Top Banner
Prof. Jose Sasian OPTI 518 Introduction to aberrations OPTI 518 Lecture 14
69

Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Aug 03, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Introduction to aberrations

OPTI 518Lecture 14

Page 2: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Topics

• Structural aberration coefficients• Examples

Page 3: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Structural coefficients

Ж

Requires a focal systemAfocal systems can be treated with Seidel sums

Page 4: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Page 5: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Page 6: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Structural stop shifting parameter

s’ is the distance from the rear principal plane to exit pupil

s is the distance from the front principal plane to entrance pupil

2

2 2P P Py y yS SЖ Ж

'

2 1 2 1 ' 2 'P Py y s sSЖ Y s n Y s n

1 / 2nu Y y

Using ω on we can express:

2P Py ySЖ

Page 7: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Page 8: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Review of concepts

• Thin lens as the thickness tends to zero

• Shape of a lens and shape factor• Conjugate factor to quantify how the lens

is used. Related to transverse magnification

• Must know well first-order optics

1 2 1 2tn

Page 9: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Shape and Conjugate factors

nu ' 1' 1

mYm

1 2 1 2

1 2 1 2

c c R RXc c R R

Lens bending concept

Page 10: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Shape X

X=-1

X=0

X=-1.7

X=-3.5X=3.5

X=1.7

X=1

X=0

Page 11: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Shape

X=0

X=0

X=-1X=-2X=-3

X=1X=2X=3

Page 12: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Shape or bending factor X• Quantifies lens shape• Optical power of thin lens is maintained• Not defined for zero power, R1=R2

1 2 1 2

1 2 1 2

c c R RXc c R R

Page 13: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Page 14: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Page 15: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Example:Refracting surface free from spherical aberration

Object at infinity Y=1

2 2 22 2 2 2

2 2 2 2 2 2

1 ' ' ' 1 2 2 2 112 ' ' ' 2 ' ' ' 'In n n n n n n nn n n n n n n n n n n n

44 3 4 3 4 3

23

1 1 14 4 '

PI P I P I P

yS y n K y y Kr n n

2 4 3 24 3

2 22 2

1 2 1 14 ' ' '' '

PI P

yn nS y K Kn n n nn n n n

22

20'InS Kn

Parabola for reflectionEllipse for air to glassHyperbola for glass to air

Page 16: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Note

24 3 4 3 4 3

21 1 1 24 4 ''

I P I P P IS y y K y Kn nn n

The contribution to the structural coefficient from the aspheric cap is

22'Icap Kn n

For a reflecting surface is just the conic constant K

Page 17: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Icap K

Page 18: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Page 19: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Page 20: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Page 21: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Spherical MirrorA spherical mirror can be treated as a convex/concave

plano lens with n=-1. The plano surface acts as an unfoldingflat surface contributing no aberration.

2

1

11

000

I

II

III

IV

V

L

T

XYY

14

011401

A

BC

D

EF

n=-1

n=1 n=1

Page 22: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Field curves

Page 23: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Field curves

Rt~f/3.66Rm~f/2.66Rs~f/1.66Rp~f/0.66

Page 24: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Thin lensSpherical aberration and coma

I II

Fourth-order

Page 25: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Spherical aberration of a F/4 lens

•Asymmetry•For high index 4th order predicts well the aberration

Page 26: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Thin lens spherical aberration

n=1.517

I

Y

X

Page 27: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Thin lens coma aberration

n=1.517

II

X

Y

Page 28: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

This lensAplanatic solutions

X=4

Y=5n=1.5

' 1' 1

mYm

Page 29: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Thin lensSpherical and coma @ Y=0

III

N=1.5N=2N=2.5N=3N=3.5N=4

Strong index dependence

Page 30: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Thin lens special casesstop at lens

Page 31: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Thin lens special cases stop at lens

Page 32: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Thin lens special cases stop at lens

For double convex lens (CX)For double concave lens (CC)

Page 33: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Thin lens special cases stop at lens

Page 34: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Thin lens special cases stop at lens

Page 35: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Achromatic doubletTwo thin lenses in contactThe stop is at the doublet

1 2

1 2

11

22

y y

1 2

21

1

12

2

1

YY

YY

Page 36: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Achromatic doubletCorrection for chromatic change of focus

1 2

1 2

11 2

1 2

22 1

1 2

1

1

L

L

L

0L

For an achromatic doublet:

2,

,0

kP kk

L L ki P

yy

Page 37: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Achromatic doubletCorrection for spherical aberration

3 2 2 3 2 21 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2I A X B X Y CY D A X B X Y C Y D

43,

,0

kP kk

I I ki P

yy

For a given conjugate factor Y, spherical aberration is a functionOf the shape factors X1 and X2 . For a constant value of spherical

aberration we obtain a hyperbola as a function of X1 and X2.

Page 38: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Achromatic doubletCorrection for coma aberration

22

,, ,

0

kP kk

II II k k I ki P

yS

y

2 21 1 1 1 1 2 2 2 2 2II E X FY E X F Y

For a given conjugate factor Y and a constant amount of coma the graph of X1 and X2 is a straight line.

Page 39: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Achromatic doubletAstigmatism aberration

2, , ,

0

2k

kIII III k k II k k I k

i

S S

1 21 1III

Astigmatism is independent of the relative lens powers, shape factors,or conjugate factors.

Page 40: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Achromatic doublet

1 2

1 2IV n n

2 1

2 1

n n

Field curvature aberration

,0

kk

IV IV ki

0IV For an achromatic doublet there is no field curvature if

Page 41: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Achromatic doubletDistortion and chromatic change of magnification

, ,0

k

T T k k L ki

S

2

2 3, , , , ,

0 ,

3 3k

PV V k k IV k III k k II k k I k

i P k

y S S Sy

00

V

T

Page 42: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Cemented achromatic doublet

1 1 2 212 21

1 2

1 1 2 2

1 2

2 1

1 12 1 2 1

1 11 1

1 1

X Xc c

n n

X Xn n

X X

2 1

1 2

2 1

1 2

11

11

nn

nn

For achromat

For a cemented achromatic lens the graph of X1 and X2 is a straight line.

Page 43: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Crown in front: BK7 and F8

Page 44: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Flint in front: BK7 and F8

Page 45: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Cemented achromatic doublet

Page 46: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Cemented doublet solutions

Crown in front

Flint in front

Page 47: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Lister objective

Page 48: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Lister objective• Two achromatic doublets that are spaced• Telecentric in image space• Normalized system

11100

A

A

IA

IB

Жyu

Page 49: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Lister objective

The aperture stop is at the first lens.The system is telecentric

111

B

A B

B

yy

Page 50: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Lister objective

Page 51: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Condition for zero coma

22,

, ,0

2 2 2 2

2 2

2

2

0

1 0

1

kP kk

II II k k I ki P

II A A IIA B B IIB

IB

II B IIA B IIB

BIIA IIB

B

yS

y

y y

y y

yy

Page 52: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Condition for zero astigmatism

2, , ,

0

2

2

1 0

1 1 0

2 02

12

2

1

kk

III III k k II k k I ki

III A B B IIB

III B B IIB

B B IIB

BIIB

BIIB

B

B BIIA

B

S S

y

y y

y y

y

yy

y y

y

, ,

2k P k P k

k

y yS

Ж

Page 53: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Lister Objective

2

2 2

2 2

221

1

1 212123

3

IIB IIA

B BB

B B

B B

B B B

B

A

IIA

IIB

y yyy y

y y

y y y

y

Choose:

Page 54: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Ray diffractive law (1D)

Page 55: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Grating linear phase change

sin ' sin mn I n Id

sin ' sin my n I y yn I yd

Page 56: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Diffractive opticshigh-index model

1/d

Page 57: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Diffractive opticshigh-index model

1/d

Page 58: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Diffractive lens (n very large @ X=0)

A=0B=0C=3D=1E=0F=2

23 1I Y

2II Y 1III

0IV

0V 1

Ldiffractive

0T

Page 59: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Mirror Systems

'

2 1 2 1 ' 2 'P Py y s sSЖ Y s n Y s n

Page 60: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Two mirror afocal system

Page 61: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Page 62: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Page 63: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Page 64: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Two mirror systems

Page 65: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Merssene afocal systemAnastigmatic

Confocal paraboloids

Page 66: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Paul-Baker systemAnastigmatic-Flat field

AnastigmaticParabolic primarySpherical secondary and tertiaryCurved fieldTertiary CC at secondary

Anastigmatic, Flat fieldParabolic primaryElliptical secondary Spherical tertiaryTertiary CC at secondary

Page 67: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Meinel’s two stage optics concept (1985)

Large DeployableReflector

Second stage correctsfor errors of first stage;fourth mirror is at the

exit pupil.

Page 68: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Aplanatic, Anastigmatic, Flat-field, Orthoscopic (free from distortion, rectilinear, JS 1987)

Spherical primary telescope.The quaternary mirror is near the exit pupil. Spherical aberration and

Coma are then corrected with a single aspheric surface. The Petzval sum is zero.If more aspheric surfaces are allowed then more aberrations

can be corrected.

Page 69: Introduction to aberrationswp.optics.arizona.edu/jsasian/wp-content/...10 11 0 20 2 1 2 2 1 k k III III k k II k k I k i III A B B IIB III B B IIB B B IIB B IIB B IIB B BB IIA B SS

Prof. Jose SasianOPTI 518

Summary

• Structural coefficients• Basic treatment• Analysis of simple systems