Top Banner
Introduction to antennas Michel Anciaux / APEX November 2004
47
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Introduction_to_antennas.ppt

Introduction to antennas

Michel Anciaux / APEX

November 2004

Page 2: Introduction_to_antennas.ppt

What is an antenna?

• Region of transition between guided and free space propagation

• Concentrates incoming wave onto a sensor (receiving case)

• Launches waves from a guiding structure into space or air (transmitting case)

• Often part of a signal transmitting system over some distance

• Not limited to electromagnetic waves (e.g. acoustic waves)

Page 3: Introduction_to_antennas.ppt

Free space electromagnetic wave

Magnetic field

Electricfield

Direction of propagation

MagneticField [A/m]

ElectricField [V/m]

Time [s]

Time [s]

•Disturbance of EM field•Velocity of light (~300 000 000 m/s)•E and H fields are orthogonal•E and H fields are in phase•Impedance, Z0: 377 ohms

x

y z

Page 4: Introduction_to_antennas.ppt

EM wave in free space )(

0ztj

x eEE 2

2

002

2 1

z

E

t

E xx

2

2

002

21

z

H

t

H yy

)(0

ztjy eHH

2

f

2

f00

1

wavelength

Phase constant

frequency

0

00

Z

0

00 H

EZ

Magnetic field

Electricfield

Direction of propagation

x

y z

Page 5: Introduction_to_antennas.ppt

Wave in lossy medium

tjzjztjzx eeeEeeEE

00

j

Attenuation constant

Phase constant

Propagation constant

Attenuation increases with z

Phase varies with z

Periodic time variation

Page 6: Introduction_to_antennas.ppt

Power flow

HES

0

2

0

2

2

11

2

1ZH

ZES yxav

Poynting vector

Average power density

Page 7: Introduction_to_antennas.ppt

Polarisation of EM wave

Electrical field, E

vertical

horizontal

circular

Page 8: Introduction_to_antennas.ppt

Reflection, refraction

ir

)sin()sin(2

1it

)sin()sin(22

11

it

Reflection

Refraction

if both media are lossless

i

r

E

EReflection coefficient: Depends on media, polarisation

of incident wave and angle of incidence.

Reflection and refraction affect polarisation

Page 9: Introduction_to_antennas.ppt

Guided electromagnetic wave

• Cables– Used at frequencies below 35 GHz

• Waveguides– Used between 0.4 GHz to 350 GHz

• Quasi-optical system– Used above 30 GHz

Page 10: Introduction_to_antennas.ppt

Guided electromagnetic wave (2)

• TEM wave in cables and quasi-optical systems (same as free space)

• TH,TE and combinations in waveguides

– E or H field component in the direction of propagation

– Wave bounces on the inner walls of the guide

– Lower and upper frequency limits

– Cross section dimensions proportional to wavelength

Page 11: Introduction_to_antennas.ppt

Rectangular waveguide

Page 12: Introduction_to_antennas.ppt

Launching of EM wave

Open up the cable and separate wires

Dipole antenna

Open and flare up wave guide

Horn antenna

Page 13: Introduction_to_antennas.ppt

Transition from guided wave to free space wave

Page 14: Introduction_to_antennas.ppt

Reciprocity

• Transmission and reception antennas can be used interchangeably

• Medium must be linear, passive and isotropic

• Caveat: Antennas are usually optimised for reception or transmission not both !

Page 15: Introduction_to_antennas.ppt

Basic antenna parameters

• Radiation pattern

• Beam area and beam efficiency

• Effective aperture and aperture efficiency

• Directivity and gain

• Radiation resistance

Page 16: Introduction_to_antennas.ppt

Radiation pattern

•Far field patterns •Field intensity decreases with increasing distance, as 1/r •Radiated power density decreases as 1/r2

•Pattern (shape) independent on distance•Usually shown only in principal planes

2D2r :fieldFar D : largest dimension of the antenna

e.g. r > 220 km for APEX at 1.3 mm !

Page 17: Introduction_to_antennas.ppt

Radiation pattern (2)

),( E ),( E

2

0

22 ),(),(),( r

Z

EEP

Field patterns

max),(

),(),(

P

PPn

+ phase patterns

),( ),(

HPBW: half power beam width

Page 18: Introduction_to_antennas.ppt

Beam area and beam efficiency

4

2

0 0),()sin(),( dPddP nnA

Main beam area

Minor lobes area

dP

beamMain

nM ),(

dP

lobesor

nm

min

),(

mMA

Beam area

A

MM

Main beam efficiency

Page 19: Introduction_to_antennas.ppt

Effective aperture and aperture efficiency

Receiving antenna extracts power from incident wave

einrec ASP

For some antennas, there is a clear physical aperture and an aperture efficiency can be defined

p

eap A

A

AeA

2Aperture and beam area are linked:

Page 20: Introduction_to_antennas.ppt

Directivity and gain

averageP

PD

),(

),( max

An dPD

4

),(

4

4

Isotropic antenna: 4A 1D24

eAD

From pattern

From aperture

only losses ohmic todue lower than is

)1(0factor efficiency

Gain

DG

kk

DkG

gg

g

Directivity

Page 21: Introduction_to_antennas.ppt

Radiation resistance

• Antenna presents an impedance at its terminals

AAA jXRZ

•Resistive part is radiation resistance plus loss resistance

LRA RRR

The radiation resistance does not correspond to a real resistorpresent in the antenna but to the resistance of space coupled via the beam to the antenna terminals.

Page 22: Introduction_to_antennas.ppt

Types of Antenna

• Wire

• Aperture

• Arrays

Page 23: Introduction_to_antennas.ppt

Wire antenna

• Dipole

• Loop

• Folded dipoles

• Helical antenna

• Yagi (array of dipoles)

• Corner reflector

• Many more types

Horizontal dipole

Page 24: Introduction_to_antennas.ppt

Wire antenna - resonance

• Many wire antennas (but not all) are used at or near resonance

• Some times it is not practical to built the whole resonant length

• The physical length can be shortened using loading techniques– Inductive load: e.g. center, base or top coil (usually adjustable)

– Capacitive load: e.g. capacitance “hats” (flat top at one or both ends)

Page 25: Introduction_to_antennas.ppt

Yagi-Uda

Elements Gain dBi

Gain dBd

3 7.5 5.5

4 8.5 6.5

5 10 8

6 11.5 9.5

7 12.5 10.5

8 13.5 11.5

Page 26: Introduction_to_antennas.ppt

Aperture antenna

• Collect power over a well defined aperture• Large compared to wavelength• Various types:

– Reflector antenna– Horn antenna– Lens

Page 27: Introduction_to_antennas.ppt

Reflector antenna

• Shaped reflector: parabolic dish, cylindrical antenna …– Reflector acts as a large collecting area and concentrates power onto

a focal region where the feed is located

• Combined optical systems: Cassegrain, Nasmyth …– Two (Cassegrain) or three (Nasmyth) mirrors are used to bring the focus

to a location where the feed including the transmitter/receiver can be

installed more easily.

Page 28: Introduction_to_antennas.ppt

Cassegrain antenna

• Less prone to back scatter than simple parabolic antenna• Greater beam steering possibility: secondary mirror motion

amplified by optical system• Much more compact for a given f/D ratio

Page 29: Introduction_to_antennas.ppt

Cassegrain antenna (2)

• Gain depends on diameter, wavelength, illumination• Effective aperture is limited by surface accuracy, blockage• Scale plate depends on equivalent focal length• Loss in aperture efficiency due to:

– Tapered illumination– Spillover (illumination does not stop at the edge of the dish)– Blockage of secondary mirror, support legs– Surface irregularities (effect depends on wavelength)

deviation surface of rms 4cos2

gK

96.0 :efficiency blockage

94.0 :efficiencyspillover

87.0 :efficiencytaper

b

s

t

At the SEST:

Page 30: Introduction_to_antennas.ppt

Horn antenna

• Rectangular or circular waveguide flared up

• Spherical wave fronts from phase centre

• Flare angle and aperture determine gain

Page 31: Introduction_to_antennas.ppt

Short dipole

)11

(2

)cos(32

0

)(0

rjcr

leIE

rtj

r

)11

(4

)sin(322

0

)(0

rjcrrc

jleIE

rtj

)1

(4

)sin(2

)(0

rcr

jleIH

rtj

2r

1 as variesP

r

1 as vary H E ,

2

andrfor

•Length much shorter than wavelength•Current constant along the length•Near dipole power is mostly reactive•As r increases Er vanishes, E and H gradually become in phase

l

r

eIjE

rtj )sin(60 )(0

Page 32: Introduction_to_antennas.ppt

Short dipole patternShort dipole power pattern

X Y Z( ).

0

30

6090

120

150

180

210

240270

300

330

0.80.60.40.20

PN

.

Short dipole power pattern

X Y Z( ).

3

8A

5.1D

2280

lRr

Page 33: Introduction_to_antennas.ppt

Thin wire antenna

•Wire diameter is small compared to wavelength•Current distribution along the wire is no longer constant

dipole fed-centre

2

2sin)( e.g. 0

yL

IyI

•Using field equation for short dipole, replace the constant current with actual distribution

point feedat current I dipole, fed-centre

sin2

cos2

coscos

60

0

)(0

LL

r

eIjE

rtj

Page 34: Introduction_to_antennas.ppt

Thin wire patternthin wire centre fed dipole power pattern

X Y Z( )l 1

2

A 7.735 D 1.625

thin wire centre fed dipole power pattern

X Y Z( )l 1.395

A 5.097 D 2.466

thin wire centre fed dipole power pattern

X Y Z( )l 10

A 1.958 D 6.417

Page 35: Introduction_to_antennas.ppt

0

30

6090

120

150

180

210

240270

300

330

Power pattern of 2 isotropic sources

Pn

d 12

0deg

0

30

6090

120

150

180

210

240270

300

330

1.5

1

0.5

0

Field Pattern of 2 isotropic sources

E i

i

0

30

6090

120

150

180

210

240270

300

330

Power pattern of 2 isotropic sources

Pn

d 12

90 deg

0

30

6090

120

150

180

210

240270

300

330

1.5

1

0.5

0

Field Pattern of 2 isotropic sources

E i

i

0

30

6090

120

150

180

210

240270

300

330

Power pattern of 2 isotropic sources

Pn

d 12

45 deg

0

30

6090

120

150

180

210

240270

300

330

1.5

1

0.5

0

Field Pattern of 2 isotropic sources

E i

i

0

30

6090

120

150

180

210

240270

300

330

Power pattern of 2 isotropic sources

Pn

d 12

135 deg

Array of isotropic point sources – beam shaping

x

y

d

Page 36: Introduction_to_antennas.ppt

Array of isotropic point sources – centre-fed array

0

30

6090

120

150

180

210

240270

300

330

0.8

0.6

0.4

0.2

0

Field Pattern of n isotropic sources

Ef i

i

n 8 0deg d 0.5

0

30

6090

120

150

180

210

240270

300

330

0.8

0.6

0.4

0.2

0

Field Pattern of n isotropic sources

Ef i

i

n 3 67.5 deg d 0.5

)cos(

2)(

d

2/sin2

sin1

)(

n

nEn

x

y

d

0

Page 37: Introduction_to_antennas.ppt

Array of isotropic point sources – end-fired

0

30

6090

120

150

180

210

240270

300

330

0.8

0.6

0.4

0.2

0

Field End-fired, n isotropic sources

Ef i

i

n 10 108 deg d 14

end-fired array,n elements power pattern

X Y Z( )

n 10 d 0.25

A 0.713 D 17.627

n

d 1cos

2)(

2sin

2sin

2sin)(

n

nEn

x

y

d

0

Page 38: Introduction_to_antennas.ppt

Pattern multiplication

The total field pattern of an array of non-isotropic but similar point sourcesis the product of the individual source pattern and the pattern of an array of isotropic point sources having the same locations,relative amplitudes and phases as the non-isotropic point sources.

0

30

6090

120

150

180

210

240270

300

330

0.8

0.6

0.4

0.2

0

Primary field pattern

Ef1i

i

n 2 1 104 deg d1 0.3

0

30

6090

120

150

180

210

240270

300

330

0.8

0.6

0.4

0.2

0

Secondary field pattern

Ef2i

i

n 2 2 180deg d2 0.6

0

30

6090

120

150

180

210

240270

300

330

0.8

0.6

0.4

0.2

0

Total field pattern

Ef i

i

Total pattern of two primary sources (each an array of two isotropic sources) replacing two isotropic sources (4 sources in total).

Page 39: Introduction_to_antennas.ppt

Patterns from line and area distributions

•When the number of discrete elements in an array becomes large, it may be easier to consider the line or the aperture distribution ascontinuous.

• line source:

line tonormal anglefrom length,l , )sin(u )(2

)(1

1

l

dxexfl

uE jux

•2-D aperture source:

ondistributi field aperture),(

),(, sin cos sin

yxf

dydxeyxfEaperture

yxj

Page 40: Introduction_to_antennas.ppt

Fourier transform of aperture illuminationDiffraction limit

only estimaterough D

HPBW

10 5 0 5 100.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ep

xp

300 240 180 120 60 0 60 120 180 240 30050

45

40

35

3025

20

15

10

50

Far field

angular distance [arcsec]

Pow

er p

atte

rn [

dB]

3

10 5 0 5 100.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ep

xp

300 240 180 120 60 0 60 120 180 240 30050

45

40

35

3025

20

15

10

50

Far field

angular distance [arcsec]

Pow

er p

atte

rn [

dB]

3

Page 41: Introduction_to_antennas.ppt

Predicted power pattern - SEST 1.3 mm - off axis 130 mm

EFN

.

Far field pattern from FFT of Aperture field distribution

Predicted power pattern - flat illumination

EFN

.

Predicted power pattern - SEST 1.3 mm - on axis

EFN

.

Page 42: Introduction_to_antennas.ppt

Effect of edge taper

Predicted power pattern -16dB taper

EFN

.

Predicted power pattern -8dB taper

EFN

.

Page 43: Introduction_to_antennas.ppt

dBi versus dBd

•dBi indicates gain vs. isotropic antenna•Isotropic antenna radiates equally well in all directions, spherical pattern

•dBd indicates gain vs. reference half-wavelength dipole•Dipole has a doughnut shaped pattern with a gain of 2.15 dBi

dBdBddBi 15.2

Page 44: Introduction_to_antennas.ppt

Feed and line matching

•The antenna impedance must be matched by the line feeding it if maximum power transfer is to be achieved•The line impedance should then be the complex conjugate of that of the antenna•Most feed line are essentially resistive

Page 45: Introduction_to_antennas.ppt

Signal transmission, radar echo

, , , ttet GPA

• Receiving antenna

• Transmitting antenna

rrer GPA , ,

trtrtt

r PGGr

G

r

PGP

22

2 444

43

22

22 4444 rGGP

G

rr

PGP rtt

rttr

Radar return

S, power density Effective receiving area

S, power density Effective receiving areaReflected power density

(area)section crossradar

Page 46: Introduction_to_antennas.ppt

Antenna temperature

• Power received from antenna as from a black body or the radiation resitance at temperature Ta

Page 47: Introduction_to_antennas.ppt

The end