14: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

The experimental chamber

Page 15: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

Typical density profiles at Ports 1-3

0

1

2

3

4

5

6

-20 -10 0 10 20r (cm)

n (1

01

1 c

m-3

)

6.8

16.9

27.2

400 W, 60 G(average B)

cm below source

Page 16: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

The SEMion ion energy analyzer

4” diam x 1 cm thick by Impedans, Ltd., Ireland

Page 17: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

The sensor height can be varied continuously

When the sensor is too close to the discharge, it forms an endplate, and the discharge is double-ended.

We know that the discharge is affected because the tuning is changed.

Page 18: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

Gridded and Hall ion thrusters

CATHODE

ANODE

ACCELERATION GRIDS

Electron neutralizer

Page 19: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

A helicon thruster

RF

MAGNET COILS

INSULATOR

ANTENNA

PLASMA

DOUBLE LAYER

Page 20: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

Double-layer thrustersA review of recent laboratory double layer experiments

Christine Charles, Plasma Sources Sci. Technol. 16 (2007) R1–R25

Page 21: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

Cause and location of the “double layer”

1/20½, /s sn n e

1/2 2( / ) ½ ½is s e is is ev c KT M W Mv KT

20 0 0/ / ( / )B B n n r r

F.F. Chen, Phys. Plasmas 13, 034502 (2006)

n

xs x

ne = ni = n

PLASMA

SHEATH

ni

ne

+

ns

PRESHEATH

v = cs

0 , where e /e en n e V KT Maxwellian electrons

Bohm sheath criterion

1/40/ 1.28r r e

A sheath must form here

Single layer forms where r has increased 28%

Page 22: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

Ion energy distribution functions (IEDF)

0

2

4

6

8

10

12

14

-10 -5 0 5 10 15 20 25Voltage

RF

ID (

x107

)

1000

800

600

400

200

Watts 10 mTorr

Expect about 5 the KTe of 1.5-2 eV

Page 23: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

UCLA

Where a diffuse “double layer” would occur

0

50

100

150

200

250

5 10 15 20 25 30z (cm)

B (

G)

Approx. location of "double layer"

Page 24: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

IEDFs vs distance from source

0E+00

5E-07

1E-06

2E-06

2E-06

3E-06

0 5 10 15 20 25Volts

RF

ID

0

6

8

10

10

12

14

cm below tube400W

0E+00

2E-07

4E-07

6E-07

8E-07

0 2 4 6 8 10 12 14Volts

RF

ID

141618202224262830323434

cm below tube400W

1000W @ 34 cm

close to tube further downstream

There is no sign of a double layer jump.

This is probably because the sensor changes the effective length of the discharge.

Page 25: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

IEDFs vs RF power

0

5

10

15

20

-10 -5 0 5 10 15 20Voltage relative to ground

RF

ID (

x107

)

1600140012001000900800700700600500400300200

Prf (W)

Page 26: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

Evidence of ion beam

0.0E+00

5.0E-07

1.0E-06

1.5E-06

2.0E-06

2.5E-06

-10 0 10 20 30 40Voltage

RF

ID

1000

800

600

400

200

Sensor facing upin Port 1

Watts

0E+00

1E-07

2E-07

3E-07

4E-07

5E-07

6E-07

-10 0 10 20 30Voltage

RF

ID

1000

800

600

400

200

Sensor facing downPort 1 Watts

0E+00

2E-07

4E-07

6E-07

8E-07

-10 -5 0 5 10 15 20Voltage

RF

ID

600

600

Sensor facing up/downPort 2

Wattsup

down

Page 27: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

IEDFs vs. pressure

0.0

0.5

1.0

1.5

15 20 25 30 35 40Voltage

RF

ID (

x107

)

400

200

Watts0.5 mTorr

0

2

4

6

8

10

0 5 10 15 20 25 30Voltage

RF

ID (

x107

)

1000

800

600

400

200

Watts 2.5 mTorr

0

2

4

6

8

10

12

-5 0 5 10 15 20 25Voltage

RF

ID (

x107

)

1000

800

600

400

200

Watts 5 mTorr

0

2

4

6

8

10

12

14

-10 -5 0 5 10 15 20 25Voltage

RF

ID (

x107

)

1000

800

600

400

200

Watts 10 mTorr

0

2

4

6

8

-10 -5 0 5 10 15Voltage

RF

ID (

x107

)

1000

800

600

400

Watts 30 mTorr

0

2

4

6

-10 -5 0 5 10 15Voltage

RF

ID (

x107

)

1000

800

600

400

Watts39 mTorr

0

1

2

3

4

-10 -5 0 5 10 15Voltage

RF

ID (

x107

)

1000

800

600

400

Watts60 mTorr

0

2

4

6

8

10

12

14

-10 -5 0 5 10 15 20 25Voltage

RF

ID (

x107

)

1000

800

600

400

200

400

Watts15 mTorr

Page 28: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

Can we increase the ion drift speed?

0

2

4

6

8

10

12

14

-5 0 5 10 15 20Voltage

RF

ID (

x107

) 1000

800

600

400

200

Top plate voltage = 0

Watts

0

2

4

6

8

10

12

14

16

10 15 20 25 30 35 40Voltage

RF

ID (

x107

)

1000

800

600

400

200

Using "car" battery to apply voltage

Top plate voltage = +24Watts

0

2

4

6

8

10

12

14

-10 -5 0 5 10 15Voltage

RF

ID (

x107

)

1000

800

600

400

200

Using "car" battery to apply voltage

Top plate voltage = -24

Watts

Yes! Applying +24V to top plateincreases vi by ~16eV, while applying -24V reduces vi by ~6eV.

The voltage is applied with a Pb-acid battery from an electric scooter.

Page 29: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

Effect of top plate bias

0

2

4

6

8

10

12

14

-10 0 10 20 30 40Voltage

RF

ID (

x107

)

0

24

-24

0

24

-24

Top plate voltage

400W

1000W

Page 30: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

Summary

A small helicon discharge was developed using a permanent magnet for the B-field.

Ions are ejected with a drift velocity of about 5KTe, measured with a retarding- field energy analyzer.

The ion drift can be increased by biasing the top plate of the discharge relative to nearby grounded surfaces.

This device could be developed into a spacecraft thruster.

Page 31: Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.

Title