Top Banner
Introduction to Mesoscale Meteorology: Part II Jeremy A. Gibbs School of Meteorology [email protected] January 15, 2015 1 / 70
70

Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Feb 22, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Introduction to Mesoscale Meteorology: Part II

Jeremy A. Gibbs

School of Meteorology

[email protected]

January 15, 2015

1 / 70

Page 2: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Overview

Administrative Follow-UpHomeworkExamsTerm Project

Introduction to Mesoscale, ContinuedSynoptic ScaleMesoscaleClassification of ScalesDefinition of Scales via Scale Analysis on Equations of MotionSummary

2 / 70

Page 3: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Homework

Homework 1

I Distributed on February 3rd

I Due on February 17th

Homework 2

I Distributed on March 3rd

I Due on March 24th (extra week for Spring Break)

Homework 3

I Distributed on April 9th

I Due on April 23rd

I The dates for this homework may change slightly

3 / 70

Page 4: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Exams

Exam 1

I In class on Tuesday, February 24th from 11:30 am - 12:45 pm

I This will cover the first three chapters of material (intro,mountain waves, boundary layer)

Exam 2

I Time to be announced later

I This will cover the fourth chapter of material (convection,single/multi-cell storms, squall lines, supercells, tornadoes,etc.)

Final Exam

I Thursday May 7 in NWC 5600 from 10:30 am - 12:30 pm

4 / 70

Page 5: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Term Project

I Project will be a review of a mesoscale topic of your choice

I Distributed on Tuesday, March 10 - more info then

I Due on the last day of class (April 30th)

5 / 70

Page 6: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Synoptic Scale

I Midlatitude synoptic-scale motions are primarily driven bybaroclinic instability.

I Baroclinic instability most likely with disturbances ∼ 3× LR

LR = NH/f ∼ 1000 km− Rossby radius of deformation

N → Brunt-Vaisala frequency

H → scale height of the atmosphere

f → Coriolis parameter

6 / 70

Page 7: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Synoptic Scale

I LR can be thought of as the length scale at which the velocityvector of a gravity wave is rotated such that it isperpendicular to the pressure gradient

I In other words, LR is the scale at which rotational effectsbecome important

I For scales ∼ LR , velocity and pressure fields both adjust tomaintain balance between momentum and mass fields

I For scales � LR , velocity field adjusts to the pressure fieldduring geostrophic adjustment

I For scales � LR , pressure field adjusts to the velocity fieldduring geostrophic adjustment

7 / 70

Page 8: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Synoptic Scale

I Synoptic scale (& LR) is characterized by near geostrophicbalance for straight flow

I Flow accelerations and ageostrophic motions are small

I Curved flow imbalances result in centripetal acceleration suchthat flow is approximately parallel to curved isobars, i.e. thegradient wind balance.

8 / 70

Page 9: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Mesoscale

I For scales < LR , pressure gradients can be much larger thanon the synoptic scale, while Coriolis acceleration remains ofsimilar magnitude to that on the synoptic scale

I This leads to both large flow accelerations and ageostrophicmotions

I Thus, gradient wind balance does not hold

9 / 70

Page 10: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Mesoscale

I Thus, the mesoscale is dynamically the scale for which bothageostrophic advection and Coriolis acceleration are important

I Unlike the synoptic scale, the mesoscale can be forced by avariety of drivers

I topographyI thermal instabilityI symmetric instabilityI barotropic instabilityI Kelvin-Helmholtz instability, and more

10 / 70

Page 11: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Mesoscale

Compared with synoptic scale disturbances (e.g., extratropicalcyclones), mesoscale phenomena are more short-lived. Themesoscale Lagrangian timescales are bound by:

The buoyancy oscillation

I 2π/N ∼ 10 min

I simple gravity waves

A pendulum day

I 2π/f ∼ 17h

I inertial oscillations, such as low-level ageostrophic windcomponent (leads to nocturnal low-level wind max)

11 / 70

Page 12: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

A Rough Definition

I Let us use a more qualitative definition and try to relate themesoscale to something more concrete.

I Roughly consider that the word mesoscale definesmeteorological events having spatial dimensions ofthe order of one state.

I Thus, individual thunderstorms or cumulus clouds areexcluded since their scale is on the order of a few kilometers.

I Similarly, synoptic-scale cyclones are excluded since their scaleis on the order of several thousands of kilometers.

12 / 70

Page 13: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Classification of Scales

13 / 70

Page 14: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Classification of Scales

I For purposes of this class, we will use Orlanski’s definitions

I Our primary focus will be meso-β (or classical mesoscale) andmeso-γ (or small or convective scale)

I We will also cover meso-α (e.g., hurricanes) and micro-αscale (e.g., tornadoes).

14 / 70

Page 15: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Time Scales

Some temporal scales in the atmosphere are obvious.

I diurnal cycle

I annual cycle

I inertial oscillation period - due to Earth’s rotation, the Coriolisparameter f

I advective time scale - time taken to advect over certaindistance

15 / 70

Page 16: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Space Scales

Some space scales in the atmosphere are obvious.

I global - related to earth’s radius

I scale height of the atmosphere - related to the total mass ofthe atmosphere and gravity

I scale of fixed geographical features - mountain height, width,width of continents, oceans, lakes

16 / 70

Page 17: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis

Scale analysis is a very useful method for establishing theimportance of various processes in the atmosphere and terms inthe governing equations.

Based on the relative importance of these processes/terms, we candeduce much of the behavior of motion at such scales.

17 / 70

Page 18: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis

Consider this simple example:

du

dt=∂u

∂t+ u

∂u

∂x+ w

∂u

∂z= −1

ρ

∂p

∂x+ fv

What is this equation? Can you identify the terms in it?

18 / 70

Page 19: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis

It’s of course the horizontal momentum equation

u, v → zonal, meridional wind components

p → pressure

ρ→ density

f → Coriolis parameter

du

dt,∂u

∂t→ Lagrangian, Eulerian time derivatives

u∂u

∂x,w

∂u

∂z→ advection

−1

ρ

∂p

∂x→ horizontal pressure gradient force

fv → Coriolis acceleration

19 / 70

Page 20: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis

du

dt=∂u

∂t+ u

∂u

∂x+ w

∂u

∂z= −1

ρ

∂p

∂x+ fv

With scale analysis, we

I assign a characteristic value for each of the variables,

I estimate the magnitude of each term, and

I determine their relative importance

20 / 70

Page 21: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis

For example

du

dt∼ ∆u

∆t∼ V

T,

where ,

I V is the velocity scale (typical magnitude or amplitude ifdescribed as a wave component), and

I T the time scale (typical length of time for velocity to changeby ∆u, or the period for oscillations

21 / 70

Page 22: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis

du

dt∼ ∆u

∆t∼ V

T,

A point of emphasis

I The typical magnitude of change defines the scale, which isnot always the same as the magnitude of the quantity itself.

I The absolute temperature is a good example, as is surfacepressure.

22 / 70

Page 23: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis

du

dt=∂u

∂t+ u

∂u

∂x+ w

∂u

∂z= −1

ρ

∂p

∂x+ fv

The utility of scale analysis

I For different scales, the terms in the equation of motion havedifferent importance.

I This leads to different behavior of the motion, meaning thereis a dynamic significance to the scale!

23 / 70

Page 24: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Synoptic Scale

Let’s do the scale analysis for synoptic scale motion using thehorizontal momentum equation

I V ∼ 10 ms−1

I W ∼ 0.1 ms−1

I L ∼ 1000 km = 106 m

I H ∼ 10 km = 104 m

I T ∼ L/V ∼ 105 s

I f ∼ 10−4 s−1

I ρ ∼ 1 kgm−3

I ∆p in horizontal ∼ 10 mb = 1000 Pa

24 / 70

Page 25: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Synoptic Scale

∆p in horizontal ∼ 10 mb = 1000 Pa

I Note, again, that it is the typical variation that determinesthat typical scale, not the value itself

I Using the scale of 1000 mb will give you the wrong result

25 / 70

Page 26: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Synoptic Scale

∂u

∂t+u

∂u

∂x+w

∂u

∂z= −1

ρ

∂p

∂x+fv

26 / 70

Page 27: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Synoptic Scale

∂u

∂t+u

∂u

∂x+w

∂u

∂z= −1

ρ

∂p

∂x+fv

V

T

VV

L

WV

H

∆p

ρLfV

27 / 70

Page 28: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Synoptic Scale

∂u

∂t+u

∂u

∂x+w

∂u

∂z= −1

ρ

∂p

∂x+fv

V

T

VV

L

WV

H

∆p

ρLfV

10

10510× 10

1060.1× 10

104103

1× 10610−4 × 10

28 / 70

Page 29: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Synoptic Scale

∂u

∂t+u

∂u

∂x+w

∂u

∂z= −1

ρ

∂p

∂x+fv

V

T

VV

L

WV

H

∆p

ρLfV

10

10510× 10

1060.1× 10

104103

1× 10610−4 × 10

10−4 10−4 10−4 10−3 10−3

29 / 70

Page 30: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Synoptic Scale

∂u

∂t+u

∂u

∂x+w

∂u

∂z= −1

ρ

∂p

∂x+fv

10−4 10−4 10−4 10−3 10−3

It turns out that the time tendency and advection terms are oneorder of magnitude smaller for synoptic scale flows.

The pressure gradient force and Coriolis force are in rough balance.What kind of flow do you get in this case? quasi-geostrophic flow.

Scale analysis confirms our previous dynamical reasoning.

30 / 70

Page 31: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Synoptic Scale

Let’s do the scale analysis for synoptic scale motion using thevertical momentum equation

I ∆p over vertical length scale H ∼ 1000 mb = 105 Pa

31 / 70

Page 32: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Synoptic Scale

∂w

∂t+u

∂w

∂x+w

∂w

∂z= −1

ρ

∂p

∂z−g

32 / 70

Page 33: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Synoptic Scale

∂w

∂t+u

∂w

∂x+w

∂w

∂z= −1

ρ

∂p

∂z−g

W

T

VW

L

WW

H

∆p

ρHg

33 / 70

Page 34: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Synoptic Scale

∂w

∂t+u

∂w

∂x+w

∂w

∂z= −1

ρ

∂p

∂z−g

W

T

VW

L

WW

H

∆p

ρHg

0.1

10510× 0.1

1060.1× 0.1

104105

1× 10410

34 / 70

Page 35: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Synoptic Scale

∂w

∂t+u

∂w

∂x+w

∂w

∂z= −1

ρ

∂p

∂z−g

W

T

VW

L

WW

H

∆p

ρHg

0.1

10510× 0.1

1060.1× 0.1

104105

1× 10410

10−6 10−6 10−6 10 10

35 / 70

Page 36: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Synoptic Scale

∂w

∂t+u

∂w

∂x+w

∂w

∂z= −1

ρ

∂p

∂z−g

10−6 10−6 10−6 10 10

Vertical acceleration � vertical pressure gradient and gravitationalterms, which are of the same order of magnitude.

The balance between these two terms gives the hydrostatic balance- a very good approximation for synoptic scale flows.

Also, the vertical motion is much smaller than the horizontalmotion.

36 / 70

Page 37: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Synoptic Scale

We saw a good example of horizontal scale determining thedynamics of motion!

In summary, synoptic (and up) scale flows are

I quasi-two-dimensional (because w << u )

I hydrostatic (we can see it by performing scale analysis forvertical equation of motion)

I Coriolis force is a dominant term in the equation of motionand it is in rough balance with the PGF

I the flow is quasi-geostrophic

37 / 70

Page 38: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Mesoscale

What’s all this synoptic scale stuff? What about the mesoscale?

Okay. Let’s do the scale analysis for mesoscale motion using thehorizontal momentum equation

I V ∼ 10 ms−1

I W ∼ 1 ms−1 (↑)

I L ∼ 100 km = 105 m (↓)

I H ∼ 10 km = 104 m

I T ∼ L/V = 104 s (↓)

I f ∼ 10−4 s−1

I ρ ∼ 1 kgm−3

I ∆p in horizontal ∼ 1 mb = 100 Pa (↓)

38 / 70

Page 39: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Mesoscale

∂u

∂t+u

∂u

∂x+w

∂u

∂z= −1

ρ

∂p

∂x+fv

39 / 70

Page 40: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Mesoscale

∂u

∂t+u

∂u

∂x+w

∂u

∂z= −1

ρ

∂p

∂x+fv

V

T

VV

L

WV

H

∆p

ρLfV

40 / 70

Page 41: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Mesoscale

∂u

∂t+u

∂u

∂x+w

∂u

∂z= −1

ρ

∂p

∂x+fv

V

T

VV

L

WV

H

∆p

ρLfV

10

10410× 10

1051× 10

104102

1× 10510−4 × 10

41 / 70

Page 42: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Mesoscale

∂u

∂t+u

∂u

∂x+w

∂u

∂z= −1

ρ

∂p

∂x+fv

V

T

VV

L

WV

H

∆p

ρLfV

10

10410× 10

1051× 10

104102

1× 10510−4 × 10

10−3 10−3 10−3 10−3 10−3

42 / 70

Page 43: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Mesoscale

∂u

∂t+u

∂u

∂x+w

∂u

∂z= −1

ρ

∂p

∂x+fv

10−3 10−3 10−3 10−3 10−3

All terms in the equation are of the same magnitude

None of them can be neglected

We no longer have geostrophy!

43 / 70

Page 44: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Mesoscale

Let’s do the scale analysis for mesoscale motion using the verticalmomentum equation

I The hydrostatic approximation is still reasonable for themesoscale

44 / 70

Page 45: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Mesoscale

∂w

∂t+u

∂w

∂x+w

∂w

∂z= −1

ρ

∂p

∂z−g

45 / 70

Page 46: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Mesoscale

∂w

∂t+u

∂w

∂x+w

∂w

∂z= −1

ρ

∂p

∂z−g

W

T

VW

L

WW

H

∆p

ρHg

46 / 70

Page 47: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Mesoscale

∂w

∂t+u

∂w

∂x+w

∂w

∂z= −1

ρ

∂p

∂z−g

W

T

VW

L

WW

H

∆p

ρHg

1

10410× 1

1051× 1

104105

1× 10410

47 / 70

Page 48: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Mesoscale

∂w

∂t+u

∂w

∂x+w

∂w

∂z= −1

ρ

∂p

∂z−g

W

T

VW

L

WW

H

∆p

ρHg

1

10410× 1

1051× 1

104105

1× 10410

10−4 10−4 10−4 10 10

48 / 70

Page 49: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Mesoscale

∂w

∂t+u

∂w

∂x+w

∂w

∂z= −1

ρ

∂p

∂z−g

10−4 10−4 10−4 10 10

Vertical acceleration � vertical pressure gradient and gravitationalterms, which are of the same order of magnitude.

The balance between these two terms gives the hydrostatic balance- still a good approximation for mesoscale flows.

The vertical motion is much smaller than the horizontal motion.

49 / 70

Page 50: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Mesoscale

Scale analysis confirms our previous dynamical reasoning.

In summary, for mesoscale flows:

I non-geostrophic (i.e., ageostrophic component is significant)

I quasi-two-dimensional (because w � u)

I nearly hydrostatic

I Coriolis force is non-negligible

This can be a dynamic definition of the mesoscale, or in Orlanski’sdefinition, the meso-β scale.

50 / 70

Page 51: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Convection/Storm Scale

We can go one step further down the scale, looking at cumulusconvection or even supercell storms.

Let’s do the scale analysis using the horizontal momentum equation

I V ∼ 10 ms−1

I W ∼ 10 ms−1 (↑)

I L ∼ 10 km = 104 m (↓)

I H ∼ 10 km = 104 m

I T ∼ L/V = 103 s (↓)

I f ∼ 10−4 s−1

I ρ ∼ 1 kgm−3

I ∆p in horizontal ∼ 1 mb = 100 Pa

51 / 70

Page 52: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Convection/Storm Scale

∂u

∂t+u

∂u

∂x+w

∂u

∂z= −1

ρ

∂p

∂x+fv

52 / 70

Page 53: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Convection/Storm Scale

∂u

∂t+u

∂u

∂x+w

∂u

∂z= −1

ρ

∂p

∂x+fv

V

T

VV

L

WV

H

∆p

ρLfV

53 / 70

Page 54: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Convection/Storm Scale

∂u

∂t+u

∂u

∂x+w

∂u

∂z= −1

ρ

∂p

∂x+fv

V

T

VV

L

WV

H

∆p

ρLfV

10

10310× 10

10410× 10

104102

1× 10410−4 × 10

54 / 70

Page 55: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Convection/Storm Scale

∂u

∂t+u

∂u

∂x+w

∂u

∂z= −1

ρ

∂p

∂x+fv

V

T

VV

L

WV

H

∆p

ρLfV

10

10310× 10

10410× 10

104102

1× 10410−4 × 10

10−2 10−2 10−2 10−2 10−3

55 / 70

Page 56: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Convection/Storm Scale

∂u

∂t+u

∂u

∂x+w

∂u

∂z= −1

ρ

∂p

∂x+fv

10−2 10−2 10−2 10−2 10−3

Coriolis force is an order of magnitude smaller than the other terms

Coriolis can be neglected when studying cumulus convection thatlasts for an hour or so.

Again, the acceleration term is as important as the PGF.

56 / 70

Page 57: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Convection/Storm Scale

Let’s do the scale analysis using the vertical momentum equation -which are now based on the Bousinessq equations of motion.

I ∇ · ~u ≈ 0

I ρ = constant everywhere, except when paired with gravity

I viscosity, thermal diffusivity, and specific heat are assumedconstant

The Boussinesq approximation is used because it is the residualbetween the PGF and buoyancy force terms. Therefore we want toestimate the terms in terms of the deviations/perturbations fromthe hydrostatically balanced base state.

57 / 70

Page 58: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Convection/Storm Scale

∂w

∂t+u

∂w

∂x+w

∂w

∂z= −1

ρ

∂p′

∂z+θ′

θg

58 / 70

Page 59: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Convection/Storm Scale

∂w

∂t+u

∂w

∂x+w

∂w

∂z= −1

ρ

∂p′

∂z+θ′

θg

W

T

VW

L

WW

H

∆p

ρH

∆θ

θ0g

59 / 70

Page 60: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Convection/Storm Scale

∂w

∂t+u

∂w

∂x+w

∂w

∂z= −1

ρ

∂p′

∂z+θ′

θg

W

T

VW

L

WW

H

∆p

ρH

∆θ

θ0g

10

10310× 10

10410× 10

104102

0.5× 1041× 10

300

60 / 70

Page 61: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Convection/Storm Scale

∂w

∂t+u

∂w

∂x+w

∂w

∂z= −1

ρ

∂p′

∂z+θ′

θg

W

T

VW

L

WW

H

∆p

ρH

∆θ

θ0g

10

10310× 10

10410× 10

104102

0.5× 1041× 10

300

10−2 10−2 10−2 2× 10−2 3× 10−2

61 / 70

Page 62: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Convection/Storm Scale

∂w

∂t+u

∂w

∂x+w

∂w

∂z= −1

ρ

∂p′

∂z+θ′

θg

10−2 10−2 10−2 2× 10−2 3× 10−2

Here we are using the vertical mean density as the density scale inPGF term.

Clearly, the vertical acceleration term is now important.

Thus, the hydrostatic approximation is no longer applicable.

62 / 70

Page 63: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Convection/Storm Scale

In summary, for convective/storm scale:

I three-dimensional

I nonhydrostatic

I ageostrophic

I Coriolis force is negligible

In Orlanski’s definition, this is the meso-γ scale.

63 / 70

Page 64: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Scale Analysis: Small Scales

As one goes further down to the micro-scales, the basic dynamicsbecomes similar to the meso-γ flows - the flow is

I three-dimensional

I nonhydrostatic

I ageostrophic

I Coriolis force is negligible

64 / 70

Page 65: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Know whether hydrostatic is reasonable a prioiri

The analysis I showed made assumptions about whether thehydrostatic approximation was appropriate. Here’s how to do that.

We want to assess the scales of vertical acceleration and PGF. Youcan show that

O(dwdt

)O(−1ρ∂p′

∂z

) ∼ (H

L

)2

whereH

L→ aspect ratio

65 / 70

Page 66: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Know whether hydrostatic is reasonable a prioiri

H/L� 1→ hydrostatic (at least a reasonable approximation)

H/L & 1→ nonhydrostatic

From our cases:Synoptic: H/L = 104/106 = 10−2 → hydrostaticMeso-β: H/L = 104/105 = 10−1 → hydrostaticMeso-γ: H/L = 104/104 = 1→ nonhydrostatic

Read for yourself Markowski and Richardson (page 9) for completedetails.

66 / 70

Page 67: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Know whether hydrostatic is reasonable a prioiri

67 / 70

Page 68: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Summary

There are more than one way to define the scales of weathersystems.

I Time/space scales of the system.

I Physically meaningful non-dimensional parameters (e.g.,Rossby number).

68 / 70

Page 69: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

Summary

The most important thing to know is the key characteristicsassociated with weather systems/disturbances at each of thesescales!

Don’t get caught up in arbitrary names scientists give to thescales. Focus on physical features.

69 / 70

Page 70: Introduction to Mesoscale Meteorology: Part IItwister.caps.ou.edu/MM2015/docs/chapter1/chapter1_presentation2.pdfA Rough De nition I Let us use a more qualitative de nition and try

The End

Have a Great Weekend

70 / 70