Top Banner
Inverse substitution rule Inverse Substitution Rule If and is differentiable and invertible. Then ( ()) () () fgt gtdt Ft C () x gt 1 () ( ()) () () ( ()) . fxdx fgt gtdt Ft C Fg x C
23

Inverse substitution rule

Mar 23, 2016

Download

Documents

tarak

Inverse substitution rule. Inverse Substitution Rule If and is differentiable and invertible. Then. Example: trigonometric substitutions. Ex. Evaluate Sol. Let then From we derive . - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Inverse substitution rule

Inverse substitution rule Inverse Substitution Rule If and is differentiable and invertible. Then

( ( )) ( ) ( )f g t g t dt F t C ( )x g t

1( ) ( ( )) ( ) ( ) ( ( )) .f x dx f g t g t dt F t C F g x C

Page 2: Inverse substitution rule

Example: trigonometric substitutions Ex. Evaluate

Sol. Let then

From we derive

2 2 ( 0).a x dx a sin ,x a t cos .dx a tdt

2 2 2 2cos cos cosa x dx a t a tdt a tdt 2 2 sin 2(1 cos 2 ) ( )

2 2 2a a tt dt t C

sin ,x a t2 2

arcsin , cos .x a xt ta a

2 2 22 2 arcsin .

2 2a x x a xa x dx C

a

Page 3: Inverse substitution rule

Example: trigonometric substitutions Ex. Evaluate

Sol. Let then

From we derive

2 2( 0).dx a

x a

tan ,x a t 2sec .dx a tdt1 1 sinln | |2 1 sin

t Ct

tan ,x a t2 2

sin .xtx a

2

2 2

sec secsec

dx a t dt tdta tx a

2 2 2 2 2

22 2

1 ( )ln ln .2

dx x a x x a xC Ca ax a

Page 4: Inverse substitution rule

Example Ex. Evaluate

Sol.

2

2

9 .x dxx

22 2

2 2 2

9 (3sin )9 cos(3sin )(3sin ) sin

tx tdx d t dtx t t

22 9(csc 1) cot arcsin .

3x xt dt t t C C

x

Page 5: Inverse substitution rule

Example Ex. Evaluate substitution

Ex. Find substitution

Ex. Find

substitution

2 2

1 .4

dxx x

2 tanx t

2 2

1 .4

dxx x

2secx t

2

1 .3 2

dxx x x

2 23 2 4 ( 1)x x x 1 2sinx t

Page 6: Inverse substitution rule

Example: reciprocal substitution Ex. Evaluate

Sol. Let then

2.

3 2 1

dx

x x x

1,xt

2

1 .dx dtt

2 2 2 23 2 1 3 2 2 ( 1)

dx dt dt

x x x t t t

2

1 1 1arcsin arcsin .2 2 211 ( )

2

dt t xC Cxt

Page 7: Inverse substitution rule

Example: rational substitution Ex. Evaluate

Sol. Let then

.1

x dxx

2 ,x t2 3

2 21 1t ttdt dt

t t

3

2 21 22[ ( 1) ] 2 2ln(1 )1 3

tt t dt dt t t t Ct

3 1 121

t dtt

32 2 2ln(1 ) .3

x x x x C

2 .dx tdt

1x dx

x

Page 8: Inverse substitution rule

Inverse substitution for definite integral The Inverse Substitution Rule for definite integral: If x=g(t) is differentiable, invertible and, when x is in between a and b, t is in between and Then1( )g a 1( ).g b

( ) ( ( )) ( ) .b

af x dx f g t g t dt

Page 9: Inverse substitution rule

Example Ex. Evaluate

Sol. Let then and when x

changes from a to 2a, t changes from 0 to

2 22

4 ( 0).a

a

x a dx ax

sec ,x a t sec tan ,dx a t t/ 3.

2 223

4 4 40

tan sec tansec

a

a

x a a tdx a t tdtx a t

32 332 2 20

0

1 1 3sin cos sin .3 8

t tdt ta a a

Page 10: Inverse substitution rule

Example Ex. Evaluate

Sol. Since let Then and when x changes from 2 to 3, t

changes from 0 to

3

2 32

1 .(4 )

x dxx x

2 2(4 ) 4 ( 2) ,x x x 2 2sin .x t 2cos ,dx t

/ 6.3

6 63 22 32 0 0

1 3 2sin 3 2sin2cos(2cos ) 4cos(4 )

x t tdx tdt dtt tx x

6

0

3 1 3 3 1 7 3 6tan ( ) .4 2cos 4 3 2 12

tt

Page 11: Inverse substitution rule

Example: application of substitution Ex. Find

Sol. Let then

20

sin .sin cos

x dxx x

02 2

0 02

sin cos cossin cos cos sin sin cos

x t tdx dt dtx x t t t t

,2

x t

2 2 20 0 0

sin 1 cos sin( ) .sin cos 2 sin cos sin cos 4

x t xdx dt dxx x t t x x

Page 12: Inverse substitution rule

Example: application of substitution Ex. Find the definite integral

Sol. By substitution

22

2

sin .1 x

x dxe

2 2 20

2 20

22

sin sin sin .1 1 1x x x

x x xdx dx dxe e e

2 2 2 20 02 2

0 02 2

sin sin sin sin .1 1 1 1

x

x t x x

x t x e xdx dt dx dxe e e e

,x t

2 2 222 2 2 2

0 0 02

sin sin sin sin .1 1 1 4

x

x x x

x e x xdx dx dx xdxe e e

Page 13: Inverse substitution rule

Integration of rational functions Any rational function can be integrated by the following

two steps: a). express it as a sum of simpler fractions by partial fraction technique; b. integrate each partial fraction using the integration techniques we have learned.

For example, since

we have

2

5 5 2 12 ( 1)( 2) 1 2

x xx x x x x x

2

5 2 1( ) 2ln | 1| ln | 2 | .2 1 2

x dx dx x x Cx x x x

Page 14: Inverse substitution rule

Technique for partial fraction Take any rational function where P and Q are polynomials. If the degree of P is less than the degree of Q, we call f a

proper fraction. If f is improper, that is, degree of P greater than or equal to

degree of Q, then (by long division) we must have

where S and R are also polynomials and degree of R less than degree of Q.

( )( ) ,( )

P xf xQ x

( ) ( )( ) ( ) ,( ) ( )

P x R xf x S xQ x Q x

Page 15: Inverse substitution rule

Technique for partial fraction For example, by long division, we can derive

For the above reason, we only need to consider the properrational functions. The next step is to factor the denominator Q(x). It can beshown that any polynomial can be factored as a product oflinear factors (in the form ax+b) and irreducible quadraticfactors (in the form ). Forexample,

32 22 .

1 1x x x xx x

2 2 with 4 0ax bx c b ac 4 2( ) -16=(x-2)(x+2)(x 4).Q x x

4 2 2 2+1 ( 1)( 1)x x x x x x

Page 16: Inverse substitution rule

Technique for partial fraction The third step is to express the proper rational function

R(x)/Q(x) as a sum of partial fractions of the form

These two kind of rational functions can be integrated as

2 or .( ) ( )i j

A Ax Bax b ax bx c

11 1 1 1ln | | , ( )( ) (1 )

kkdx ax b C dx ax b C

ax b a ax b a k

2

2 2 2

( ) .( ) ( ) [1 ( ) ]k k k

Ax B d ax bx c Fdx C D dxax bx c ax bx c x E

Page 17: Inverse substitution rule

Example Ex. Find

Sol.

2

1 .( 1)n nI dxx

2 2 2

1( 1) ( 1) ( 1)n n n n

dx xI xdx x x

2

2 2 12( 1) ( 1)n n

x x dxnx x

2

2 2 1

( 1 1)2( 1) ( 1)n n

x x dxnx x

12 2 2 .( 1) n nn

x nI nIx

1 2

2 1 .2 2 ( 1)n n n

n xI In n x

1 arctan .I x C

2 2

arctan .2 2( 1)

x xI Cx

Page 18: Inverse substitution rule

Technique for partial fraction From the above analysis, we see that how to split a rational

function into partial fractions is the key step to integrate the rational function.

When Q(x) contains factor the partial fractions contain

When Q(x) contains irreducible factor the partial fractions contain

( ) ,kx a

1 22 .

( ) ( )k

k

AA Ax a x a x a

2( ) ,kx px q

1 1 2 22 2 2 2 .

( ) ( )k k

k

B x DB x D B x Dx px q x px q x px q

Page 19: Inverse substitution rule

Example Ex. Find

Sol. Since the partial fraction has the form

Expanding the right side and comparing with the left side,

2

3 2

2 1 .2 3 2

x x dxx x x

3 22 3 2 ( 2)(2 1),x x x x x x

2

3 2

2 1 .2 3 2 2 2 1

x x A B C

x x x x x x

2 2 1 ( 2)(2 1) (2 1) ( 2). x x A x x Bx x Cx x2(2 2 ) (3 2 ) 2 A B C x A B C x A

1 1 1, ,2 5 10

A B C

Page 20: Inverse substitution rule

Example Ex. Find Sol.

5 3 2

4 2

2 7 .2 2

x x x xI dxx x x

5 3 2

4 2 4 2

2 7 52 2 2 2

x x x x xxx x x x x x

4 2 2 22 2 ( 1) ( 2 2) x x x x x x1 2

4 2 2 2

52 2 1 ( 1) 2 2

A Ax Bx D

x x x x x x x

1 21 1 8, 1, ,5 5 5

A A B D2

21 1 1 7ln | 1| ln( 2 2) arctan( 1) .2 5 1 10 5

xI x x x x Cx

Page 21: Inverse substitution rule

Remark There are two methods to find the coefficients in the

partial fractions. One method is comparing the corresponding coefficients of polynomials on both sides; the other is taking some special values of x in the identity.

For instance, in the last example, we have2 2 2

1 25 ( 1)( 2 2) ( 2 2) ( )( 2 1) x A x x x A x x Bx D x x

2 21 5 5 1 x A A1 81 5 5 ( 3 ) (7 4 ) ,5 5

x i i B D B D i B D

1 2 110 0 2 25

x A A D A

Page 22: Inverse substitution rule

Example Ex. Find Sol.

4 3 2

2 2 2

3 .( 1)( 1)

x x x xI dxx x

4 3 21 2 1 1 2 2

2 2 2 2 2 2

3( 1)( 1) 1 1 1 ( 1)

A A B x D B x Dx x x x

x x x x x x

1 2 1 1 2 21 1, , 1, 1, 1, 12 2

A A B D B D

22 2

1 1 1 1ln | 1| ln | 1| ln( 1) arctan2 2 2 ( 1)

xI x x x x dxx

2

2 2

1 1 1 1ln | | arctan .2 1 2 2( 1)

x xx Cx x

Page 23: Inverse substitution rule

Homework 18 Section 7.2: 18, 24, 42, 44

Section 7.3: 5, 6, 24, 27