Top Banner
Introduction to Digital Signal Processing (Discrete-time Signal Processing) Prof. Chu-Song Chen Research Center for Info. Tech. Innovation, Academia Sinica, Taiwan Dept. CSIE & GINM National Taiwan University Fall 2013
70

Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Mar 21, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Introduction to Digital Signal Processing

(Discrete-time Signal Processing)

Prof. Chu-Song Chen Research Center for Info. Tech. Innovation,

Academia Sinica, Taiwan Dept. CSIE & GINM

National Taiwan University

Fall 2013

Page 2: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Course Information

• Teaching assistant: – Yin-Tzu Lin 林映孜

[email protected]

• Course webpage: – www.cmlab.csie.ntu.edu.tw/~dsp/dsp2013

• Grades – Homework x several (30%)

– Test x 2~3 (40~45%)

– Term project (25~30%)

Page 3: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Review of Complex Exponential

Page 4: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Real and Image Parts: Phase Difference is /2

Page 5: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Analogous to Uniform Circular Motion

Time axis

Page 6: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Advantage in computation

Page 7: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Fourier Transform

• Central goal

– representing a signal by a set of orthogonal bases that are corresponding to frequencies or spectrum.

Page 8: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Basis Functions

• Remember that, sinusoids (such as sine) can serve as orthogonal bases for representing signals.

• But, why not using sinusoids directly as basis functions in signals and linear systems?

Page 9: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Basis Functions in Signals and Systems

• In signal processing, we hope that each basis function corresponds to a frequency, so that a signal can be decomposed into different frequency components.

• However, when the frequency is chosen, there are still various phases φ corresponding to this frequency.

• Eg., when the frequency is fixed to be w0 in a cosine function, what is the phase φ that should be chosen to serve as a basis?

• Otherwise, do we need to use all the phases as basis functions? (seems to be redundant)

cos(w0t+φ)

Page 10: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Complex Exponentials Serving as Basis Functions

• Linear combination:

coefficients Bases

• Can we simply use zero-phase functions as bases?

• This cannot be achieved easily by sinusoid.

• For example, if we use zero-phase sine functions {sin(t) | R} as bases, the functions f we can represent is restrict to those satisfies f(0)=0, because sin(0)=0 and so the linear combination of zero-phase sine functions is always zero.

Page 11: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Why choosing complex exponential?

• Nevertheless, it can be shown that we can use ejt as bases. That is, ej(t+) when zero phase (=0).

• In this way, we can ignore the phase and focuses only on frequency in the bases representation.

• Hence, we can decompose a signal into components of different frequencies by using complex exponentials (under some requirements), instead of a more redundant representation of different frequency–phase pairs.

Page 12: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Orthogonality of complex exponentials

• First, the zero-phase complex exponential ejt can form orthogonal bases.

• For simplicity, we take Fourier series as an example, which deals with only continuous periodic signals.

• Consider the functional space consisting of all of the periodical signals with period T0, i.e., x(t) belongs to this space if x(t)=x(t+T0).

Page 13: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Orthogonality of complex exponentials

• Let the k-th basis vk(t) in Foruier series be

which corresponds to the frequency or • T0 specifies the fundamental period; • w = 2/T0 specifies the fundamental frequency. • All the bases frequencies are the integer multiples

of w

fk = k/T0 (in Hertz)

(in Radians)

Page 14: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Orthogonality of complex exponentials

• Then, vk(t), which forms orthogonal bases:

where * denotes the complex conjugate. That is, Z=a+bj, then z* = abj. When z is real, z=z*. • Remark: please be reminded that in complex

variables, the inner product of two vectors x and y is denoted as (x*)Ty, not xTy.

Page 15: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Proof of the orthogonalility of vk(t)

• Preliminary property:

• proof

– In real calculus,

where a is a real number.

– In complex variables, the above equalities still hold when a is a complex number.

1 1( )at at ate dt e d at e

a a

Page 16: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Proof of the orthogonalility of vk(t)

• Hence, we have

Page 17: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Proof of the orthogonalility of vk(t)

• Now, let us consider

Page 18: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Proof of the orthogonalility of vk(t)

• When k l, by the preliminary property, we have

Page 19: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Proof of the orthogonalility of vk(t)

• When k = l,

Page 20: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Proof of the orthogonalility of vk(t)

• Hence, we conclude that

• This shows the validity that zero-phase complex exponential can serve potentially as basis functions.

• Remark: we will go back the Fourier series later.

Page 21: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Phasors Complex number coefficients

• Phasors = Complex Amplitude (or Complex Magnitude)

• In addition to orthogonal bases property, there is another requirement to employ zero-phase complex exponentials as bases functions:

• The coefficients to be used in the linear combination are allowed to be complex numbers (instead of real numbers only).

• Remember that

tjwjtwjeAeAe 00 )(

Page 22: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Phasors Complex number coefficients

• That is, both amplification and phase-shift can be represented as a complex-number coefficient or complex amplitude (which is multiplied to the basis)

tjwjtwjeAeAe 00 )(

Both amplitude and phase are multiplied to the basis

Zero-phase basis

Page 23: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Summary of the issue of bases

• In sum, zero-phase complex exponentials are suitable to serve as bases for signal representations because they satisfy – Orthogonality property – Allow the use of complex-number coefficients (complex

amplitude) to represent both amplitude and phase.

• In signals and systems, complex exponentials are standard for serving as (frequency-related) basis functions.

• However, in other problem domains, such as compression and feature extraction, real-value bases such as cosine functions or wavelet functions are often more suitable.

Page 24: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

More on Calculation Tricks of Complex Exponentials

Page 25: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

More on Calculation Tricks of Complex Exponentials

Page 26: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Sum of Sinusoids Calculation

Sum of sinusoids of the equal frequencies is still a sinusoid of the same frequency.

Page 27: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Example

How?

Amp Phase

Page 28: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Adding Sinusoids

Page 29: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Example

Page 30: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Adding Sinusoids

Page 31: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Spectrum Representation

• Frequency-domain representation of a signal.

• As we know, a signal can be decomposed as a linear combination of zero-phase complex-exponential basis functions.

• When doing such a decomposition, the coefficients obtained are referred to as the spectrum of the signal.

Page 32: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Spectrum of a single sinusoid

• What is the spectrum of a single cosine function?

• Note that we employ complex exponential as bases.

• Since

the spectrum is (,1/2), (, 1/2), containing both positive and negative frequencies:

1/2

Page 33: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Example

• Even summing the complex exponentials, we still get a real-value signal

Page 34: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Example:

Page 35: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal
Page 36: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Spectrum Representation

• The most straightforward way of viewing and understanding a spectrum is to producing new signals from sinusoids by additive linear combination,

where a signal is created by adding together a constant and N sinusoids of different frequencies:

Page 37: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Spectrum Representation

• By the inverse Euler formula

• It gives a way to represent x(t) in the alternative form:

Page 38: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Spectrum Representation

• We define the two-sided spectrum of a signal x(t) composed of sinusoids to be the set of 2N+1 complex amplitudes corresponding to the 2N+1 frequencies:

• We term it as the frequency-domain representation of x(t).

Page 39: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Example

• Apply the inverse Euler formula

• The spectrum:

Page 40: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Example

• They are called the frequency components.

Page 41: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

DC Component • The constant component (ie., corresponding the zero

frequency) is referred to as the DC component.

• In the above example, the DC component is 10.

• We can separate the frequency components into the amplitude (magnitude) and phase components.

Page 42: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Example: Synthetic Sound

• A periodic signal can be synthesized as the sum complex exponentials

• How is it sounds like: consider a signal containing nonzero terms for only

Page 43: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Vowel Example: Single component a2

time (msec)

Page 45: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Vowel: Three components: a2+a4+a5

time (msec)

Page 48: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Vowel signal: Frequency Domain

Page 49: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Multiplication of Sinusoids Beat note and amplitude modulation (AM)

• When we multiply two sinusoids having different frequencies, we can create an interesting audio effect called a beat note.

• Another use for multiplying sinusoids is modulation for radio broadcasting. AM radio stations use this method.

• Multiplication of two sinusoids can be equivalently represented as sum of two sinusoids, as shown below.

Page 50: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Example of Multiplication of Sinusoids

• By inverse Euler formula,

Sum of two sinusoids

Product of two sinusoids

Page 51: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

General Derivation

• Let and

Product of two sinusoids

Sum of two sinusoids

Page 52: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

In the Spectrum Domain

• Spectrum of the multiplication of two sinusoids of frequencies f = (f2-f1)/2 and fc = (f2+f1)/2

• So, f2 = fc + f , f1 = fc - f

Page 53: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Example: Beat Note Signal

Envelope effect

Page 54: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Amplitude Modulation (AM) Signal

• The AM signal is a product of the form

where v(t) is a complex amplitude. It is assumed that the frequency of the cosine term (fc Hz) is much higher than any frequencies contained in the spectrum of v(t). • Example: let v(t)=5+4cos(40t) and fc =200Hz, its

waveform is shown in the following. – unlike the beat note example, we have a DC

component here and so the envelope never goes to zero)

Page 55: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Example: AM Signal

Envelope

Page 56: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Frequency Domain

Spectrum of the AM Signal

Page 57: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Periodic Waveforms

• A periodic signal satisfies the condition that x(t+T0)=x(t) for all t.

• The time interval T0 is called the period of x(t).

• If it is the smallest such repetition interval, it is called the fundamental period.

• Harmonically related frequencies: all frequencies are integer multiples of a frequency f0.

Page 58: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Periodic Waveforms • The signal would be synthesized as the sum of N+1

cosine waves with harmonically related frequencies:

• The frequency fk is called the k-th harmonic of f0, the fundamental frequency.

• When we add harmonically related complex exponentials, we get a periodic signal.

Page 59: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Nonperiodic Waveforms • What happen when the frequencies have no

harmonic relation to one another?

• If there are no harmonic assumptions on the individual frequencies fk.

• When the combination frequencies are non-harmonic (i.e., does not have a fundamental frequency), the signal could not be periodic.

Page 60: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Example: Nonperiodic Waveforms obtained by summing sinusoids

• Sum of three cosine waves with nonharmonic frequencies:

Page 61: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Fourier Series

• Any periodic signal can be synthesized by sum of harmonically related sinusoids.

• The sum may need a infinite number of terms.

• This is the mathematical theory of Fourier series:

Page 62: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Fourier Series • How do we derive the coefficients ak?

• Remember that we have shown that the Fourier series bases vk(t) that have the fundamental frequency w=2/T0 satisify the orthogonality property:

• Hence, to derive ak, we need simply to project the signal x(t) onto the orthogonal basis vk(t) by inner product with proper normalization.

Page 63: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Fourier Series • Obtain ak by inner product of x(t) and vk(t):

• In particular, from the above the DC component is obtained by

• That is, a0 is simply the average value of the signal over one period.

Page 64: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Derivation Details

Page 65: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Transform pair of Fourier Series • In sum, we have the following transform pair that

can be used for the analysis of periodic signals:

• The left, from x(t) to ak, is called the forward transform, which transform the signal x(t) to the frequency domain, and ak are frequencies or spectrum.

• The right, from ak to x(t), is called the inverse transform.

transform pair

Page 66: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Sound Example of Periodic Signals: Sine Wave

Page 67: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Sound Example of Periodic Signals: Square Wave

Page 68: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Sound Example of Periodic Signals: SAW Wave

Page 70: Introduction to Digital Signal Processing (Discrete-time Signal Processing)cmlab.csie.ntu.edu.tw/~dsp/dsp2013/slides/Course 02... · 2013-09-30 · Introduction to Digital Signal

Homework #1 Problem: