Top Banner
Introduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘ Bad Honnef, 22.09.2014
30

Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Aug 10, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Introduction to Plasma Physics

Hartmut Zohm

Max-Planck-Institut für Plasmaphysik

85748 Garching

DPG Advanced Physics School‚The Physics of ITER‘

Bad Honnef, 22.09.2014

Page 2: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

A simplistic view on a Fusion Power Plant

The ‚amplifier‘ is a thermonuclear plasma burning hydrogen to helium

Centre of the sun: T ~ 15 Mio K, n ≤ 1032 m-3, p ~ 2.5 x 1011 bar

Pin = 50 MW(initiate and controlburn)

Pout = 2-3 GWth(aiming at 1 GW e)

Page 3: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

A bit closer look…

Fusion reactor: magnetically confined plasma, D + T → He + n + 17.6 MeV

Centre of reactor: T = 250 Mio K, n = 1020 m-3, p = 8 bar

3.5 MeV 14.1 MeVα-heating wall loading

Pin = 50 MW(initiate and controlburn)

Pout = 2-3 GWth(aiming at 1 GW e)

Page 4: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

What is a plasma?

Plasma = ionised gas

• degree of ionisation ne/(ne+n0), depends on temperature (Saha equation)

• because of Maxwell distribution: ne/(ne+n0) ~ 1 at kBT ~ 1/10 Wion

No impurityseeding

‚cold‘ solid

‚warm‘ liquid

‚hot‘ gas

‚hotter‘ plasma

Page 5: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Existence diagram: density n and temperature T

Plasmas occur in large large range of n and T

• ideal plasma condition Etherm >> Einteraction in large range

• fusion plasma can be treated as ideal gas of ions and electrons (p = n kBT)

No impurityseeding

Note:1 eV = 11600 K

relativistic: E therm > 511 keV

ideal plasmas

non-ideal, degenerateH not ionised re

lat.

dege

n.

Page 6: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Existence diagram: density n and temperature T

No impurityseeding

Note:1 eV = 11600 K

Astrophysical plasmas

pulsar magnetosphere

solar wind chromosphere

corona lightning

sun

photosphereionosphere

interstellarmedium white

dwarf

Page 7: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Existence diagram: density n and temperature T

No impurityseeding

n kBT ~ 1 bar

Note:1 eV = 11600 K

lab plasmas

fusion reactor

MagenticallyConfinedFusion plasmas

semiconductorplasmas

Inertially ConfinedFusion plasmas

electron gasIn metals

glow discharge

flame arcs

Page 8: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Quasineutrality

Large number of freely movable charges: charge separation leads to strong electric fields – strong restoring force

• quasineutrality ne = Zni can only be violated on Debye length λD

• on a scale L >> λD, plasmas are always quasineutral

Page 9: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Dynamic shielding – plasma frequency

Displacement of electrons leads to large restoring force - oscillation

• below ωp, electrons can follow oscillating e-field – reflection of wave (cut-off)

• above ωp, electrons can no longer follow - plasma transparent to ω > ωp

Used for density measurement (‘reflectometry’) – cut-off important for heating

Page 10: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Coulomb collisions

Coulomb collisions are the main interaction between plasma particles

• thermodynamic equilibrium through Coulomb collisions

• dissipation by Coulomb collisions – electrical and thermal resistance

Collision frequency decreases with increasing temperature

• mean free path increases with T – ‘collisionless plasma’

• electrical (‘Spitzer’) and thermal conductivity of fusion plasma very high

Page 11: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Thermalisation of a fast particle ensemble

‘Isotropisation’ – collisions randomise velocity components

‘Slowing down’ – collisions transfer energy to Maxwellian bulk

Page 12: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Application: Neutral Beam Heating (NBI)

Page 13: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Magnetised plasmas – single particle picture

Charged particles gyrate perpendicular B, but move freely along B

• cyclotron frequency ωc used for diagnostics and heating (ECRH)

• for kbT ~ 1 keV and B = 2T: rLe ~ 50 µm, rLi ~ 2 mm ⇒ magnetised plasma

Electron Ion

B-field (radii not to scale!)

Page 14: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Magnetised plasmas – particle drifts

On timescales much longer than 1/ωc, motion of gyrocentre is relevant

For an external force F, a drift perpendicular drift is obtained

Example: Plasma confinement in purely toroidal field

• curved magnetic field leads to vertical drift (centrifugal force)

• resulting E field leads to a net outward drift

Plasma confinement in a purely toroidal field is not possible (see later)

Page 15: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Single particle picture – magnetic mirror

For ‘adiabatic changes of gyromotion (gyro-circles almost closed):

• magnetic moment µ ~ mv⊥2 / B = const. along trajectory

• since total energy is conserved, || energy converted to ⊥ if B increases

plane ofreflection

particleorbit

B

B=Bmin B=Bmax

v⊥,0 , v||,0

Page 16: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Particle orbits: mirror in the Earth’s magnetic field

proton driftelectron drift

B-field line

reflection point

trapped particle orbit

Page 17: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Magnetised plasmas – many body picture

A comprehensive approach deals with a description in 6-d phase space

• ‘kinetic theory’ of distribution function f(v,x,t) – too complicated for today ☺

If thermodynamic equilibrium is assumed (f = Maxwellian), the set ofMagnetoHydroDynamic (MHD) equations can be used:

continuity equation

force (Euler) equation

Ohm’s law

+ equation of state (e.g. adiabatic)

+ Maxwell’s equations

• mostly adequate for motion perpendicular to B, usually not along B

Page 18: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Magnetohydrodynamic (MHD) - equilibrium

In equilibrium, there is no time dependence. If in addition, no flow:

⇒ ⇒

One can identify two contributions to the force balance:

magnetic pressure field line tension

N.B.: these two forces lead to two branches of MHD (Alfvén) waves

Page 19: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Ohm’s law and the ‘frozen fieldlines’

The change of magnetic field is governed by Ohm’s law:

• in ideal MHD, plasma and field lines move together (Alfvén time scale, fast)

• resistivity leads to a diffusion of the magnetic field through the plasma(resistive MHD time scale, arbitrarily slow for arbitrary high conductivity)

Important example: collapse of a star leads to enormous field amplification!

( ) ( )BBvEt

B rrrrr

×∇×∇−××∇=×−∇=∂∂

σµ0

1

( ) BBvt

B rrrr

∆+××∇=∂∂

⇒σµ0

1

Page 20: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Ohm’s law and the ‘frozen fieldlines’

Concept of ‘flux tubes’:

• in ideal MHD, plasma and field lines move together (Alfvén time scale, fast)

• flux tubes move with fluid and cannot intersect – topology conserved

• example: collapse of a neutron star

Page 21: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Emission from pulsars validates high B-fields

Beamed (relativistic) ‚curvature radiation‘ from parallel e- motion

Page 22: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

A change of magnetic topology is only possible through reconnection

• opposing field lines reconnect and form new topological objects

• requires finite resistivity in the reconnection region

Example: Coronal Mass Ejection (CME) from the sun

Due to high electrical conductivity, magnetic flux is frozen into plasma

⇒ magnetic field lines and plasma move together

Reconnection in a hot fusion plasma

Page 23: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

A change of magnetic topology is only possible through reconnection

• opposing field lines reconnect and form new topological objects

• requires finite resistivity in the reconnection region

Example: Coronal Mass Ejection (CME) from the sun

Due to high electrical conductivity, magnetic flux is frozen into plasma

⇒ magnetic field lines and plasma move together

Reconnection in a hot fusion plasma

Page 24: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Plasma waves: two fluid equations

After linearisation and Fouriertransform, a 9 x 9 Matrix system is obtained

Matrix is the equivalent of the ‚dielectric tensor‘

Solutions give dispersion relation ω = ω(k)

• neutral gas: e-m waves and sound waves uncoupled

• plasma: sound waves couples to electrostatic wave (charge density)

wave eqn.

ion force balance

electron force balance

Page 25: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Waves in an Unmagnetised Plasma

Electromagnetic wave

ω

k

Page 26: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Waves in a Magnetised Plasma: propagation || to B

right-handed circular polarised wave

left-handed circular polarised wave

electron cyclotron wave

Whistler wave

Magneto-acoustic wave

ion cyclotron wave

Shear Alfvén wave

ω

k

Page 27: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Waves in a Magnetised Plasma: propagation ⊥ to B

k

ωextraordinary wave (X-mode)

ordinary wave (O-mode)

upper hybrid wave

lower hybrid wave

compressional Alfvén wave

Page 28: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Electron Cyclotron Resonance Heating (ECRH)

Microwave beam absorbed at ω=ωce – good localisation and control

Page 29: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

• In the vicinity of the ion-ion hybrid layer, mode conversion to shorter wavelength waves occurs.

IBW : Ion Bernstein WavePropagates towards the high field side

ICW : Ion Cyclotron WavePropagates towards the low field side

Ion Cyclotron Resonance Heating (ICRH)

Example: ion Bernstein wave, electrostatic ion cyclotron wave

Page 30: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

‚The Plasma Universe‘

Core plasma

Edge plasma

Charged particle density n [m -3]

Tem

pera

ture

T [K

]

Note:1 eV = 11600 K