Top Banner
Introduction to Geometrical Optics: Sample problems solutions supplementary slides Apratim Majumder Optics for Energy 2020 2020/10/13
25

Introduction to Geometrical Optics: Sample problems ...€¦ · Introduction to Geometrical Optics: Sample problems solutions supplementary slides Apratim Majumder Optics for Energy

Jan 28, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Introduction to Geometrical Optics:

    Sample problems solutions supplementary slides

    Apratim Majumder

    Optics for Energy 2020

    2020/10/13

  • Fish (Wanda) is the input side

    Olive (person) is the output

    side

    Light ray travels from right to left

  • Fish (Wanda) is the input side

    Olive (person) is the output

    side

    Light ray travels from right to left

    𝑛𝑜𝑢𝑡𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    Free spacepropagation air

    (𝑠)

    Refractionat

    spherical surface (R)

    Free spacepropagation inside water

    (𝑠′)

    𝑛𝑖𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    From Output side to Input side

  • Fish (Wanda) is the input side

    Olive (person) is the output

    side

    Light ray travels from right to left

    𝑛𝑜𝑢𝑡𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    Free spacepropagation air

    (𝑠)

    Refractionat

    spherical surface (R)

    Free spacepropagation inside water

    (𝑠′)

    𝑛𝑖𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    Here, 𝑛𝑜𝑢𝑡 = 1 and 𝑛𝑖𝑛 = 𝑛Hence:

    𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    Free spacepropagation air

    (𝑠)

    Refractionat

    spherical surface (R)

    Free spacepropagation inside water

    (𝑠′)

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    From Output side to Input side

  • 𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    Free spacepropagation air

    (𝑠)

    Refractionat

    spherical surface (R)

    Free spacepropagation inside water

    (𝑠′)

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

  • 𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    Free spacepropagation air

    (𝑠)

    Refractionat

    spherical surface (R)

    Free spacepropagation inside water

    (𝑠′)

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    1 0𝐷

    𝑛1

    Free space propagation

    matrix

    1 −𝑛𝑜𝑢𝑡 − 𝑛𝑖𝑛

    𝑅0 1

    Refraction at spherical surface

    matrix

  • 𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    Free spacepropagation air

    (𝑠)

    Refractionat

    spherical surface (R)

    Free spacepropagation inside water

    (𝑠′)

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    1 0𝐷

    𝑛1

    Free space propagation

    matrix

    1 −𝑛𝑜𝑢𝑡 − 𝑛𝑖𝑛

    𝑅0 1

    Refraction at spherical surface

    matrix

    𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 0𝑠 1

    1 −1−𝑛

    −𝑅

    0 1

    1 0𝑅

    𝑛1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    (since 𝑠′ = 𝑅)

  • 𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    Free spacepropagation air

    (𝑠)

    Refractionat

    spherical surface (R)

    Free spacepropagation inside water

    (𝑠′)

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    1 0𝐷

    𝑛1

    Free space propagation

    matrix

    1 −𝑛𝑜𝑢𝑡 − 𝑛𝑖𝑛

    𝑅0 1

    Refraction at spherical surface

    matrix

    𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 0𝑠 1

    1 −1−𝑛

    −𝑅

    0 1

    1 0𝑅

    𝑛1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    (since 𝑠′ = 𝑅)

    𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 0𝑠 1

    1 +1−𝑛

    𝑅

    𝑅

    𝑛

    1−𝑛

    𝑅𝑅

    𝑛1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

  • 𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    Free spacepropagation air

    (𝑠)

    Refractionat

    spherical surface (R)

    Free spacepropagation inside water

    (𝑠′)

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    1 0𝐷

    𝑛1

    Free space propagation

    matrix

    1 −𝑛𝑜𝑢𝑡 − 𝑛𝑖𝑛

    𝑅0 1

    Refraction at spherical surface

    matrix

    𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 0𝑠 1

    1 −1−𝑛

    −𝑅

    0 1

    1 0𝑅

    𝑛1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    (since 𝑠′ = 𝑅)

    𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 0𝑠 1

    1 +1−𝑛

    𝑅

    𝑅

    𝑛

    1−𝑛

    𝑅𝑅

    𝑛1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 0𝑠 1

    1

    𝑛

    1 − 𝑛

    𝑅𝑅

    𝑛1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

  • 𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    Free spacepropagation air

    (𝑠)

    Refractionat

    spherical surface (R)

    Free spacepropagation inside water

    (𝑠′)

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    1 0𝐷

    𝑛1

    Free space propagation

    matrix

    1 −𝑛𝑜𝑢𝑡 − 𝑛𝑖𝑛

    𝑅0 1

    Refraction at spherical surface

    matrix

    𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 0𝑠 1

    1 −1−𝑛

    −𝑅

    0 1

    1 0𝑅

    𝑛1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    (since 𝑠′ = 𝑅)

    𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 0𝑠 1

    1 +1−𝑛

    𝑅

    𝑅

    𝑛

    1−𝑛

    𝑅𝑅

    𝑛1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 0𝑠 1

    1

    𝑛

    1 − 𝑛

    𝑅𝑅

    𝑛1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    1

    𝑛

    1 − 𝑛

    𝑅𝑠

    𝑛+𝑅

    𝑛𝑠1 − 𝑛

    𝑅+ 1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

  • 𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    Free spacepropagation air

    (𝑠)

    Refractionat

    spherical surface (R)

    Free spacepropagation inside water

    (𝑠′)

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    1 0𝐷

    𝑛1

    Free space propagation

    matrix

    1 −𝑛𝑜𝑢𝑡 − 𝑛𝑖𝑛

    𝑅0 1

    Refraction at spherical surface

    matrix

    𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 0𝑠 1

    1 −1−𝑛

    −𝑅

    0 1

    1 0𝑅

    𝑛1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    (since 𝑠′ = 𝑅)

    𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 0𝑠 1

    1 +1−𝑛

    𝑅

    𝑅

    𝑛

    1−𝑛

    𝑅𝑅

    𝑛1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 0𝑠 1

    1

    𝑛

    1 − 𝑛

    𝑅𝑅

    𝑛1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    1

    𝑛

    1 − 𝑛

    𝑅𝑠

    𝑛+𝑅

    𝑛𝑠1 − 𝑛

    𝑅+ 1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    Imaging Condition: M21 = 0

    𝑠

    𝑛+𝑅

    𝑛= 0

    𝑠 = −𝑅

  • Fish (Wanda) is the output

    side

    Olive (person) is the input

    side

    Light ray travels from left to right

  • Fish (Wanda) is the output

    side

    Olive (person) is the input

    side

    Light ray travels from left to right

    𝑛𝑜𝑢𝑡𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    Free spacepropagation inside water

    (𝑠′)

    Refractionat

    spherical surface (R)

    Free spacepropagation in air

    (𝑠)

    𝑛𝑖𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    From Output side to Input side

  • Fish (Wanda) is the output

    side

    Olive (person) is the input

    side

    Light ray travels from left to right

    𝑛𝑜𝑢𝑡𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    Free spacepropagation inside water

    (𝑠′)

    Refractionat

    spherical surface (R)

    Free spacepropagation in air

    (𝑠)

    𝑛𝑖𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    Here, 𝑛𝑜𝑢𝑡 = 𝑛 and 𝑛𝑖𝑛 = 1Hence:

    𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    Free spacepropagation inside water

    (𝑠′)

    Refractionat

    spherical surface (R)

    Free spacepropagation in air

    (𝑠)

    𝛼𝑖𝑛𝑥𝑖𝑛

    From Output side to Input side

  • 𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    Free spacepropagation inside water

    (𝑠′)

    Refractionat

    spherical surface (R)

    Free spacepropagation in air

    (𝑠)

    𝛼𝑖𝑛𝑥𝑖𝑛

  • 𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    Free spacepropagation inside water

    (𝑠′)

    Refractionat

    spherical surface (R)

    Free spacepropagation in air

    (𝑠)

    𝛼𝑖𝑛𝑥𝑖𝑛

    1 0𝐷

    𝑛1

    Free space propagation

    matrix

    1 −𝑛𝑜𝑢𝑡 − 𝑛𝑖𝑛

    𝑅0 1

    Refraction at spherical surface

    matrix

  • 𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    Free spacepropagation inside water

    (𝑠′)

    Refractionat

    spherical surface (R)

    Free spacepropagation in air

    (𝑠)

    𝛼𝑖𝑛𝑥𝑖𝑛

    1 0𝐷

    𝑛1

    Free space propagation

    matrix

    1 −𝑛𝑜𝑢𝑡 − 𝑛𝑖𝑛

    𝑅0 1

    Refraction at spherical surface

    matrix

    𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 0𝑠′

    𝑛1

    1 −𝑛−1

    𝑅

    0 1

    1 0𝑠 1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    (since 𝑠′ = 𝑅)

  • 𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    Free spacepropagation inside water

    (𝑠′)

    Refractionat

    spherical surface (R)

    Free spacepropagation in air

    (𝑠)

    𝛼𝑖𝑛𝑥𝑖𝑛

    1 0𝐷

    𝑛1

    Free space propagation

    matrix

    1 −𝑛𝑜𝑢𝑡 − 𝑛𝑖𝑛

    𝑅0 1

    Refraction at spherical surface

    matrix

    𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 0𝑠′

    𝑛1

    1 −𝑛−1

    𝑅

    0 1

    1 0𝑠 1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    (since 𝑠′ = 𝑅)

    𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 0𝑠′

    𝑛1

    1 + 𝑠1 − 𝑛

    𝑅

    1 − 𝑛

    𝑅𝑠 1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

  • 𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    Free spacepropagation inside water

    (𝑠′)

    Refractionat

    spherical surface (R)

    Free spacepropagation in air

    (𝑠)

    𝛼𝑖𝑛𝑥𝑖𝑛

    1 0𝐷

    𝑛1

    Free space propagation

    matrix

    1 −𝑛𝑜𝑢𝑡 − 𝑛𝑖𝑛

    𝑅0 1

    Refraction at spherical surface

    matrix

    𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 0𝑠′

    𝑛1

    1 −𝑛−1

    𝑅

    0 1

    1 0𝑠 1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    (since 𝑠′ = 𝑅)

    𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 0𝑠′

    𝑛1

    1 + 𝑠1 − 𝑛

    𝑅

    1 − 𝑛

    𝑅𝑠 1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    1 + 𝑠1 − 𝑛

    𝑅

    1 − 𝑛

    𝑅𝑠′

    𝑛1 + 𝑠

    1 − 𝑛

    𝑅+ 𝑠

    𝑠′

    𝑛

    1 − 𝑛

    𝑅+ 1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

  • 𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    Free spacepropagation inside water

    (𝑠′)

    Refractionat

    spherical surface (R)

    Free spacepropagation in air

    (𝑠)

    𝛼𝑖𝑛𝑥𝑖𝑛

    1 0𝐷

    𝑛1

    Free space propagation

    matrix

    1 −𝑛𝑜𝑢𝑡 − 𝑛𝑖𝑛

    𝑅0 1

    Refraction at spherical surface

    matrix

    𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 0𝑠′

    𝑛1

    1 −𝑛−1

    𝑅

    0 1

    1 0𝑠 1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    (since 𝑠′ = 𝑅)

    𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 0𝑠′

    𝑛1

    1 + 𝑠1 − 𝑛

    𝑅

    1 − 𝑛

    𝑅𝑠 1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    1 + 𝑠1 − 𝑛

    𝑅

    1 − 𝑛

    𝑅𝑠′

    𝑛1 + 𝑠

    1 − 𝑛

    𝑅+ 𝑠

    𝑠′

    𝑛

    1 − 𝑛

    𝑅+ 1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 + 𝑠

    1 − 𝑛

    𝑅

    1 − 𝑛

    𝑅𝑠′

    𝑛+ 𝑠 +

    𝑠𝑠′

    𝑛𝑅(1 − 𝑛) 1 +

    𝑠′

    𝑛𝑅(1 − 𝑛)

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

  • 𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    Free spacepropagation inside water

    (𝑠′)

    Refractionat

    spherical surface (R)

    Free spacepropagation in air

    (𝑠)

    𝛼𝑖𝑛𝑥𝑖𝑛

    1 0𝐷

    𝑛1

    Free space propagation

    matrix

    1 −𝑛𝑜𝑢𝑡 − 𝑛𝑖𝑛

    𝑅0 1

    Refraction at spherical surface

    matrix

    𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 0𝑠′

    𝑛1

    1 −𝑛−1

    𝑅

    0 1

    1 0𝑠 1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    (since 𝑠′ = 𝑅)

    𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 0𝑠′

    𝑛1

    1 + 𝑠1 − 𝑛

    𝑅

    1 − 𝑛

    𝑅𝑠 1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    1 + 𝑠1 − 𝑛

    𝑅

    1 − 𝑛

    𝑅𝑠′

    𝑛1 + 𝑠

    1 − 𝑛

    𝑅+ 𝑠

    𝑠′

    𝑛

    1 − 𝑛

    𝑅+ 1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 + 𝑠

    1 − 𝑛

    𝑅

    1 − 𝑛

    𝑅𝑠′

    𝑛+ 𝑠 +

    𝑠𝑠′

    𝑛𝑅(1 − 𝑛) 1 +

    𝑠′

    𝑛𝑅(1 − 𝑛)

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

  • 𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    Free spacepropagation inside water

    (𝑠′)

    Refractionat

    spherical surface (R)

    Free spacepropagation in air

    (𝑠)

    𝛼𝑖𝑛𝑥𝑖𝑛

    1 0𝐷

    𝑛1

    Free space propagation

    matrix

    1 −𝑛𝑜𝑢𝑡 − 𝑛𝑖𝑛

    𝑅0 1

    Refraction at spherical surface

    matrix

    𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 0𝑠′

    𝑛1

    1 −𝑛−1

    𝑅

    0 1

    1 0𝑠 1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    (since 𝑠′ = 𝑅)

    𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 0𝑠′

    𝑛1

    1 + 𝑠1 − 𝑛

    𝑅

    1 − 𝑛

    𝑅𝑠 1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =

    1 + 𝑠1 − 𝑛

    𝑅

    1 − 𝑛

    𝑅𝑠′

    𝑛1 + 𝑠

    1 − 𝑛

    𝑅+ 𝑠

    𝑠′

    𝑛

    1 − 𝑛

    𝑅+ 1

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    𝑛𝛼𝑜𝑢𝑡𝑥𝑜𝑢𝑡

    =1 + 𝑠

    1 − 𝑛

    𝑅

    1 − 𝑛

    𝑅𝑠′

    𝑛+ 𝑠 +

    𝑠𝑠′

    𝑛𝑅(1 − 𝑛) 1 +

    𝑠′

    𝑛𝑅(1 − 𝑛)

    𝑛𝛼𝑖𝑛𝑥𝑖𝑛

    Imaging Condition: M21 = 0

    𝑠′

    𝑛+ 𝑠 +

    𝑠𝑠′

    𝑛𝑅(1 − 𝑛) = 0