Top Banner
D Cockerill, RAL, STFC, UK Introduction to Calorimetry 21.3.2012 1 Introduction to Calorimetry David Cockerill RAL, UK & CMS Marie Curie, GSI 21 March 2012
89

Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

Jul 03, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 1

Introduction to Calorimetry David Cockerill RAL, UK & CMS

Marie Curie, GSI 21 March 2012

Page 2: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 2

Overview

• Introduction

• Electromagnetic Calorimetry

* particle interactions

* energy resolution

• Hadronic Calorimetry

* particle interactions

* energy resolution

• Jets and Particle Flow

• Homogeneous and Sampling calorimeters

• Future directions in calorimetry

• Calorimeters at work

• Summary

Page 3: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 3

Calorimetry - one of the most important and powerful detector techniques in

experimental particle physics

* Measurement of particle energy by total absorption in the calorimeter

* Measurement of the spatial location of the energy deposit, the angle (sometimes),

and timing: important for triggers and collision tagging

* Convert energy E of the incident particle into a detector response S

Basic mechanism: formation of electromagnetic or hadronic cascades/showers

* Compact detectors, cascade length increases only as log(E)

* Energy resolution improves with increasing E, unlike spectrometers

* Can provide fast response, to avoid pileup, for triggering

Introduction

Particle,

energy E

Signal, S

Particle cascade/shower

Page 4: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 4

Introduction

Calorimetry

The detectors fall into two main categories:

Electromagnetic calorimeters for the detection of

e and neutral particles (o)

Hadron calorimeters for the detection of

, p, K and neutral particles n, K0L

usually traverse the calorimeters, only losing small amounts of energy by ionisation

* These 13 particles completely dominate the types of particles from high energy collisions

likely to reach and interact with the calorimeters

* All other particles decay ~instantly, or in flight, usually within a few hundred microns from the

collision, into one or more of the particles above

* Neutrinos, υ, and neutralinos, χo ,undetected, but with hermetic calorimetry can be inferred

from measurements of missing transverse energy in collider experiments

Page 5: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 5

Introduction

Look at a wedge of CMS, at the LHC, to show the typical layout of

the Tracker, the Calorimeters and Muon detectors

Page 6: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 6

Introduction

Sign of particle charge from the tracker

Tracker - minimum material to avoid losing

particle energy before the calorimeters

em had

Tracker calorim calorim

e

p, ,K

n, K0

Neutral

Neutral

Magnetic

field, 4T

μ

CMS: Particle identification from:

* Deposited energy location - in ECAL or HCAL

* Presence or absence of corresponding tracks in the Tracker

Page 7: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 7

Electromagnetic Calorimetry

Page 8: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 8

Energy losses by electrons and photons

In matter, electrons and photons loose energy interacting with nuclei and atomic electrons

• electrons/ bremsstrahlung (nucleus)

positrons ionisation (atomic electrons)

• photons pair production (nucleus),

(above 1 GeV)

compton scattering (atomic electrons)

photoelectric effect (atomic electrons)

Above 1 GeV, radiative processes dominate energy loss by e/

The processes lead to an e.m. cascade or shower of particles

eventually dissipating its energy in the calorimeter by ionisation and absorption

In the following, use the crystal PbWO4, and/or Pb, to illustrate cascade properties.

Electromagnetic cascades (showers)

Z,A

Z

e+

e-

Page 9: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 9

Favours the use of high Z materials

for a compact e.m. calorimeter

31

31

183ln4

183ln4

220

0

22

ZrZN

AX

X

E

dx

dE

ZEr

A

ZN

dx

dE

eA

eA

Electrons

Z,A

Bremsstrahlung, main loss for electrons/positrons above O(10 MeV)

Characterised by a ‘radiation length’, Xo, in the absorbing medium

over which an electron loses, on average, 63.2% of its energy

by bremsstrahlung.

2

2

m

EZ

dx

dE

0/

0

XxeEE

X0 ~ 180 A/Z2 [g cm-2] In Pb, Z = 82, A = 207 X0 ~ 5.6 mm

Electrons continuously loose energy by ionising the medium.

Eventually, as they drop below O(10 MeV), this becomes the main loss. This transition

is at a critical energy, Ec. Finally, the electrons range out and stop.

where

e

1/me2 dependence

Page 10: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 10

Muons

Z,A

Why don’t muons also loose all their energy in the calorimeters ??

2

2

m

EZ

dx

dE

0/

0

XxeEE

mµ = 210 me

Muons emit significant bremsstrahlung

only above ~1 TeV

Muons loose only (O) GeV in the

calorimeters by ionisation, so high energy

muons pass through the calorimeters.

where

µ

Bremstrahlung: 1/m2 dependence

µ

Page 11: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 11

Below ~ 5 MeV in PbWO4, Compton scattering dominates (blue line), with an

electron ejected at each scattering site.

Below ~ 0.5 MeV in PbWO4, the photo-electric effect dominates (green dashed)

and the photon path finishes with the production of an electron.

Photons

Z

e+

e-

Pair production, main loss for photons above 1 GeV

Characteristic mean free path before pair production, λpair = 9/7 Xo

Intensity of a photon beam entering calorimeter reduced to 1/e of

the original intensity, I = Io exp(-7/9 x/Xo). λpair = 7.2 mm in Pb

22 cmE e

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05m

ass a

tte

nu

atio

n c

oe

ffic

ien

t (g

/sq

cm

)

photon energy (MeV)

PbWO4

Total

Compton scattering

Photoelectric effect

Pair production

10-1 10-0 101 102 103 104 105

photon energy (MeV)

101

100

10-1

10-2

10-3

10-4

mas

s at

ten

uat

ion

co

effi

cien

t (g

-1cm

2 )

PbWO4 Flat

with

energy

Page 12: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 12

Brem and pair production dominate the processes that degrade the

incoming particle energy

50 GeV electron

Loses 32 GeV over 1 X0 by bremsstrahlung

50 GeV photon

Pair production to e+ e- , 25 GeV to each particle

Energy regime degraded by 25 GeV

Minimum ionising particle (m.i.p)

In Pb, over 1 X0, ionization loss ~O(10s) of MeV

Factor of ~1000 less than the radiative losses.

Electromagnetic Cascades

Z,A

Z

e+

e-

Page 13: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 13

Below a certain energy, defined as Ec,

e± energy losses, via ionisation, greater

than energy losses via bremsstrahlung

Slow decrease in number of particles in the shower

Photons progressivley lose energy by

* compton scattering

* converting to electrons via the photo-electric

effect, and absorption

Electrons/positrons range out/stop through

* ionization of the medium

* annihilation (positrons)

The multiplication process runs out

Electromagnetic Cascades

Ec

24.1

610

Z

MeVEc

For Pb, Z=82, Ec = 7.3 MeV

Liquids and solids

Page 14: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 14

2ln

ln 0max

cEEt

tt EparticletEtN 2/)(2)( 0

c

tt

t

tttotal

E

EN 0

0

)1(222122 max

max

max

For a 50 GeV electron on Pb Ntotal ~ 14000 particles

tmax at ~13 Xo (an overestimate)

Process continues until E(t)/particle < Ec

This layer contains the maximum number of

particles:

EM Cascades: a simple model

Consider only Bremstrahlung and pair production Assume lpair and X0 are equal and that, after each X0, the number of particles increases by factor 2 After ‘t’ layers of X0, number of particles:

Electron shower in a cloud

chamber with lead absorbers

Ec

Page 15: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 15

Longitudinal Shower Development

Shower grows only logarithmically with Eo

Shower maximum, where most energy deposited,

tmax ~ ln(Eo/Ec) – 0.5 for e

tmax ~ ln(Eo/Ec) + 0.5 for

tmax ~ 5Xo, 4.6 cm, for 10 GeV electrons in PbWO4

Shower profile for electrons of energy: 10, 100, 200, 300…GeV PbWO4

X0

EM Cascade Profiles

No

rmalised

en

erg

y l

oss

How many X0 to adequately contain an em shower?

Rule of thumb:

RMS spread in energy leakage at the back of the calorimeter

= 0.5 * average energy leakage at the back

CMS - want < 0.3% rms energy leakage

Require < 0.65% average energy leakage => PbWO4 25X0, 23 cm long

25 0

Simulation

20 10 tmax ~ 5Xo

Eo= 10GeV CMS barrel crystals

25X0 = 23cm

Page 16: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 16

EM Cascade Profiles

Transverse Shower Development

Mainly multiple Coulomb scattering by e in shower

95% of shower cone located in cylinder of radius

2 RM where RM = Moliere Radius

]/[MeV21 2

0 cmgXE

Rc

M

Radius

(RM)

% o

f In

teg

rate

d e

ne

rgy

50 GeV e- in PbWO4

RM = 2.19cm in PbWO4, Xo = 0.89cm, Ec ~ 8.5MeV

Simulation

2 RM

2.19cm in

PbWO4

How many RM to adequately contain an em shower?

Lateral leakage degrades the energy resolution

An additional contribution to the stochastic term (see later)

In CMS, keep contribution to < 2%/sqrt(E)

Achieved by summing energy over 3x3 (or 5x5) arrays of PbWO4 crystals

Page 17: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 17

EM Cascade Profiles

EM shower development in Krypton (Z=36, A=84)

GEANT simulation of a 100 GeV electron shower in the NA48 liquid Krypton calorimeter

Page 18: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 18

Electromagnetic Energy Resolution

Page 19: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 19

Electromagnetic Energy Resolution

Assume energy released in the detector material (mainly ionisation, excitation) is

proportional to the energy of incident particle

Mean energy required to produce a ‘visible’ photon

in a crystal or an electron-ion pair in a noble liquid Q

Mean number of quanta produced <n> = E / Q

Energy resolution is given by the fluctuations on ‘n’

σE / E = n / n = (Q / E ) also applies for hadron calorimeters

Generally :

‘Stochastic term’

given above ‘Noise term’

Electronics

Pile up

‘Constant term’ Imperfections in calorimeter construction

(dimension variations)

Non-uniform detector response

Channel to channel intercalibration errors

Fluctuations in longitudinal energy containment

Energy lost in dead material, before in detector

Page 20: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 20

Electromagnetic Energy Resolution

Energy resolution at high energy usually dominated by the constant term, c

Relative resolution improves with Energy

Goal of calorimeter design - find best compromise between the three contributions to the

resolution

a , stochastic term = 2.83%

b , noise term = 124 MeV

c , constant term = 0.26%

An example of the (very good) energy

resolution for electrons measured using

PbWO4 crystals, CMS ECAL, test beam

Electron energy

Page 21: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 21

However, in certain cases:

Energy of the incident particle is only transferred to making quanta,

and to no other energy dissipating processes, for example in Ge.

Stochastic fluctuations much reduced

Now σE / E = (FQ / E ) where F is the ‘Fano’ factor .

F ~ 0.1 in Germanium

Detector resolution in AGATA 0.06% for 1332keV photons

Conversely, photo-detectors can introduce more fluctuations:

For CMS PbWO4 crystals, scintillation emission small fraction of energy loss and F ~ 1

However - fluctuations in the avalanche process in the Avalanche Photodiodes used for the

photo-detection gives rise to an excess noise factor in the gain of the device

This leads to F ~ 2 for the PbWO4 + APD combination

Npe ~ 4500 photo-electrons released by APD, per GeV of deposited energy

Coefficient of stochastic term ape = F / Npe = (2 / 4500) = 2.1%

Including lateral leakage fluctuations (2%) Total estimated stochastic term 2.9%

2.8% measured

Electromagnetic Energy Resolution

Page 22: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 22

Electromagnetic Energy Resolution

Energy [keV]

Energy [keV]

Co

unts

Co

unts

Doppler corrected using:

psa result

centre of segment

centre of detector

Doppler corrected using:

psa result

centre of segment

centre of detector

Experiment with excited nucleii from a target

An example of the ‘Fano’ factor in

action: the AGATA Ge detector

1382 keV line, width 4.8 keV (fwhm)

Resolution 0.15%

(0.06% with source)

Page 23: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 23

Hadron Calorimeters

Hadron calorimeters

* essential to detect jets, which are fragments of

fundamental constituents such as quarks and gluons.

*Jets often comprise many (and o) and other

hadrons.

* Sometimes they may contain just a single pion.

Each of the hadrons will generate its own hadronic

cascade, which will often span both the ECAL and HCAL,

and overlap with other cascades from the jet.

The story is far more complex than for em cascades.

HCAL

ECAL

Page 24: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 24

Hadronic Cascades

Degradation of the hadron energy into a cascade proceeds through an increasing number of

(mostly) strong complex interactions with the calorimeter material.

Two classes of effects:

* Energetic secondary hadrons are produced with a mean free path, λI ~ 35 A1/3 g/cm2

between interactions. Their momenta a ‘fair fraction’ of the primary hadron.

* A significant part of the primary energy consumed by nuclear processes:

excitation, neutron evaporation, spallation involving particles of O(MeV)

energies. Dominated by electrons positrons photons and neutrons

p, n, , K,… mbAinel 3507.0

0

Page 25: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 25

Hadronic Cascades

p, n, , K,…

Collision with a nucleus

Multiplicity of secondary particles ln(E)

n(0) ~ ln E (GeV) – 4.6

For a 100 GeV incoming pion, n(0) 18

Further collisions and mutliplication

continue until energy of secondaries

below the threshold for pion production

Either not detected or too slow to be within

detector time window

= invisible energy

Detector response to hadronic component

smaller than it should be

Electron response > hadron response

e/h > 1

Electrons, photons -> em showers

o-> -> em showers

Charged hadrons 20%

Nuclear fragments, p 25%

Neutrons, soft 15%

Breakup of nuclei 40%

Page 26: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL Hadronic Cascades

Introduction to Calorimetry 21.3.2012 26

Signal, per GeV of hadron component (h) and

signal per GeV of electomagnetic component (e)

for a hadron calorimeter with e/h = 1.8

2 dissimilar contributions to the total detector response

Page 27: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 27

Hadronic Cascades

Electromagnetic component fraction

Fraction is large, varies wildly, event to event

Includes - p -> o n

+ n -> o p

The average e.m. fraction increases with

incoming hadron energy:

These fluctuations in fem give rise to

* non linearity, since e/h > 1

* non gaussian response

* poor energy resolution

Page 28: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 28

Hadronic Cascades

Unlike electromagnetic showers, hadron showers do not show a

uniform deposition of energy throughout the detector medium

p, n, , K,…

Red - e.m. component Blue – charged hadrons

Simulation of two hadron showers

Page 29: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

ATLAS, CALOR 2008

Tile Fe/Scintillator

tmax

Introduction to Calorimetry 21.3.2012 29

Hadronic Cascades

The e.m. component more pronounced at

start of the cascade than hadronic

component

* peak close to the first interaction

* exponential fall off with scale λI

Longitudinal profile of pion

induced showers at various energies

For Iron

a = 9.4, b=39 lI =16.7 cm

For a pion of 100 GeV, t 95% 80 cm

For adequate containment, need ~10 lI

Depth of Iron needed 1.67 m

Depth of Cu needed 1.35 m

bEacmt

GeVEt I

ln)(

7.0][ln2.0)(

%95

max l

Page 30: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 30

Hadronic Cascades

Hadron lateral shower development

Lateral spread of shower from

transverse energy of secondaries,

<pT> ~ 350 MeV/c

Core + Halo

95% containment in a cylinder of

radius λI = 16.7cm in Fe

Compare to 2.19 cm for an

electromagnetic cascade in PbWO4

Radial shower profile for a 150 GeV pion

Page 31: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 31

Hadronic energy resolution

Page 32: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 32

Hadronic energy resolution

Consequences for e/h 1

- response with energy is non-linear

- fluctuations on Fπ° contribute to σE /E

Since the fluctuations are non-Gaussian,

- σE /E scales more weakly than 1/ E , more as 1/ E

- Deviations from e/h = 1 also contribute to the constant term

‘Compensating’ sampling hadron calorimeters

Retrieve e/h = 1 by compensating for the loss of invisible energy, several approaches:

Weighting energy samples with depth

Use large elastic cross section for MeV neutrons scattering off hydrogen in the organic

scintillator

Use 238U as absorber. 238U fission is exothermic. Release of additional neutrons

Neutrons liberate recoil protons in the active material

Ionising protons contribute directly to the signal

Tune absorber/scintillator thicknesses for e/h = 1

Example Zeus: 238U plates (3.3mm)/scintillator plates (2.6mm), total depth 2m, e/h = 1

Stochastic term 0.35/ E(GeV)

Dual readout, Cerenkov radiator to get only em part, scintillator – all parts

Page 33: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 33

Hadronic Energy Resolution

Compensated hadron calorimetry & high precision

em calorimetry are usually incompatible

In CMS, hadron measurement combines

HCAL (Brass/scint) and ECAL(PbWO4) data

Effectively a hadron calorimeter divided in depth

into two compartments

Neither compartment is ‘compensating’:

e/h ~ 1.6 for ECAL

e/h ~ 1.4 for HCAL

Hadron energy resolution is degraded and

response is energy-dependent

CMS:

Stochastic term a =120% (Zeus 35%)

Constant term c = 5%

CMS energy resolution for single pions

up to 300GeV

Page 34: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 34

Cascades – a comparison

Cascade

Electromagnetic Hadronic

X0 ~ 180 A / Z2 << λI ~ 35 A1/3

23 cm deep x 2.19 cm 80 cm deep x 16.7 cm

Electromagnetic cascades:

- well understood

- linear response with energy

- simulations succesfully reproduce observed distributions

Hadron cascades:

- much harder to model

- large, non predictable, event to event variations

- non linear response

Hadron calorimeters much larger than em calorimeters

Page 35: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 35

Jets and Particle Flow

Page 36: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 36

Jets and Particle Flow

At colliders, hadron calorimeters serve primarily to

measure jets and missing ET

Single hadron response (ie at test beams)

* indication of the level to be expected for jet

energy resolution

Make combined use of

* Tracker information

* Fine grained information from the ECAL and

HCAL detectors

* Measurement of jets can be significantly

improved

This holistic approach is often referred to as

‘Particle Flow Event Reconstruction’ Jets from a simulated event in CMS

Page 37: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 37

Jets in CMS at the LHC, pp collisions at 7TeV

Red - ECAL, Blue - HCAL energy deposits

Yellow – Jet energy vectors

Page 38: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 38

Jets and Particle Flow

Momenta of particles inside a jet

Example

Quark/gluon jet with a total pT of 500 GeV/c

Average pT carried by the stable constituent

particles of the jet ~ 10 GeV

Reduces to a ‘few’ GeV for the stable constituent

particles for jets with pT < 100 GeV

In a typical jet 65% of jet energy in charged hadrons

25% in photons (mainly from -> )

10% in neutral hadrons

For charged particles with ‘low’ momenta,

better to use momentum resolution of the tracker

than the energy resolution of the calorimeters

Only 10% of the jet energy (the neutral hadrons) left

to be measured in the ‘poor’ HCAL

Dramatic improvements for jet energy resolution

Page 39: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL Jets and Particle Flow

Introduction to Calorimetry 21.3.2012 39

ETYPE/Ejet

0. 0.5 1.0

Charged

Hadrons

Energy fraction carried by particle type in a jet

Page 40: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 40

Jets and Particle Flow

Page 41: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 41

Jets and Particle Flow

Particle Flow versus Calorimetry alone

CMS - large central magnetic field of 4T

Very good charged particle track

momentum resolution

Good separation of charged particle

energy deposits from others in the

calorimeters

Good separation from other tracks

Large improvement in jet resolution

at low PT using the resolution of the

tracking system

Calorimetry only

Jet energy resolution as a function of PT

Simulated QCD-multijet events,

CMS barrel section: |η| < 1.5

Particle flow

Page 42: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 42

Jets and Particle Flow

Missing ET normalised to the total transverse

energy for Di-jet events in CMS

with and without particle flow

Particle

Flow

Calorimetry

only

Page 43: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 43

Jets and Particle Flow

CMS missing ET resolution

< 10 GeV on whole ΣET range

up to 350GeV.

Factor 2 improvement using

Particle Flow technique

Calorimetry

only

Particle

Flow

Missing ET resolution for Di-jet events

Di-jet

events

Page 44: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 44

Detectors for Electromagnetic and Hadronic

Calorimetry

Page 45: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 45

There are two general types of calorimeter design:

Sampling calorimeters

Layers of passive absorber (ie Pb or Cu) alternating with active

detector layers such as Si, scintillator or liquid argon

Only part of the energy is sampled

Used for both electromagnetic and hadron calorimetry

Calorimeter types

ATLAS ECAL & HCAL

LHCb ECAL

ALICE EMCAL

CMS HCAL

Homogeneous calorimeters

Single medium, both absorber and detector, eg:

Liquified Xe or Kr organic liquid scintillators

Dense crystal scintillators: PbWO4 CsI(Tl) BGO and many others

Lead loaded glass

Almost entirely for electromagnetic calorimetry

Si photodiode

or PMT

Babar ECAL CsI(Tl)

CMS ECAL (PbWO4 )

ALICE ECAL (PbWO4 )

PANDA ECAL (PbWO4 )

Page 46: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 46

Lead tungstate crystals, CMS

Reasons for PbWO4

Homogeneous medium

Fast light emission ~80% of light in 25 ns

Short radiation length X0 = 0.89 cm

Small Molière radius RM = 2.10 cm

Emission peak 425 nm, matches to photo-detectors

Reasonable radiation resistance to very high doses

Emission spectrum (blue)

and transmission curve

425nm

350nm

70%

300nm 700nm

23cm

25.8Xo 22cm

24.7Xo

CMS Barrel crystal, tapered

~2.6x2.6 cm2 at rear

Avalanche PhotoDiode

readout

CMS Endcap crystal,

tapered, 3x3 cm2 at rear

Vacuum Photo Triode

readout

Downside

Only ~70 / MeV

(CsI, 5.104 / MeV)

Temp dependence -2% / oC

Extremely brittle

$$$/cc

Page 47: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 47

Lead tungstate crystals, PbWO4

molten

seed

RF heating

Czochralski

method

A CMS PbWO4 crystal ‘boule’ emerging from its 1123oC melt

Page 48: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 48

Lead tungstate crystals, CMS

Endcaps: 4 Dees (2 per Endcap)

14648 Crystals (1 type) – total mass 22.9 t

Barrel: 36 Supermodules (18 per half-barrel)

61200 Crystals (34 types) – total mass 67.4 t

Pb/Si Preshowers: 4 Dees (2/Endcap)

CMS at the LHC – scintillating PbWO4 crystals

Total of 75848

PbWO4 crystals

CMS Barrel, 61200 crystals

An endcap Dee, 3662 crystals awaiting

transport

Page 49: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 49

Lead tungstate crystals, CMS

Barrel

Avalanche photodiodes(APD)

Two 5x5 mm2 APDs/crystal

Gain 50

QE ~75%

Temperature dependence -2.4%/OC

20

40m

Endcaps

Vacuum phototriodes(VPT)

More radiation resistant than Si

diodes

- UV glass window

- Active area ~ 280 mm2/crystal

- Gain 8 -10 (B=4T)

- Q.E. ~20% at 420nm

= 26.5 mm

MESH ANODE

CMS PbWO4 - photodetectors

Page 50: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 50

Lead tungstate crystals, ALICE

ALICE at the LHC – scintillating PbWO4 crystals

Some of the 17,920 PbWO4 crystals for ALICE (PHOS)

Avalanche photo diode readout

Page 51: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL Lead tungstate crystals, CMS in-situ

Introduction to Calorimetry 21.3.2012 51

Energy resolution: the everyday challenges

Intercalibration of all the channels

Requires several steps before, during and after data taking

• test beam pre-calibration

• continuous monitoring during data taking

(short term changes)

• Intercalibration by physics reactions during running:

pi-zeros, etas, with specialized data-stream, phi symmetry

Currently intercalibrate to ~1.2% barrel, ~2-3% endcaps

Pi-zero - Data

Pi-zero - Monte Carlo

Page 52: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL Lead tungstate crystals, CMS in-situ

Introduction to Calorimetry 21.3.2012 52

CMS in-situ electromagnetic performance

Page 53: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 53

Noble liquids for homogeneous calorimeters

Noble liquid calorimeters

I1

I2

q,ve -q, vI

Z=D

Z=0

E

Liquid Argon

5 mm/μs at 1 kV/cm,

5 mm gap 1 μs for all

electrons to reach the electrode.

Ion velocity 103 to 105 times

slower

doesn’t contribute to the

signal, for electronics with μs

integration times.

When charged particle traverses these materials, half

lost energy converted to ionisation, half to scintillation

Sometimes collected together – but difficult technically

Kr for most compact calorimeter: NA48, NA62 (from 2011)

Ar for low cost, high purity: ICARUS

Xe horribly expensive: Dark Matter searches

Page 54: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 54

NA48 liquid Kr electromagnetic calorimeter

NA48 Liquid Krypton Ionisation chamber (T = 120K)

No metal absorbers: quasi homogeneous

Cu-Be ribbon electrode

2 cm x 2 cm cells

X0 = 4.7cm

125 cm length (27X0)

1 cm drift space

3 µs drift time

cathodes

anodes

2x2 cm2

cell

+/- 0.48 rad

e-

e-

e-

+3 kV

e-

e-

e-

+3 kV

photons from

os from Ko

decays

Page 55: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 55

NA48 liquid Kr electromagnetic calorimeter

NA48 Liquid Krypton Ionisation chamber (T = 120K)

No metal absorbers: quasi homogeneous

En

erg

y re

so

lution

Energy (GeV) Energy (GeV)

Po

sitio

n r

eso

lutio

n (

mm

)

Energy (GeV)

Po

sitio

n r

eso

lutio

n (

mm

)

Y

X

Position resolution Energy resolution, blue after unfolding

spectrometer resolution

a = 3.2% b = 9%/E c = 0.42%

Page 56: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL ATLAS sampling electromagnetic calorimeter

Introduction to Calorimetry 21.3.2012 56

6.4 m

Barrel em 114 t

Inner radius 1.4 m

Depth 53 cm, 22-30 Xo

Page 57: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL ATLAS sampling electromagnetic calorimeter

Introduction to Calorimetry 21.3.2012 57

Absorbers immersed in liquid argon (90K)

Multilayer Cu-polyimide readout boards

Electric field to collect ionisation

1 GeV energy deposit 5.106 e-

Accordion geometry minimises dead zones

Liquid argon intrinsically rad hard

Readout board allows fine segmentation

(azimuth, rapidity, longitudinal)

1-2mm thick stainless

steel folded plates

2.1 mm drift gap

450 ns drift time

Page 58: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL ATLAS sampling electromagnetic calorimeter

Introduction to Calorimetry 21.3.2012 58

Photon Pi-zero

Readout grouping into trigger

towers

25 Xo total

4 Xo fine grain, pizero rejection

16 Xo shower core

2 Xo to evaluate late starters

170,000 channels

Page 59: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL ATLAS sampling electromagnetic calorimeter

Introduction to Calorimetry 21.3.2012 59

Ebeam (GeV)

E/E

Energy resolution at test

beam

Mean energy response at

three eta locations

Page 60: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL ATLAS sampling electromagnetic calorimeter

Introduction to Calorimetry 21.3.2012 60

ATLAS results for J/Psi and Z

Page 61: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL LHCb calorimeters

Introduction to Calorimetry 21.3.2012 61

HCAL ECAL Presampling

Page 62: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 62

LHCb (and ALICE) sampling electromagnetic calorimeters at the LHC

LHCb module

67 scintillator tiles, each 4 mm thick, interleavedwith 66 lead plates, each 2 mm thick

Readout through wavelength shifting fibres running through plates to phototubes

Back plate

Compressionplate

WLS fibres

Pb/scintillatorstack

Front plate

Mirrored end of fibres

Black foil for blocking light

Strap

Belleville

washers

Tower “A”

Tower “B”

Alice fibre

collection to APDs

Page 63: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 63

LHCb sampling electromagnetic calorimeter

Wall of 3312

modules

Page 64: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL LHCb sampling electromagnetic calorimeter

Introduction to Calorimetry 21.3.2012 64

LHCb test beam results LHCb in-situ results, pi-zero

and eta signals

Page 65: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 65

CMS Hadron Sampling Calorimeter

Workers in Murmansk

sitting on brass casings of

decommissioned shells of

the Russian Northern Fleet

Explosives previously

removed!

Casings melted in St

Petersburg and turned into

raw brass plates

Machined in Minsk and

mounted to become

absorber plates for the CMS

Endcap Hadron Calorimeter

CMS Hadron calorimeter at the LHC Brass absorber preparation

Page 66: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 66

The CMS HCAL being inserted into the solenoid

Light produced in the scintillators is transported through optical fibres to

Hybrid Photo Diode (HPD) detectors

CMS Hadron Sampling Calorimeter

Scintillator tile inspection

Page 67: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 67

CMS HCAL – fibre readout

Wavelength shifter and fibre optic readout for the CMS

scintillator tiles

Page 68: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 68

CMS Hadron and EM calorimetry

CMS

Barrel

HCAL

CMS

Endcap

HCAL

CMS

Endcap

ECAL

Page 69: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL Liquid scintillator detectors

Introduction to Calorimetry 21.3.2012 69

Borexino

* Detect solar neutrinos (7Be, 0.86 MeV)

* Acceptance ~ 200 keV to a few MeV

* 300 t of ultra pure organic liquid

scintillator

* Minimise background from

radioactive contamination

* 500 photo-electrons/MeV

* 5% resolution at 1 MeV

Kamland: 18 m across !!

* Detect anti-neutrinos from power

reactors above ~ 0.7 MeV

* 1000 t of ultra pure organic

liquid scintillator

* Minimise background from

radioactive contamination

* 300 photo-electrons/MeV

* 7.5% resolution at 1 MeV

Page 70: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL Liquid scintillator detectors

Introduction to Calorimetry 21.3.2012 70

Inside Borexino,

before filling !!

PM tubes with

Winston cone light

collectors

Page 71: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL Future directions in Calorimetry

The International Linear Collider (ILC)

Exploit Particle Flow techniques Need very high transverse segmentation

ECAL ~1x1 cm2 SiW project – CALICE HCAL ~3x3 cm2 Steel/scintillator

High longitudinal sampling, 30 layers ECAL and 40 layers HCAL

CALICE prototype, 1.4/2.8/4.2mm thick W plates (30X0) interleaved with Silicon

wafer, read out with 1x1cm2 pads. Resolution a ~17%, c ~ 1.1%

Page 72: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL Calorimeters at work

CMS, pp -> 2 photons + X, at 7 TeV in search for H -> , ECAL red, HCAL blue

No tracks

towards large

em deposits

=> photons

Page 73: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL Calorimeters at work

Introduction to Calorimetry 21.3.2012 73

CMS r-phi (end on) view pp -> 2 electrons + X, 7 TeV

ECAL red, HCAL blue

Z’ -> 2e search

Effective mass

Mee = 1309 GeV

Track towards each

large em deposit

2 electrons

Rather quiet elsewhere

840 GeV

748 GeV

Page 74: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL Calorimeters at work

Introduction to Calorimetry 21.3.2012 74

Track towards each

large em deposit

2 electrons

Rather quiet elsewhere

CMS side view

pp -> 2 electrons + X

7 TeV

ECAL red, HCAL blue

Z’ -> 2e search

Effective mass

Mee = 1309 GeV

840 GeV

748 GeV

Page 75: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL Calorimeters at work

Introduction to Calorimetry 21.3.2012 75

CMS

Dijet event from pp collision at 7 TeV

Effective mass 4696.74 GeV

Hard scatter involving over 65% of

the available collision energy

ECAL red

HCAL blue

Page 76: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL Calorimeters at work

Introduction to Calorimetry 21.3.2012 76

CMS Event with 5 jets from pp collision at 7 TeV

ECAL red

HCAL blue

Page 77: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL Calorimeters at work

Heavy ion collision in CMS, Pb-Pb, Nov 2010, ECAL red, HCAL blue

Page 78: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL Calorimeters at work

Heavy ion collision in CMS, Pb-Pb, Nov 2010, ECAL red, HCAL blue

Page 79: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 79

Summary

Calorimetry is one of the most important detector techniques for particle physics

Calorimeters playing a crucial role for physics at the LHC

eg H → γγ, Z’ → ee, SUSY (missing ET)

Wide variety of mature and new technologies are available

Calorimeter design is dictated by physics goals and experimental constraints

Compromises often necessary, ie in choosing between high resolution

e.m. calorimetry or high resolution hadron calorimetry

References:

Electromagnetic Calorimetry, Brown and Cockerill, NIM-A 666 (2012) 47–79

Calorimetry for particle physics, Fabian and Gianotti, Rev Mod Phys, 75, 1243 (2003)

Calorimetry, Energy measurement in particle physics, Wigmans, OUP (2000)

Page 80: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 80

Backups

Page 81: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 81

Homogeneous e.m. calorimeters

Electron energy resolution

as a function of energy

Electrons centrally (4mmx4mm)

incident on crystal

Resolution 0.4% at 120 GeV

Energy resolution at 120 GeV

Electrons incident over full crystal face

Energy sum over 5x5 array wrt hit crystal.

Universal position ‘correction function’ for

the reconstructed energy applied

Resolution 0.44%

Stochastic term

Constant term

Noise term

Barrel Barrel

PbWO4 - CMS ECAL energy resolution

Page 82: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 82

Homogeneous calorimeters

Three main types: Scintillating crystals Glass blocks (Cerenkov radiation) Noble liquids

Homogeneous calorimeters

Barbar

@PEPII

10ms

inter’n rate

good light

yield, good S/N

KTeV at

Tevatron,

High rate,

Good

resolution

L3@LEP,

25s bunch

crossing,

Low rad’n

dose

CMS at LHC

25ns bunch

crossing,

high radiation

dose

ALICE

PANDA

Crystals

Lead glass, SF-6

OPAL at LEP

Xo = 1.69cm,

= 5.2 g/cm3

Page 83: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 83

Variation in the lattice

(e.g. defects and impurities)

local electronic energy levels in the energy gap

The centres are of three main types:

• Luminescence centres in which the transition to the ground state

is accompaigned by photon emission

• Quenching centres in which radiationless thermal dissipation of

excitation energy may occur

• Traps which have metastable levels from which the electrons may

subsequently return to the conduction band by acquiring thermal

energy from the lattice vibrations or fall to the valence band by

a radiationless transition

If these levels are unoccupied electrons moving in the conduction

band may enter these centres

Scintillating crystals

Page 84: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 84

200 300 400 500 600 700

inte

ns

ity (

a.u

.)

wavelength (nm)

Stokes shift PWO relaxation

-50

0

50

100

150

200

250

-400 -300 -200 -100 0 100 200 300 400

En

erg

y

Configurational

coordinates

DEa

excited

stateground

state

hnex hn

em

Stokes shift

Dl = lem

- lex

Q0

gQ

0

eA

B

C

D

excitation

radiative emission

PbWO4: lexcit=300nm ; lemiss=500nm

Scintillating crystals

Page 85: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 85

Conduction band

valence band

band

gap

Edep e-h

Es= b Eg b>1

Neh = Edep / bEg

Efficiency of transfer to luminescent centres

radiative efficiency of luminescent centres

N = SQNeh

= N / Edep= SQNeh / Edep = SQ/ bEg

• S, Q 1 , bEg as small as possible

• medium transparent to lemiss

Eg

Scintillating crystals

Page 86: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 86

CMS Barrel and Endcap Homogeneous ECAL

A CMS Supermodule

with 1700 tungstate crystals Installation of the last SM into

the first half of the barrel

A CMS endcap ‘supercrystal’

25 crystals/VPTs

Page 87: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 87

Electromagnetic shower

Page 88: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 88

Page 89: Introduction to Calorimeters › DJAC › Calorimetry-GSI-21Mar2012.pdf · D Cockerill, RAL, STFC, UK STFC RAL Introduction to Calorimetry 21.3.2012 9 Favours the use of high Z materials

D Cockerill, RAL, STFC, UK

STFC

RAL

Introduction to Calorimetry 21.3.2012 89

Lead tungstate crystals, CMS in-situ

Measurement of the Z peak using Z->ee decays

with the PbWO4 crystals of the CMS ECAL at the LHC

CMS ECAL

Instrumental

resolution:

1.0 GeV

in ECAL Barrel

for the Z peak

(91 GeV) Note the hard

work needed for

various detector

corrections