Top Banner
Introduction of the F=1 spinor BEC 西 郭郭郭郭郭郭郭郭郭郭郭
31

Introduction of the F=1 spinor BEC

Jan 13, 2016

Download

Documents

Kenneth Rodman

Introduction of the F=1 spinor BEC. 郭西川 國立彰化師範大學物理系. Spinor BEC. hyperfine spin. electron spin. nuclear spin. magnetic trapping (one-component, scalar). BEC. optical trapping (multi-component, vector). F=1 spinor BEC : 23 Na, 87 Rb,. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Introduction of the  F=1  spinor BEC

Introduction of the F=1 spinor BEC

郭西川

國立彰化師範大學物理系

Page 2: Introduction of the  F=1  spinor BEC

F=1 spinor BEC :23Na, 87Rb,...

Spinor BEC

electron spin

F I Shyperfine spin

nuclear spin

BECmagnetic trapping (one-component, scalar)

optical trapping (multi-component, vector)

Page 3: Introduction of the  F=1  spinor BEC

2

22 2 2 4 †1 1

2 2 2n s

K H N

d V g gm

Ψ

r Ψ r Ψ Ψ Ψ Ψ FΨ

Grand canonical energy-functional for the spinor BEC (Ho, Ohmi)

2 20 2 0 224 4

, 3 3n s

a a a ag g

m m

(gs<0: ferromagnetic; gs>0: antiferromagnetic)

N is a fixed number

Page 4: Introduction of the  F=1  spinor BEC

0

Ψ

order parameter:

1 3 U SO const Ψ

global phase

rotational symmetry in spin space

x x y y z zF F F F e e espin operators:

0 1 0 0 0 1 0 01 1

1 0 1 , 0 , 0 0 02 2

0 1 0 0 0 0 0 1x y z

i

F F i i F

i

Page 5: Introduction of the  F=1  spinor BEC

* * *0 0

* * * * * *0 0 0 0 0 0

* *

0 1 0 0 0 1 0 01 1

ˆ ˆ ˆ1 0 1 0 0 0 02 2

0 1 0 0 0 0 0 1

1ˆ ˆ

2 2

ˆ

i

i i

i

i

Ψ FΨ

x y z

x y

z

2 2 2* 20 0

2 2† *0 0

2 2 2* 20 0

2

Ψ FΨ FΨ

Page 6: Introduction of the  F=1  spinor BEC

Ground state structure of spinor BEC

2

0

0

, = ,0

(total particle density)

(total particle number)

n

n n n n

nd N N N N

r

0 0n n

Ψ r r χ

Define the normalized spinor byχ

† 1 χ χ

Such that all spinors are degenerate with the transformation

, , , ie U χ χ

, , yz ziFiF iFU e e e where

Euler angles

Page 7: Introduction of the  F=1  spinor BEC

Define †F χ Fχ

2 2 22 2 2

2 2 2 n s

K

nd n V n g g

m m

Ψ

r χ r F

then the free energy can be expressed as

The free energy of K is minimized by:

sin0

1. 0, 0 1 2 cos2

0 sin

i

ii

si

ee

g e U

e

F χ

22

2

2 22

2

cos1

2. 0, 1 0 2 cos sin

0 sin

i

iis

i

e

g e U e

e

F χ

2 1U S

1 3U SO

Page 8: Introduction of the  F=1  spinor BEC

2 2

* 20 02 n s si V g n g n n n g

t m

r

2 2

*00 0 02

2 n s si V g n g n n gt m

r

2 2

* 20 02 n s si V g n g n n n g

t m

r

Coupled GPE for spinor BEC

Time-dependent coupled GPE

Page 9: Introduction of the  F=1  spinor BEC

2 2

* 20 02 n s sV g n g n n n g

m

r

2 2

*0 0 0 02

2 n s sV g n g n n gm

r

2 2

* 20 02 n s sV g n g n n n g

m

r

Time-independent coupled GPE

Page 10: Introduction of the  F=1  spinor BEC

Modification of GPE – conservation of magnetization

The spin-exchange interaction also preserves the magnetization M, so we have two constraints for the GPE

0

01 0 1

N N N N const

M N N N N N const

Page 11: Introduction of the  F=1  spinor BEC

222 2 2 4 †

2 2

22 2 2 2 2

0

24 †

1 1

2 2 2

2

1 1

2 2

n s

n s

K H N BM

d V g gm

B

d V B Bm

g g

Ψ

r Ψ r Ψ Ψ Ψ Ψ FΨ

r Ψ r Ψ

Ψ Ψ FΨ

N and M are both fixed numbers

The conservation of particle number and magnetization is equivalent to introduce the Lagrange multipliers and B in the free energy

Page 12: Introduction of the  F=1  spinor BEC

2 2

* 20 02 n s sV g n g n n n g B

m

r

2 2

*0 0 0 02

2 n s sV g n g n n gm

r

2 2

* 20 02 n s sV g n g n n n g B

m

r

The corresponding GPE’s are modified to

Page 13: Introduction of the  F=1  spinor BEC

Some interesting results

2 20

2

0+ -

0

21 12 4 ,

=

N NN M N MN N NN

N N N

For 0, M M N

Ferromagnetic:

anti-ferromagnetic:0 =0 N

3 identical decoupled equations

2 coupled-mode equations

Page 14: Introduction of the  F=1  spinor BEC

Using the inequality rΦΦFΦ g2† ˆ

Case 1:

the ground state can be constructed by minimizing the spin-dependent part of the Hamiltonian

2†† ˆ

2

1ˆ ΦFΦΦΦ szL gF

22

0

22† ˆ ΦΦΦ zFChoose

However, since22† ˆ

ΦΦ zF

0

0

0

0

ig

fg

e

Φ (ferromagnetic state)

0sg

the spin configuration of

Field-induced phase segregation of the condensate configuration

Page 15: Introduction of the  F=1  spinor BEC

i

i

i

Fii

e

e

e

ee z00

ˆ

Let

the Hamiltonian is invariant under the gauge transformation

zLeB (Larmor frequency)

Page 16: Introduction of the  F=1  spinor BEC

Case 2:

Choose 0ˆˆ †† ΦΦΦΦ yx FF

s

L

s

LzszszL gg

FgFgF2

ˆ2

1ˆ2

1ˆ22

†2

††

ΦΦΦΦΦΦ

so that we have

The minimum is achieved if sLz gF ΦΦ ˆ†

00**

0*

0*

0

We may assume that 0 0 and is real but since

* 0ˆ 22† ΦΦ zF

0ˆˆ †† ΦΦΦΦ yx FF

00

0sg

which is in contraction with the condition sLz gF ΦΦ ˆ†

and we must conclude that

Page 17: Introduction of the  F=1  spinor BEC

ig

ig

pg

e

e

0Φ (polar state )

sLg gr

2

sLgg

g

rr

For

where

,sL grNote that when the condition sLz gF ΦΦ ˆ†

cannot be fulfilled and we must choose such that ΦΦ zF̂†

is as close to sL g as possible. This implies that

0

0

0

0

ig

fg

e

Φ

and thus the ground state is described by

,0

(ferromagnetic state )

Page 18: Introduction of the  F=1  spinor BEC

ig

ig

pg

e

e

0Φ sLg gr

For

0

0

ig

fg

e

Φ sLg gr

0sg the two different configurations coexist:

The phase boundary rb is determined by

sLbg gr

(ferro region)

(polar region)

Page 19: Introduction of the  F=1  spinor BEC

2322

ferro

3

2

2

2

polar

3

2

1

2

1

2

1

2/1

1

2

1

gngextgsgLg

s

L

sgL

g

gVrdgM

rd

ggMrdNHG

r

The free energy is given by

,0/ G

regionpolar

region ferro

n

ext

sn

extL

g

g

V

gg

V

r

r

r

In the Thomas-Fermi limit, the minimization of the free energy, leads to

Page 20: Introduction of the  F=1  spinor BEC

Example: 2202r

MVext r

2/5

2/52/3

20

2

15

8LL

s

n

n

s

sn g

g

g

g

MggN

bn

bsn

L

g

rrg

rM

rrgg

rM

2/

2/

220

220

r

The total particle number and the chemical potential is related by

2

0

20

/2

//2

MR

Mggr

L

sLnb

phase boundary

radius of atomic cloud

Page 21: Introduction of the  F=1  spinor BEC
Page 22: Introduction of the  F=1  spinor BEC
Page 23: Introduction of the  F=1  spinor BEC

ti

ti

et

t

et

,0

,

,

,

,

r

r

r

r

r

t

t

et ti

,

,

,

0

,

r

r

r r

t,rΦ

collective excitations tt g ,, rΦrΦrΦ

tt g ,, rrr

hydrodynamic-like mode

tittt

tittt

ss

exp,,,

exp,,,

rrrr

rrrr

Furthermore, we let fluctuation of number density

fluctuation of spin density

Derivation of hydrodynamic equations

polar region

ferro region

Page 24: Introduction of the  F=1  spinor BEC

rrrr

rrrr

sgsL

s

ns

sL

gn

M

g

Mg

g

MM

g

2

2

rrr

gsn

M

gg2

s ,

ΦFΦFΦΦrΦ

ˆˆˆ

2

1 †22snzLext ggFV

Mti

Substituting into the time-dependent GP equation

Upon linearization we obtain the hydrodynamic equations in different regions:

polar region

ferro region

(Stringari)

Page 25: Introduction of the  F=1  spinor BEC

Example: 2202r

MVext r

0

0

22

222222

2222222

sL

ss

sL

rrRrR

rrRrR

Rr /

where nsLL ggMr / ,/2 ,/2 20

220

2

01412

2

22

22

2

DfffA ll

d

d

d

dll

d

d

d

d

sL

L

f

f

Rr

RrfDA ,

/0

0 ,

1/

/1 where

222

22

Now let ,,,, lmsslm YfYf rr

Page 26: Introduction of the  F=1  spinor BEC

322

232

2

2-2

uuD

uu kkkk cclkk

lkklkcc

/1 22 Rrλ L

uuuu kkkk ccc

Denote u as the eigenvectors of A with eigenvalues and let

To solve the coupled equations, let

, 0

1

k

kk

k

kk b

ax uuf

322

2322

2 kk lkk

lkklku

DAu

and we obtain the recursion relation

Page 27: Introduction of the  F=1  spinor BEC

Boundary condition requires that the series must terminate at some interger k=2n

0 2644 22 nlnnln uD

322/ 0

322 0

22/10

22

20

22

lnnlnggEb

lnnlnEa

nss

nln

n

nln

n

u

u

and the solution is

The dispersion relations do not depend on the magnetic field!

Page 28: Introduction of the  F=1  spinor BEC

L-independence of solutions of polynomial-type

3

1,2

1

jijiijext xxMV r

Consider a general quadratic potential

where the 33 matrix ijis positively definite.

Consider a polynomial solution

r

r

r

r

k

k

nks Q

P

where Pk(r) and Qk(r) are homogeneous polynomials of degree k.

Page 29: Introduction of the  F=1  spinor BEC

Note that if Pk(r) is a polynomial of x,y,z with degree k

rkP2 is a polynomial of degree k-2

rr kg P is a polynomial of degree k

Clearly, terms of even degree are decoupled from terms of odd degree. So we may assume

r

r

r

r

r

r

k

k

gsL

Lg

n

nkk

k

nk Q

P

M

g

M

MM

g

Q

P

2

2

2

.03131 rrrr nnnn QQPP

Collecting terms of degree n on both sides

rr

rr

r

r

ngn

s

ng

n

n

QMg

g

PM

Q

P

1

2 The obtained frequency does not depend on L

Page 30: Introduction of the  F=1  spinor BEC

In memory of Prof. W.-J. Huang (黃文瑞 )

— A friend and a tutor

Page 31: Introduction of the  F=1  spinor BEC

ΦFΦBΦFΦ

ΦΦrΦ

ˆˆ2

1

2

1

2

1

†2

4223

s

next

g

gVM

rdH

Gross-Pitaeviski Hamlitonian for the spinor BEC (Ho, Ohmi)

3

4,

3

24 2020 aa

Mg

aa

Mg sn

(gs<0: ferromagnetic; gs>0: antiferromagnetic)

ratio icgyromagnet: