Top Banner
One-particle Green functions Polarization propagator and two-particle Green functions GW approximation Bethe-Salpeter equation (BSE) Introduction to Green functions, the GW approximation, and the Bethe-Salpeter equation Stefan Kurth 1. Universidad del Pa´ ıs Vasco UPV/EHU, San Sebasti´ an, Spain 2. IKERBASQUE, Basque Foundation for Science, Bilbao, Spain 3. European Theoretical Spectroscopy Facility (ETSF), www.etsf.eu CEES 2015 Donostia-San Sebasti´ an: S. Kurth Introduction to Green functions, GW, and BSE
61

Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

Apr 10, 2018

Download

Documents

lyliem
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Introduction to Green functions, the GWapproximation, and the Bethe-Salpeter equation

Stefan Kurth

1. Universidad del Paıs Vasco UPV/EHU, San Sebastian, Spain2. IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

3. European Theoretical Spectroscopy Facility (ETSF), www.etsf.eu

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 2: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Outline

One-particle Green functions

Polarization propagator and two-particle Green functions

The GW approximation

The Bethe-Salpeter equation (BSE)

Summary

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 3: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Green functions in mathematicsOne-particle Green functionsPerturbation theory and Feynman diagramsSelf energy and Dyson equation

One-particle Green functions

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 4: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Green functions in mathematicsOne-particle Green functionsPerturbation theory and Feynman diagramsSelf energy and Dyson equation

Green functions in mathematics

consider inhomogeneous differential equation (1D for simplicity)

Dxy(x) = f(x)

where Dx is linear differential operator in x.

Example: damped harmonic oscillator Dx = d2

dx2+ γ d

dx + ω2

general solution of inhomogeneous equation:

y(x) = yhom(x) + yspec(x)

where yhom is solution of the homogeneous eqn. Dxyhom(x) = 0and yspec(x) is any special solution of the inhomogeneous equation.

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 5: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Green functions in mathematicsOne-particle Green functionsPerturbation theory and Feynman diagramsSelf energy and Dyson equation

Green functions in mathematics (cont.)

how to obtain a special solution of the inhomogeneous equation forany inhomogeneity f(x)?first find the solution of the following equation

DxG(x, x′) = δ(x− x′)

This defines the Green function G(x, x′) corresponding to theoperator Dx.

Once G(x, x′) is found, a special solution can be constructed by

yspec(x) =

∫dx′ G(x, x′)f(x′)

check: Dx

∫dx′ G(x, x′)f(x′) =

∫dx′ δ(x− x′)f(x′) = f(x)

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 6: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Green functions in mathematicsOne-particle Green functionsPerturbation theory and Feynman diagramsSelf energy and Dyson equation

Hamiltonian of interacting electrons

consider system of interacting electrons in static external potentialVext(r) described by Hamiltonian H

H = T + Vext + W =

∫d3x ψ†(x)

(−∇

2

2+ Vext(r)

)ψ(x)

+1

2

∫d3x

∫d3x′ ψ†(x)ψ†(x′)

1

|r− r′|ψ(x′)ψ(x)

x = (r, σ): space-spin coordinate

ψ†(x), ψ(x): electron creation and annihilation operators

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 7: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Green functions in mathematicsOne-particle Green functionsPerturbation theory and Feynman diagramsSelf energy and Dyson equation

One-particle Green functions at zero temperature

Time-ordered 1-particle Green function at zero temperature

iG(x, t;x′, t′) =〈ΨN

0 |T [ψ(x, t)H ψ†(x′, t′)H ]|ΨN

0 〉〈ΨN

0 |ΨN0 〉

|ΨN0 〉: N -particle ground state of H: H|ΨN

0 〉 = EN0 |ΨN0 〉

ψ(x, t)H = exp(iHt)ψ(x) exp(−iHt) :electron annihilation operator in Heisenberg picture

T : time-ordering operatorT [ψ(x, t)H ψ(x′, t′)†H ] =

θ(t− t′)ψ(x, t)H ψ(x′, t′)†H − θ(t′ − t)ψ(x′, t′)†H ψ(x, t)H

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 8: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Green functions in mathematicsOne-particle Green functionsPerturbation theory and Feynman diagramsSelf energy and Dyson equation

Green functions as propagator

t1 > t2 (t > t′)create electron at time t2 atposition r2 and propagate;

then annihilate electron at time t1at position r1

t2 > t1 (t′ > t)annihilate electron (create hole) at

time t1 at position r1;then create electron (annihilatehole) at time t2 at position r2

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 9: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Green functions in mathematicsOne-particle Green functionsPerturbation theory and Feynman diagramsSelf energy and Dyson equation

Observables from Green functions

Information which can be extracted from Green functions

ground-state expectation values of any single-particle operatorO =

∫d3x ψ†(x)o(x)ψ(x)

e.g., density operator n(r) =∑

σ ψ†(rσ)ψ(rσ)

ground-state energy of the system

Galitski-Migdal formula

EN0 = − i2

∫d3x lim

t′→t+limr′→r

(i∂

∂t− ∇

2

2

)G(rσ, t; r′σ, t′)

spectrum of system: direct photoemission, inversephotoemission

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 10: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Green functions in mathematicsOne-particle Green functionsPerturbation theory and Feynman diagramsSelf energy and Dyson equation

Spectral (Lehmann) representation of Green function

use completeness relation 1 =∑

N,k |ΨNk 〉〈ΨN

k | and Fouriertransform w.r.t. t− t′−→

Lehmann representation

G(x,x′;ω)

=∑k

gk(x)g∗k(x′)

ω − (EN+1k − EN0 ) + iη

+∑k

fk(x)f∗k (x′)

ω + (EN−1k − EN0 )− iη

with quasiparticle amplitudes

fk(x) = 〈ΨN−1k |ψ(x)|ΨN

0 〉

gk(x) = 〈ΨN0 |ψ(x)|ΨN+1

k 〉

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 11: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Green functions in mathematicsOne-particle Green functionsPerturbation theory and Feynman diagramsSelf energy and Dyson equation

Spectral information contained in Green function

Green function contains spectral information on single-particleexcitations changing the number of particles by one! The poles ofthe GF give the corresponding excitation energies.

direct photoemission inverse photoemission

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 12: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Green functions in mathematicsOne-particle Green functionsPerturbation theory and Feynman diagramsSelf energy and Dyson equation

Spectral function

Spectral function

A(x,x′;ω) = − 1

πImGR(x,x′;ω) =

∑k

gk(x)g∗k(x′)δ(ω+EN0 −EN+1

k )+fk(x)f∗k (x′)δ(ω+EN−1k −EN0 )

A(x,x′;ω): local density of states

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 13: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Green functions in mathematicsOne-particle Green functionsPerturbation theory and Feynman diagramsSelf energy and Dyson equation

Perturbation theory for Green function

Green function G(x, t;x′, t′) = −i〈ΨN0 |T [ψ(x, t)H ψ(x′, t′)†H ]|ΨN

0 〉is a complicated object, it involves many-body ground state |ΨN

0 〉−→ perturbation theory to calculate Green function: splitHamitonian in two parts

H = H0 + W = T + Vext + W

treat interaction W as perturbation −→ machinery of many-bodyperturbation theory: Wick’s theorem, Gell-Mann-Low theorem,and, most importantly, Feynman diagrams

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 14: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Green functions in mathematicsOne-particle Green functionsPerturbation theory and Feynman diagramsSelf energy and Dyson equation

Feynman diagrams

Feynman diagrams: graphical representation of perturbation series

elements of diagrams:

Green function G0 of noninteracting system (H0)

Green function G of interacting system

Coulomb interaction vClb(x, t;x′, t′) = δ(t−t′)|r−r′|

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 15: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Green functions in mathematicsOne-particle Green functionsPerturbation theory and Feynman diagramsSelf energy and Dyson equation

Diagrammatic series for Green function

Perturbation series for G: sum of all connected diagrams

= + + +

+ ++ + . . . .+

+

Lots of diagrams!

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 16: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Green functions in mathematicsOne-particle Green functionsPerturbation theory and Feynman diagramsSelf energy and Dyson equation

Self energy: reducible and irreducible

Self energy insertion and reducible self energy

Self energy insertion: any part of a diagram which isconnected to the rest of the diagram by two G0-lines, oneincoming and one outgoing

Reducible self energy Σ: sum of all self-energy insertions

= + +

+ ++ + . . . .

++

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 17: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Green functions in mathematicsOne-particle Green functionsPerturbation theory and Feynman diagramsSelf energy and Dyson equation

Self energy: reducible and irreducible

Proper self energy insertion and irreducible (proper) self energy

Proper self energy insertion: any self energy insertion whichcannot be separated in two pieces by cutting a single G0-line

Irreducible self energy Σ: sum of all proper self-energyinsertions

= +

+ . . . .+

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 18: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Green functions in mathematicsOne-particle Green functionsPerturbation theory and Feynman diagramsSelf energy and Dyson equation

Dyson equation

= +

= +

+ . . . .

+

+ +

=

Dyson equation

G(x,x′;ω) = G0(x,x′;ω)

+

∫d3y

∫d3y′G0(x,y;ω)Σ(y,y′;ω)G(y′,x′;ω)

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 19: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Green functions in mathematicsOne-particle Green functionsPerturbation theory and Feynman diagramsSelf energy and Dyson equation

Skeletons and dressed skeletons

Skeleton diagram: self-energy diagram which does contain noother self-energy insertions except itself

Dressed skeleton: replace all G0-lines in a skeleton by G-lines −→irreduzible self energy: sum of all dressed skeleton diagrams

−→ Σ becomes functional of G: Σ = Σ[G]CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 20: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Green functions in mathematicsOne-particle Green functionsPerturbation theory and Feynman diagramsSelf energy and Dyson equation

Equation of motion for Green function

Lehmann representation for G0

G0(x,x′;ω)

=∑k

θ(εk − εF )ϕk(x)ϕ∗k(x′)

ω − εk + iη+∑k

θ(εF − εk)ϕk(x)ϕ∗k(x′)

ω − εk − iη

act with operator ω − h0(x) = ω − (−∇2x2 + vext(x)) on G0

Equation of motion for non-interacting Green function G0

(ω − h0(x))G0(x,x′;ω) =

∑k

ϕk(x)ϕ∗k(x′) = δ(x− x′)

−→ G0 is a mathematical Green function !

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 21: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Green functions in mathematicsOne-particle Green functionsPerturbation theory and Feynman diagramsSelf energy and Dyson equation

Equation of motion for Green function (cont.)

act with ω − h0(x) on Dyson equation for G

Equation of motion for interacting Green function G

(ω− h0(x))G(x,x′;ω) = δ(x−x′) +

∫d3y′ Σ(x,y′;ω)G(y′,x′;ω)

or with time arguments(i∂

∂t− h0(x)

)G(x, t;x′, t′) = δ(x− x′)δ(t− t′)

+

∫d3y′

∫dt′′Σ(x, t;y′, t′′)G(y′, t′′,x′; t′)

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 22: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Linear density responseTwo-particle Green function and polarization propagatorParticle-hole propagator: diagrammatic representationHedin’s equations

Polarization propagator andtwo-particle Green functions

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 23: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Linear density responseTwo-particle Green function and polarization propagatorParticle-hole propagator: diagrammatic representationHedin’s equations

Linear density response

Suppose we expose our interacting many-electron system to anexternal, time-dependent perturbation V (t) =

∫d3x δV (x, t)n(x)

we are interested in the change of the density

δn(x, t) = 〈ΨN (t)|n(x)|ΨN (t)〉 − 〈ΨN0 |n(x)|ΨN

0 〉

to linear order in δV (x, t)

time-dependent Schrodinger equation

i∂

∂t|ΨN (t)〉 =

(H + V (t)

)|ΨN (t)〉

in Heisenberg picture |ΨN (t)〉H = exp(iHt)|ΨN (t)〉 −→

i∂

∂t|ΨN (t)〉H = V (t)H |ΨN (t)〉H

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 24: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Linear density responseTwo-particle Green function and polarization propagatorParticle-hole propagator: diagrammatic representationHedin’s equations

Linear density response (cont.)

−→ to linear order in δV (x, t) we have

|ΨN (t)〉 = exp(−iHt)(

1− i∫ t

0dt′ V (t′)H

)|ΨN

0 〉

and for δn(x, t) =∫d3x′

∫∞0 dt′ χ(x, t;x′, t′)δV (x′, t′) with

linear density response function

iχ(x, t;x′, t′) = iΠR(x, t;x′, t′)

= θ(t− t′)〈ΨN0 |[ˆn(x, t)H , ˆn(x′, t′)H ]|ΨN

0 〉〈ΨN

0 |ΨN0 〉

with ˆn(x, t)H = n(x, t)H − 〈ΨN0 |n(x)|ΨN

0 〉

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 25: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Linear density responseTwo-particle Green function and polarization propagatorParticle-hole propagator: diagrammatic representationHedin’s equations

Linear density response (cont.)

Lehmann representation of linear density response function

χ(x,x′;ω) = ΠR(x,x′;ω) =∑k

〈ΨN0 |ˆn(x)|ΨN

k 〉〈ΨNk |ˆn(x′)|ΨN

0 〉ω − (ENk − EN0 ) + iη

−∑k

〈ΨN0 |ˆn(x′)|ΨN

k 〉〈ΨNk |ˆn(x)|ΨN

0 〉ω + (ENk − EN0 ) + iη

note: the poles of χ are at the optical excitation energies of thesystem, i.e., excitations for which the number of particles does notchange!

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 26: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Linear density responseTwo-particle Green function and polarization propagatorParticle-hole propagator: diagrammatic representationHedin’s equations

Macroscopic response in solids

Optical absorption from macroscopic dielectric function εM (ω)

δV ext(r, t) = V ext(q)e−i(ωt−qr) , q � G

In a periodic system, induced potential δV ind contains allcomponents with k = q + G

δV ind(r, t) = e−iωt∑G

V indG (q)ei(q+G)r

Fourier component of the total potential in a solid:

V totG (q) = δG,0V

ext(q)+V indG (q) = [δG,0 + vG(q)χG,0(q, ω)]V ext(q)

with response function in momentum representation

χG,G′(q, ω) =

∫dr1dr2e

i(q+G)r1χ(r1, r2, ω)e−i(q+G′)r2

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 27: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Linear density responseTwo-particle Green function and polarization propagatorParticle-hole propagator: diagrammatic representationHedin’s equations

Macroscopic response in solids

Macroscopic field and macroscopic dielectric function

Macroscopic (averaged) potential: V totM (q) = V tot

G=0(q)

Macroscopic dielectric function:

V ext(q) = εM (q, ω)V totM (q)

εM (q, ω) =1

1 + vG=0(q)χ0,0(q, ω)

optical absorption rate

Abs(ω) = limq→0

Im εM (q, ω)

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 28: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Linear density responseTwo-particle Green function and polarization propagatorParticle-hole propagator: diagrammatic representationHedin’s equations

Two-particle Green function and polarization propagator

Two-particle Green function

i2G(2)(x1, t1;x2, t2;x3, t3;x4, t4) =1

〈ΨN0 |ΨN

0 〉

〈ΨN0 |T [ψ(x1, t1)H ψ(x2, t2)H ψ

†(x3, t3)H ψ†(x4, t4)H ]|ΨN

0 〉

Polarization propagator

iΠ(x, t;x′, t′) =〈ΨN

0 |T [ˆn(x, t)H ˆn(x′, t′)H ]|ΨN0 〉

〈ΨN0 |ΨN

0 〉

relation between the two:

i2G(2)(x1, t1;x2, t2;x1, t+1 ;x2, t

+2 ) = iΠ(x1, t1;x2, t2)+n(x1)n(x2)

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 29: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Linear density responseTwo-particle Green function and polarization propagatorParticle-hole propagator: diagrammatic representationHedin’s equations

Lehmann representation of polarization propagator

Π(x,x′;ω) =∑k

〈ΨN0 |ˆn(x)|ΨN

k 〉〈ΨNk |ˆn(x′)|ΨN

0 〉ω − (ENk − EN0 ) + iη

−∑k

〈ΨN0 |ˆn(x′)|ΨN

k 〉〈ΨNk |ˆn(x)|ΨN

0 〉ω + (ENk − EN0 )− iη

compare with Lehmann representation of linear density response

χ(x,x′;ω) = ΠR(x,x′;ω) =∑k

〈ΨN0 |ˆn(x)|ΨN

k 〉〈ΨNk |ˆn(x′)|ΨN

0 〉ω − (ENk − EN0 ) + iη

−∑k

〈ΨN0 |ˆn(x′)|ΨN

k 〉〈ΨNk |ˆn(x)|ΨN

0 〉ω + (ENk − EN0 ) + iη

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 30: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Linear density responseTwo-particle Green function and polarization propagatorParticle-hole propagator: diagrammatic representationHedin’s equations

Particle-hole propagator: diagrammatic representation

Definition of particle-hole propagator

The particle-hole propagator is the two-particle Green function witha time-ordering such that both the two latest and the two earliesttimes correspond to one creation and one annihilation operator

Diagrammatic representation:

x 1

, t 1

L(x1, t

1; x

2, t

2; x

3, t

3; x

4, t

4) +=

x 4

, t 4

x 3

, t 3

x 2

, t 2

x 4

, t 4

x 1

, t 1

x 3

, t 3

x 2

, t 2

Diagrammatic representation of polarization propagator:

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 31: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Linear density responseTwo-particle Green function and polarization propagatorParticle-hole propagator: diagrammatic representationHedin’s equations

Polarization propagator and irreducible polarizationinsertions

Irreducible polarization insertion

A diagram for the polarization propagator which cannot be reducedto lower-order diagrams for Π by cutting a single interaction line

Def:

−→ Dyson-like eqn. for fullpolarization propagator

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 32: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Linear density responseTwo-particle Green function and polarization propagatorParticle-hole propagator: diagrammatic representationHedin’s equations

Effective interaction and dielectric function

Effective interaction

W =: ε−1vClb = vClb + vClbPW

Dielectric function

ε = 1− vClbP

Inverse dielectric function

ε−1 = 1 + vClbΠ

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 33: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Linear density responseTwo-particle Green function and polarization propagatorParticle-hole propagator: diagrammatic representationHedin’s equations

Vertex insertions

Vertex insertion

(part of a) diagram with one external in- and one outgoing G0-lineand one external interaction line

Irreducible vertex insertion

A vertex insertion which has no self-energy insertions on the in-and outgoing G0-lines and no polarization insertion on the externalinteraction line

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 34: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Linear density responseTwo-particle Green function and polarization propagatorParticle-hole propagator: diagrammatic representationHedin’s equations

Irreducible vertex and Hedin’s equations

Irreducible vertex

Hedin’s equations (exact!)

L. Hedin, Phys. Rev. 139 (1965)

Hedin’s equations

Σ = vHart + iGWΓ

iP = GGΓ

G = G0 +G0ΣG

W = vClb + vClbPW

Γ = 1 +δΣ

δGGGΓ

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 35: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Band gaps and quasiparticle bands in GWOptical absorption in GW

The GW approximation

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 36: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Band gaps and quasiparticle bands in GWOptical absorption in GW

GW approximation

In the GW approximation the vertex is approximated as: Γ ≈ 1

Hedin’s equations (exact) GW approximation

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 37: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Band gaps and quasiparticle bands in GWOptical absorption in GW

GW approximation

Perturbative GW corrections

h0(r)ϕi(r) + Vxc(r)ϕi(r) = εiϕi(r)

h0(r)φi(r) +

∫dr′ Σ(r, r′, ω = Ei) φi(r

′) = Ei φi(r)

First-order perturbative corrections with Σ = GW :

Ei − εi = 〈ϕi|Σ− Vxc|ϕi〉

Hybertsen and Louie, PRB 34, 5390 (1986);

Godby, Schluter and Sham, PRB 37, 10159 (1988)

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 38: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Band gaps and quasiparticle bands in GWOptical absorption in GW

GW propaganda slide: improvement of gaps over LDA

Schilfgaarde, PRL 96, 226402 (2006)

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 39: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Band gaps and quasiparticle bands in GWOptical absorption in GW

GW quasiparticle bands in copper

dashed: LDA, solid: GW, dots: expt.

Marini, Onida, Del Sole, PRL 88, 016403 (2001)

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 40: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Band gaps and quasiparticle bands in GWOptical absorption in GW

Absorption by independent Kohn-Sham particles

Independent transitions:

Im[ε(ω)] =8π2

ω2

∑ij |〈ϕj |e · v|ϕi〉|2δ(εj−εi−ω)

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 41: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Band gaps and quasiparticle bands in GWOptical absorption in GW

Absorption by independent Kohn-Sham particles

Independent transitions:

Im[ε(ω)] =8π2

ω2

∑ij |〈ϕj |e · v|ϕi〉|2δ(εj−εi−ω)

Particles are interacting!

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 42: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Band gaps and quasiparticle bands in GWOptical absorption in GW

Optical absorption in GW: Independent quasiparticles

Independent transitions:

Im[ε(ω)] =8π2

ω2

∑ij |〈ϕj |e·v|ϕi〉|2δ(Ej−Ei−ω)

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 43: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Band gaps and quasiparticle bands in GWOptical absorption in GW

Optical absorption in GW: Independent quasiparticles

Independent transitions:

Im[ε(ω)] =8π2

ω2

∑ij |〈ϕj |e·v|ϕi〉|2δ(Ej−Ei−ω)

Something still missing: the vertex, i.e., particle-hole interactions!

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 44: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Band gaps and quasiparticle bands in GWOptical absorption in GW

Absorption

Neutral excitations → poles of two-particle Green’s function Lin GW: excitonic effects, i.e., electron-hole interaction missing

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 45: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Band gaps and quasiparticle bands in GWOptical absorption in GW

Absorption

Neutral excitations → poles of two-particle Green’s function Lin GW: excitonic effects, i.e., electron-hole interaction missing

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 46: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Band gaps and quasiparticle bands in GWOptical absorption in GW

Absorption

Neutral excitations → poles of two-particle Green’s function Lin GW: excitonic effects, i.e., electron-hole interaction missing

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 47: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Derivation of BSEStandard approximations to BSE

The Bethe-Salpeter equation (BSE)

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 48: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Derivation of BSEStandard approximations to BSE

Derivation of the Bethe-Salpeter equation (1)

Propagator of e-h pair in a many-body system:

1st step: Dressing one-particle propagators (Dyson equation)

Propagation of dressed interacting electron and hole:

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 49: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Derivation of BSEStandard approximations to BSE

Derivation of the Bethe-Salpeter equation (2)

2nd step: Classification of scattering processes

Identify two-particle irreducible blocks

where γ(1234) is the electron-hole stattering amplitude

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 50: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Derivation of BSEStandard approximations to BSE

Derivation of the Bethe-Salpeter equation (3)

Final step: Summation of a geometric series

−→ Bethe-Salpeter equation

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 51: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Derivation of BSEStandard approximations to BSE

Derivation of the Bethe-Salpeter equation (3)

Final step: Summation of a geometric series

−→ Bethe-Salpeter equation

Analytic form of the Bethe-Salpeter equation (j = {xj , tj})

L(1234) = L0(1234)+∫L0(1256)[v(57)δ(56)δ(78)− γ(5678)]L(7834)d5d6d7d8

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 52: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Derivation of BSEStandard approximations to BSE

The Bethe-Salpeter equation: Approximation

BSE determines electron-hole propagator L(1234), provided thatself-energy Σ(12) and e-h scattering amplitude γ(1234) are given.

Standard approximation:

Approximate Σ by GW diagram: Σ(12) = G(12)W (12)

== +

Approximate γ by W : γ(1234) = W (12)δ(13)δ(24)

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 53: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Derivation of BSEStandard approximations to BSE

The Bethe-Salpeter equation: Approximation

Approximate Bethe-Salpeter equation

Analytic form of the approximate Bethe-Salpeter equation

L(1234) = L0(1234) +

∫L0(1256)[v(57)δ(56)δ(78)−

W (56)δ(57)δ(68)]L(7834)d5d6d7d8

L0(1234) = G(12)G(43) and W (12) from GW calculation

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 54: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Derivation of BSEStandard approximations to BSE

BSE calculations

A three-step method

1 LDA calculation⇒ Kohn-Sham wavefunctions ϕi

2 GW calculation⇒ GW energies Ei and screened Coulomb interaction W

3 BSE calculation

solution of L = L0 + L0(v − γ)L

⇒ e-h propagator L(r1r2r3r4ω)

⇒ spectra εM (ω)

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 55: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Derivation of BSEStandard approximations to BSE

Results: Continuum excitons (Si)

Bulk silicon

G. Onida, L. Reining, and A. Rubio, RMP 74, 601 (2002)

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 56: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Derivation of BSEStandard approximations to BSE

Results: Bound excitons (solid Ar)

Solid argon

F. Sottile, M. Marsili, V. Olevano, and L. Reining, PRB 76, 161103(R) (2007)

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 57: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Derivation of BSEStandard approximations to BSE

Summary

Green functions: important concept in many-particle physics

Diagrammatic analysis of Green functions (deceptively)simple, actual calculation of specific diagrams much harder

GW approximation for self energy

Bethe-Salpeter equation: captures excitons in opticalabsorption

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 58: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Derivation of BSEStandard approximations to BSE

Literature

endless number of textbooks on Green functions

My favorites

E.K.U. Gross, E. Runge, O. Heinonen, Many-Particle Theory(Hilger, Bristol, 1991)

A.L. Fetter, J.D. Walecka, Quantum Theory of Many-ParticleSystems (McGraw-Hill, New York, 1971) and later edition byDover press

G. Stefanucci, R. van Leeuwen, Nonequilibrium Many-BodyTheory of Quantum Systems: A Modern Introduction(Cambridge, 2003)

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 59: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Derivation of BSEStandard approximations to BSE

Literature

on GW and BSE

G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601(2002)

S. Botti, A. Schindlmayr, R. Del Sole, and L. Reining, Rep.Progr. Phys. 70, 357 (2007)

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 60: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Derivation of BSEStandard approximations to BSE

Thanks

Ilya Tokatly and Matteo Gatti for some figures

YOU for your patience!

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE

Page 61: Introduction to Green functions, the GW …nano-bio.ehu.es/files/kurth_green.pdfOne-particle Green functions Polarization propagator and two-particle Green functions GW approximation

One-particle Green functionsPolarization propagator and two-particle Green functions

GW approximationBethe-Salpeter equation (BSE)

Derivation of BSEStandard approximations to BSE

Thanks

Ilya Tokatly and Matteo Gatti for some figures

YOU for your patience!

CEES 2015 Donostia-San Sebastian: S. Kurth Introduction to Green functions, GW, and BSE