Top Banner
Copyright 2011 Aaron Lanterman Introduction to Estimation Theory Part I Prof. Aaron D. Lanterman School of Electrical & Computer Engineering Georgia Institute of Technology AL: 404-385-2548 <[email protected]> ECE 6279: Spatial Array Processing Spring 2011 Lecture 24
23

Introduction to Estimation Theory Part

May 25, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Introduction to Estimation Theory Part I

Prof. Aaron D. Lanterman School of Electrical & Computer Engineering

Georgia Institute of Technology AL: 404-385-2548

<[email protected]>

ECE 6279: Spatial Array Processing Spring 2011 Lecture 24

Page 2: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

References

•  J&D: Section 6.2.4 •  Van Trees – “Detection Estimation, and

Modulation Theory: Part I” (many parts out of date, but still the best)

•  Vince Poor – “An Introduction to Signal Detection and Estimation” (insanely mathematical)

•  Stephen Kay – “Fundamentals of Statistical Signal Processing” – two volumes (a bit sprawling)

Page 3: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Setup

•  Model measured data as a realization of a random variable

•  Assume has a density that is a function of desired parameter(s)

y

y

y

pξ (y)

ξ

p(y |ξ)

p(y;ξ)

Vince Poor: J&D, Van Trees: Aaron’s ECE7251:

(misleading)

Page 4: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Canonical Example: Simple Gaussian

•  Example: i.i.d. samples of a real scalar Gaussian

p(y;ξ) =12πσ 2

l=0

L−1

∏ exp −[y(l) − µ]2

2σ 2

⎧ ⎨ ⎩

⎫ ⎬ ⎭

ξ = (µ,σ 2)

y = {y(0),...,y(L −1)}

Page 5: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Big Picture

ξ

p(y;ξ)

y

•  Estimator is a function of the data

ˆ ξ (y)estimate

ˆ ξ estimator

ˆ ξ

y

ˆ ξ (y)

ˆ ξ

Page 6: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Maximum Likelihood Estimators

•  Makes intuitive sense, but not necessarily magical:

ˆ ξ ML (y) = argmaxξ

p(y;ξ)

= argmaxξ

ln p(y;ξ)

= argmaxξ(ξ)

(ξ) (up to an additive constant)

Page 7: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Loglikelihood for Gaussian Example

(ξ) = −L2ln2π −

L2lnσ 2 −

[y(l) − µ]2

2σ 2l=0

L−1

∑�

p(y;ξ) =12πσ 2

l=0

L−1

∏ exp −[y(l) − µ]2

2σ 2

⎧ ⎨ ⎩

⎫ ⎬ ⎭

Customary to omit terms that do not contain parameters

Page 8: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

ML Estimator for Mean

(ξ) = −L2lnσ 2 −

[y(l) − µ]2

2σ 2l=0

L−1

∑•  “Usual” trick “usually” works:

∂∂µ(ξ) =

y(l) − µσ 2

l=0

L−1

= 0

y(l)l=0

L−1

∑ = Lµ

ˆ µ ML (y) =1L

y(l)l= 0

L−1

∑⎡ ⎣ ⎢

⎤ ⎦ ⎥

Page 9: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

ML Estimator for Variance (1)

(ξ) = −L2lnσ 2 −

[y(l) − µ]2

2σ 2l=0

L−1

∑•  “Usual” trick “usually” works:

∂∂σ 2 (ξ) = −

L2σ 2 +

[y(l) − µ]2

2(σ 2)2l=0

L−1

= 0

Lσ 2 = [y(l) − µ]2l=0

L−1

Page 10: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

ML Estimator for Variance (2)

σ 2 =1L

[y(l) − µ]2l=0

L−1

∑•  Here we lucked out:

ˆ σ ML2 (y) =

1L

[y(l) − ˆ µ ML (y)]2

l= 0

L−1

ˆ µ ML (y) =1L

y(l)l= 0

L−1

∑⎡ ⎣ ⎢

⎤ ⎦ ⎥

Page 11: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Bias

b(ξ) = Eξ [ ˆ ξ (y)]− ξ

b(ξ) = 0•  If , i.e. , we

Eξ [ ˆ ξ (y)] = ξ say estimator is unbiased

Page 12: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Bias of ML Estimate of the Mean

b(µ) = Eξ [ ˆ µ (y)]− µ

= Eξ1L

y(l)l=0

L−1

∑⎡ ⎣ ⎢

⎤ ⎦ ⎥ − µ

=1L

Eξ [y(l)]l=0

L−1

∑ − µ

=1LLµ − µ

= 0

Page 13: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Bias of ML Estimate of the Variance (1)

b(σ 2) = Eξ [ ˆ σ 2(y)]−σ 2

Eξ [ ˆ σ 2(y)] = Eξ1L

[y(l) − ˆ µ ML (y)]2

l= 0

L−1

∑⎧ ⎨ ⎩

⎫ ⎬ ⎭

= Eξ1L

y(l) − 1L

y(k)k=0

L−1

∑⎡ ⎣ ⎢

⎤ ⎦ ⎥

2

l=0

L−1

∑⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

Page 14: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Bias of ML Estimate of the Variance (2)

Eξ [ ˆ σ 2(y)] = Eξ1L

y(l) − 1L

y(k)k= 0

L−1

∑⎡

⎣ ⎢

⎦ ⎥

2

l= 0

L−1

∑⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

= 1LEξ y 2(l) − 2y(l) 1

Ly(k)

k= 0

L−1

∑⎛

⎝ ⎜

⎠ ⎟ +

1L

y(k)k= 0

L−1

∑⎛

⎝ ⎜

⎠ ⎟ 2⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥ l= 0

L−1

∑⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

Page 15: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

First Term

Eξ y 2(l)l=0

L−1

∑⎧ ⎨ ⎩

⎫ ⎬ ⎭

= Eξ y 2(l){ }l=0

L−1

= L(σ 2 + µ 2)

Page 16: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Second Term (1)

−2Eξ y(l) 1L

y(k)k=0

L−1

∑⎛ ⎝ ⎜

⎞ ⎠ ⎟

l=0

L−1

∑⎧ ⎨ ⎩

⎫ ⎬ ⎭

= −2L

Eξ{y(l)y(k)k=0

L−1

∑l=0

L−1

∑ }

= −2L

Eξ{y2(l)} + Eξ{y(l)y(k)}

k≠ l∑⎛

⎝ ⎜ ⎞ ⎠ ⎟

l=0

L−1

Page 17: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Second Term (2)

−2L

Eξ{y2(l)} + Eξ{y(l)y(k)}

k≠ l∑⎛

⎝ ⎜ ⎞ ⎠ ⎟

l=0

L−1

= −2 [σ 2 + µ 2] + [L −1]µ 2( )

= −2(σ 2 + Lµ2)

Page 18: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Third Term (1)

Eξ1L

y(k)k=0

L−1

∑⎛ ⎝ ⎜

⎞ ⎠ ⎟ 2

l=0

L−1

∑⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

= Eξ1L

y(k)k=0

L−1

∑⎛ ⎝ ⎜

⎞ ⎠ ⎟ 1L

y( j)j=0

L−1

∑⎛

⎝ ⎜ ⎞

⎠ ⎟ l=0

L−1

∑⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

Page 19: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Third Term (2)

Eξ1L

y(k)k=0

L−1

∑⎛ ⎝ ⎜

⎞ ⎠ ⎟ 1L

y( j)j=0

L−1

∑⎛

⎝ ⎜ ⎞

⎠ ⎟ l=0

L−1

∑⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

=1LEξ y(k)y( j)

j=0

L−1

∑k=0

L−1

∑⎧ ⎨ ⎩

⎫ ⎬ ⎭

=1L

Eξ [y2(k)] + Eξ [y(k)y( j)]

j≠k∑

⎝ ⎜ ⎞

⎠ ⎟ k=0

L−1

∑⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

Page 20: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Third Term (3)

1L

Eξ [y2(k)] + Eξ [y(k)y( j)]

j≠k∑

⎝ ⎜ ⎞

⎠ ⎟ k=0

L−1

∑⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

= (σ 2 + µ 2) + (L −1)µ 2

= σ 2 + Lµ2

Page 21: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Putting it Back Together

1LEξ y 2(l) − 2y(l) 1

Ly(k)

k=0

L−1

∑⎛ ⎝ ⎜

⎞ ⎠ ⎟ +

1L

y(k)k=0

L−1

∑⎛ ⎝ ⎜

⎞ ⎠ ⎟ 2⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥ l=0

L−1

∑⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

=1LL(σ 2 + µ 2) − 2(σ 2 + Lµ2) + (σ 2 + Lµ2){ }

=L −1L

σ 2

Eξ [ ˆ σ 2(y)] =

Page 22: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Almost Forgot What We Were Computing

=L −1L

σ 2 −σ 2

= −σ 2

L

b(σ 2)→ 0•  Notice as ;

L→∞we say estimator is asymptotically unbiased

b(σ 2) = Eξ [ ˆ σ 2(y)]−σ 2

Page 23: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Tweaking the Estimator

•  Previous computations suggest an unbiased estimator:

ˆ σ UB2 (y) =

1L −1

[y(l) − ˆ µ ML (y)]2

l= 0

L−1