Top Banner
Status of the Experiment Polarizing antiprotons E. Steffens – University of Erlangen-Nürnberg for the PAX Collaboration http://www.fz-juelich.de/ikp/pax/ E. Steffens - DSPIN2009 1 PAX Experiment
72

Introduction

Feb 24, 2016

Download

Documents

Zada

Status of the Experiment Polarizing antiprotons E. Steffens – University of Erlangen- Nürnberg for the PAX Collaboration http://www.fz-juelich.de/ikp/pax/. Introduction. We have proposed a method to polarize antiprotons by „ spin-filtering “. Introduction. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Introduction

Status of the ExperimentPolarizing antiprotonsE. Steffens – University of Erlangen-Nürnberg

for the PAX Collaborationhttp://www.fz-juelich.de/ikp/pax/

E. Steffens - DSPIN2009

Page 2: Introduction

Introduction

We have proposed a method to polarize antiprotons by

„spin-filtering“

E. Steffens - DSPIN2009

Page 3: Introduction

Is it possible, and how, to provide polarized antiproton beams in

HESR ?

High Energy Storage Ring (HESR)

for a beam of antiprotons

E. Steffens - DSPIN2009

Introduction

New initiative, driven by the FAIR-project at GSI

Page 4: Introduction

Introduction

• Our knowledge about pp interaction is limited: • Lack of polarization data!

Restricted to single-spin (A0n00, A000n) data.No spin-correlation data!

• Attempts at LEAR (1983-1996) to produce polarized stored antiprotons were unsuccessful!

• Revival of ideas about stored polarized antiprotons: → PAX experiment at FAIR (see PAX TP hep-ex/0505054)

• Polarized antiprotons: A missing tool • Nucleon-antinucleon scattering at the parton level • Hadron spectroscopy• Nucleon-antinucleon scattering at low energy

E. Steffens - DSPIN2009

Page 5: Introduction

E. Steffens - DSPIN2009

Physics Case: Transversity distribution of the nucleon in Drell-Yan:

Last leading-twist missing piece of the QCD description of the partonic structure of the nucleon

Direct measurement of h1q

(x,Q2) of the proton for valence quarks (ATT in Drell-Yan >0.2)

transversely polarized proton beam or target () transversely polarized antiproton beam ()

+ many polarization observables in pp scattering

PAX → Polarized Antiprotons

Page 6: Introduction

Quark Transversity Distribution in Drell-Yan

Double transverse spin asymmetry:

llqq *

First direct measurement: No competitive processes

E. Steffens - DSPIN2009

Page 7: Introduction

Plan of talk

Polarizing antiprotons … Proposals, ideas, calculations, … Present status of pp interaction models Experiments

FILTEX (TSR)e p spin flip cross section measurement at COSYSpin-filtering at AD/CERNSpin-filtering at COSY

Conclusion

Task taken on by the PAX Collaboration: ~100 members 16 institutions

Spokespersons: P. Lenisa (Ferrara), F. Rathmann (Jülich)

E. Steffens - DSPIN2009

Page 8: Introduction

Two Methods: Spin-dependent loss versus spin flipFor an ensemble of spin ½ particles with projections + () and – ()

E. Steffens - DSPIN2009

Page 9: Introduction

Proposed methods: Spin flip

→ Need for an experimental test of this idea!

E. Steffens - DSPIN2009

Page 10: Introduction

ep spin flip studies at COSY: Idea

• Use proton beam and co-moving electrons • Turn experiment around: p e → p e into p e → p e i.e. observe depolarization of a polarized proton beam

COSY electron cooler (detuned)

Velocity mismatch

E. Steffens - DSPIN2009

Page 11: Introduction

PAX Experiment 11

ep spin flip studies at COSY: Tools

p

e-cooler ANKE cluster target & STT

Tp = 49.3 MeV

• Use (transversely) polarized proton beam circulating in COSY• Switch on (detuned) electron cooler to depolarize proton beam• Analyze proton polarization with internal D2-cluster target of

ANKE

E. Steffens - DSPIN2009

Page 12: Introduction

PAX Experiment 12

ep spin flip studies at COSY: Feasibility

Detuning e-cooler for 5 s only ensures that proton momentum stays fixed.

After detuning, proton energy slowly follows electron energy: U = 245 V ve = 1.5·10-3 cfR = 40 Hz in 5 s:

c104

107.8f

ffv

v

5

7R

R

Rpp

vp/ ve~0.03

E. Steffens - DSPIN2009

Page 13: Introduction

ep spin flip studies at COSY: Polarimetry

pd elastic scattering:detection in two (L-R) symmetric Silicon Tracking Telescopes

p D2

Deuteron identification

d

p

E. Steffens - DSPIN2009

Page 14: Introduction

ep spin flip cross section at COSY: Result

No effect observed: measured cross sections at least 6 orders-of-magnitude smaller than the predicted 1013 b.

E. Steffens - DSPIN2009

0

4107

|Relative velocity of electrons in proton rest frame| (c)

dep

ol (b

arn)

Nominal proton energy in electron rest frame (keV)0 1 2 3

0 110-3 210-3 310-3

2107

-2107

-4107

D.Oellers et al., Physics Letters B 674 (2009) 269

Meanwhile, Mainz group discovered numerical problems in the calculation → two errata. Analytical calculation by Novosibirsk group (Strakhovenko et al): Spin flip negligible!

Page 15: Introduction

Spin-dependent loss: Spin-filtering

Polarization build-up of an initially unpolarized particle beam by repeated passage through a polarized hydrogen target in a storage ring:

E. Steffens - DSPIN2009

Page 16: Introduction

P beam polarizationQ target polarizationk || beam direction

σtot = σ0 + σ1·P·Q + σ2·(P·k)(Q·k)

transverse case:

Qtot 10 longitudinal case:

Qtot )( 210

For initially equally populated spin states: (m=+½) and (m=-½)

Unpolarized anti-p beam

Polarized target

Polarization Buildup

E. Steffens - DSPIN2009 16PAX Experiment

Page 17: Introduction

P beam polarizationQ target polarizationk || beam direction

σtot = σ0 + σ1·P·Q + σ2·(P·k)(Q·k)

transverse case:

Qtot 10 longitudinal case:

Qtot )( 210

For initially equally populated spin states: (m=+½) and (m=-½)

Unpolarized anti-p beam

Polarized target

Polarized anti-p beam

Polarization Buildup

E. Steffens - DSPIN2009 17PAX Experiment

Page 18: Introduction

PAX ExperimentE. Steffens - DSPIN2009 18

statistical error of a double polarization observable (ATT)

NQP1

TTA

Measuring time t to achieve a certain error δATT

t ~ FOM = P2·I

Figure of Merit and optimum filtering time

(N ~ I)

Optimimum time for polarization buildup given by maximum of FOM(t)

tfilter = 2·τbeam

0 2 4 6 t/τbeam

I/I0

0.2

0.4

0.6

0.8

Bea

m P

olar

izat

ion

Page 19: Introduction

Spin-filtering at TSR: „FILTEX“ – proof-of-principle

→ Spin filtering works for protons

F. Rathmann et al., PRL 71, 1379 (1993)

E. Steffens - DSPIN2009

PAX submitted new proposal to find out how well spin filtering works for antiprotons: Measurement of the Spin-Dependence of the pp Interaction at the AD Ring

(CERN-SPSC-2009-012 / SPSC-P-337)

Polarization build-up process quantitatively understood!

• TSR spin filtering with protons:σexp=73 ± 6 mb

• Average theoretical value:σtheo=86 ± 2 mb

• Good agreement: ~2 σ discrepancy• Brief summary in: D. Oellers et al.,

Phys. Lett. B 674, 269 (2009).

Page 20: Introduction

PAX Experiment 20

pp interaction models

E. Steffens - DSPIN2009

Page 21: Introduction

Spin-dependence of the pbar-p interaction

E. Steffens - DSPIN2009 PAX Experiment 21

Model A: T. Hippchen et al., Phys. Rev. C 44, 1323 (1991).

Model OBEPF: J. Haidenbauer, K. Holinde, A.W. Thomas, Phys. Rev. C 45, 952 (1992).

Model D: V. Mull, K. Holinde, Phys. Rev. C 51, 2360 (1995).

• Measurement of the polarization buildup equivalent to the determination of σ1 and σ2

• Once a polarized antiproton beam is available, spin-correlation data can be measured at AD (50-500 MeV)

Page 22: Introduction

PAX at the AD (the only place worldwide)

E. Steffens - DSPIN2009

PAX target sectionElectron cooler

Siberian snake

Page 23: Introduction

E. Steffens - DSPIN2009

Experimental Setup

Atomic Beam Source

Six additional quadrupolesBreit-Rabi

Polarimeter

Target chamber:Detector system + storage cell

Page 24: Introduction

Polarized Target

E. Steffens - DSPIN2009 PAX Experiment 24

Qx Qy Qz: Quantization axis is reoriented by a weak magnetic guide field of 10 G

Injected hyperfine states from ABS

BRP measures occupation numbers of different HFS

+ corrections → Target Polarization

xy z

Page 25: Introduction

ABS

Targetchamber

Breit-Rabipolarimeter

Electric power Cooling

water

Atomic Beam Source and Breit-Rabi Polarimeter

E. Steffens - DSPIN2009 PAX Experiment 25

COSY/ADbeam axis

Page 26: Introduction

Atomic Beam Source and Breit-Rabi Polarimeter

E. Steffens - DSPIN2009 PAX Experiment 26

BRP vacuum HFT

QMAs

ABS/TC vacuum

Bake-out

Coils power

Page 27: Introduction

Target chamber, cell and detector system

E. Steffens - DSPIN2009 PAX Experiment 27

Storage cell:jet density 100 Silicon strip detectors

Atomic beam

Stored beam

Guide field coils(x, y, z)

movable flow limiter

Page 28: Introduction

E. Steffens - DSPIN2009 PAX Experiment 28

12 x 2 HERMES recoil detectors + 12 x 1 PAX STT detectors

Full system consisting of 36 Detectors

Target cell + Detectors with cooling system and shielding

Detectors surrounding the openable storage cell

1 PAX Layer

2 HERMES1 PAX STT

Detector System

Page 29: Introduction

Openable storage cell

E. Steffens - DSPIN2009 PAX Experiment 29

closedopened

AD beam envelope at injection requires openable storage cell

P. Belochitsky - CERN

Page 30: Introduction

AD optics (P. Belochitsky - CERN)

E. Steffens - DSPIN2009 PAX Experiment 30

At injection “Squeezed”

1. Beam is injected with low-β section moderately powered on.2. At experiment energy (T<450 MeV), β-functions are „squeezed“ by fully

powering on low-β magnets.3. Then storage cell is closed and gas is injected.

Page 31: Introduction

Expected polarizations after filtering for two lifetimes

E. Steffens - DSPIN2009

Model A: Production of longitudinal polarizationθacc > 13 mrad → P(2∙τb) changes only marginally

d (mm) Θacc (mrad)

8 8.610 10.812 13.0

Limit

Page 32: Introduction

Main phases of installation at AD

E. Steffens - DSPIN2009

2009 2010 2011

Phase 1

Phase 2

Phase 3

Installation of six magnets for the low-β insertion

Spin-filtering measurements up to 70 MeV with transverse

beam polarization

Installation of the target chamber: Machine

acceptance studies. Stacking studies

Page 33: Introduction

Time plan for AD

E. Steffens - DSPIN2009

Phase Time Description

1 Shutdown 2009/1020102 weeks3 weeks

Installation of six magnets for the low-β insertion.Commissioning of the low-β section:

• demonstrate compatibilty with AD users• PAX optics implementation

2a

2b

Shutdown 2010/112 weeks in 20113 weeks in 2011Shutdown 2011/122 weeks in 2012

Installation of the target chamber. Machine acceptance studies. Stacking studies (split in sessions).Installation of ABS, BRP, and detector system.Measurement of H target polarization with antiproton beam.

3 6 weeks in 2012 Spin-filtering measurements using H and D target up to 70 MeV with transverse beam polarization.

4 Shutdown 2012/13

4 weeks in 2013

Shutdown possibly extended up to six months. Implementation and commissioning of electron cooler upgrade to 300 keV.Commissioning of the electron cooler with beam.

5 6 weeks in 2013 Spin-filtering measurements using H and D target up to 430 MeV with transverse beam polarization.

6 Shutdown 2013/14 Implementation of the Siberian snake.

7 8 weeks in 2014 Spin-filtering measurements with H and D target up to 430 MeV with longitudinal beam polarization.

PAX ready to set sequence into motion by installing low-β section into the AD end of this year!

Page 34: Introduction

E. Steffens - DSPIN2009

Phase 1:

• All AD magnets remain in place• Installation of six magnets for the low-β insertion.• Commissioning of the low-β section

• Central quad taken out only after commissioning• Same performance of machine as before

• Layout of vacuum system, based on suggestions by the CERN group(→ NEG works)

• Pumping crosses• Turbo pump 200 l/s• Ion getter pump 400 l/s• 2 x SAES GP500 NEG pump 1900 l/s

Page 35: Introduction

Spin-filtering studies at COSY

ABS

BRP

COSY-Quadupoles

Low-β quadrupoles

Target chamber with storage cell

and detector system

E. Steffens - DSPIN2009

Main purpose:1. Repeat spin-filtering with protons. No surprises expected2. Commissioning of the experimental setup for AD

Proposal to COSY PAC submitted in July 2009

Low-β magnet installation at COSY

Page 36: Introduction

PAX Experiment 37

Time plan for COSYPhase Time Beam time Description1 Summer 2009

Fall 2009 2 weeksInstallation of four magnets for the low–β insertion.Commissioning of the low–β section and machine acceptance measurement.

2 Summer 2010

2010 1 week2×1 week 4 weeks

Installation of the target chamber, ABS, BRP and a detection system for spin–filtering.Measurement of the acceptance angle at the target position.Measurement of the target polarisations in dp and pd.Spin filtering at COSY with transverse beam polarisation.

3 Summer 20112011 4 weeks

Installation of the complete AD detector.Commissioning of the installed equipment.

4 Summer 2012

20122012

1 week4 weeks

Implementation of the two additional solenoids in the injection beam line, ANKE ABS and detectors.Commissioning of the Siberian snake. Spin filtering at COSY with longitudinal beam polarisation.

5 Summer 20132013 3 weeks

Implementation of the AD Siberian snake.Commissioning of the AD Siberian snake.

E. Steffens - DSPIN2009

Page 37: Introduction

Conclusions

Polarized antiprotons: a missing tool for spin physics

First measurement of the spin-dependence of pbar-p interaction

AD unique machine! Commissioning of equipment at COSY Clear strategy and commitment by PAX

Collaboration

E. Steffens - DSPIN2009

Now and here or never!

Page 38: Introduction

Spare transparencies

E. Steffens - DSPIN2009

Page 39: Introduction

Hadron Physics „Dream Machine“

… an asymmetric (double-polarized) proton (15 GeV/c) – antiproton (3.5 GeV/c) collider

using HESR, CSR and APR

E. Steffens - DSPIN2009

pp

Page 40: Introduction

E. Steffens - DSPIN2009 PAX Experiment 41

h1u from p-p Drell-Yan at PAX

PAX : M2/s=x1x2~0.02-0.3 valence quarks (ATT large ~ 0.2-0.3 )

)()()()(ˆ

21

2111

xuxuxhxhaA uu

TTTT

q q

q qqqqqTTTT xqxqxqxqe

xhxhxhxheaA

)()()()(

)()()()(ˆ

dddd

21212

211121112

• u-dominance• |h1u|>|h1d|

Similar predictions by Efremov et al., Eur. Phys. J. C35, 207 (2004)

Anselmino et al. PLB 594,97 (2004)

1year run: 10 % precision on the h1u(x) in the valence region

Pp=10% Pp=30%

Page 41: Introduction

Proposed methods: Some history …

EPAC 1988

Stern-Gerlach splitting never tried (huge effort)

E. Steffens - DSPIN2009

Page 42: Introduction

E. Steffens - DSPIN2009 43 of 19

statistical error of a double polarization observable (ATT)

NQP1

TTA

Measuring time t to achieve a certain error δATT

t ~ FOM = P2·I

Figure of Merit and optimum filtering time

(N ~ I)

Optimimum time for polarization buildup given by maximum of FOM(t)

tfilter = 2·τbeam

0 2 4 6 t/τbeam

I/I0

0.2

0.4

0.6

0.8

Bea

m P

olar

izat

ion

Page 43: Introduction

ep spin flip studies at COSY: Principle (1)

p

e-cooler ANKE cluster target & STT

Tp = 49.3 MeV

• Use (transversely) polarized proton beam circulating in COSY• Switch on (detuned) electron cooler to depolarize proton beam• Analyze proton polarization with internal D2-cluster target of

ANKE

E. Steffens - DSPIN2009

Page 44: Introduction

ep spin flip studies at COSY: Feasibility

Detuning e-cooler for 5 s only ensures that proton momentum stays fixed.

After detuning, proton energy slowly follows electron energy: U = 245 V ve = 1.5·10-3 cfR = 40 Hz in 5 s:

c104

107.8f

ffv

v

5

7R

R

Rpp

vp/ ve~0.03

E. Steffens - DSPIN2009

Page 45: Introduction

ep spin flip studies at COSY: Cycle setup

26850

time (s)

Target off Target on

0 200 400 600 800

Num

ber o

f Bea

m P

artic

les

+245

27095

Tdetuned

49·5 s

Tnominal

49·5 s1000

4 108

2 108Eco

oler

Vol

tage

(V)

0 200 400 600 800 1000

tuned cycle detuned cycle

Tnominal

49·5 s

Telectron-off

49·5 s

Compare cycle-by-cycle: No electrons to detuned electrons

E. Steffens - DSPIN2009

Page 46: Introduction

Bea

m c

urre

nt

0

Ptuned Pdetuned

Determine Ptuned and Pdetuned from identical cycles, except for detuned cooler

E. Steffens - DSPIN2009

ep spin flip studies at COSY: Super Cycle

Page 47: Introduction

Depolarization Studies at COSY: Results (1)

pd elastic scattering:detection in two (L-R) symmetric silicon tracking telescopes

p D2

-4 -3 -2 -1 0 1 2 3 40

0.2

0.4

0.6

tuned coolerdetuned cooler

Proton kinetic energy in electron rest frame (keV)

Bea

m P

olar

izat

ion

Tuned and detuned beam polarizations

E. Steffens - DSPIN2009

Page 48: Introduction

ep spin flip studies at COSY: Results (1)

pd elastic scattering:detection in two (L-R) symmetric silicon tracking telescopes

p D2

Measured ratio of polarizations vs Proton Kinetic energy in electron rest frame

-4 -3 -2 -1 0 1 2 3 4

0.8

1

1.2

Nominal proton kinetic energy in electron rest frame (keV)

Pde

tune

d/Ptu

ned

E. Steffens - DSPIN2009

Page 49: Introduction

ep spin flip studies at COSY: New calc´s

~ 1 mb → No effect expected!

E. Steffens - DSPIN2009

Page 50: Introduction

Atomic Beam Source and Breit-Rabi Polarimeter

E. Steffens - DSPIN2009

BRP vacuum HFT

QMAs

ABS/TC vacuum

Bake-out

Coils power

Page 51: Introduction

Development of cryopump for target chamber

E. Steffens - DSPIN2009

Task taken on by Gatchina group

TPH 1600

Gate valves

Active baffles 8 K

Shield 75 K

Cryo chamber

Cold head

Page 52: Introduction

Question 15: Vacuum System for Spin Filtering at AD

E. Steffens - DSPIN2009

• Intensity of ABS = 6x1016 H/s (2 HFS)Q = 3x1016 H2/s = 1.24x10-3 mbarl/s

• Effusive flow out of one side of thetarget cell into the acceptance angle of the flow limiter qFL with diameter dFL:Qcell = 1.5x1016 (1-cos2 qFL) H2/s

• Direct flow out of the target chamber through the flow limiters QTC=pTC x CConductance of the flow limiter: C=302 (134) l/s for dFL=30 (20) mm

• Pressure in the adjacent beam line pBL = (Qcell+QTC)/2500 l/s (NEG)

dFL

[mm]Qcell

[H2/s]QTC

[H2/s]Qcell+QTC

[H2/s] pBL

[mbar]Qcell+QTC

(2 HFS)

[mbar l/s]

Qcell+QTC

(1 HFS)

[mbar l/s]

Days until regeneration in normal ABS operation (1 HFS

injected) [days]

20 3.7x1013 2.0x1014 2.4x1014 4.0x10-9 9.9x10-6 5x10-6 16.730 8.4x1013 4.5x1014 5.3x1014 8.9x10-9 2.2x10-5 1.1x10-5 7.5

CryopumpS=20000 l/s

pTC = Q/S = 6.2x10-8 mbar

pTC

Page 53: Introduction

Crucial: Vacuum system

E. Steffens - DSPIN2009

Page 54: Introduction

pp and np scattering experiments at LEAR

E. Steffens - DSPIN2009

Page 55: Introduction

E. Steffens - DSPIN2009

np cross sections

Page 56: Introduction

E. Steffens - DSPIN2009

pp integrated cross sections

Page 57: Introduction

E. Steffens - DSPIN2009

pp differential cross sections

Page 58: Introduction

E. Steffens - DSPIN2009

pp differential cross sections

Page 59: Introduction

E. Steffens - DSPIN2009

pp analyzing powers

Page 60: Introduction

E. Steffens - DSPIN2009

pp → nn differential cross sections

Page 61: Introduction

E. Steffens - DSPIN2009

pp → nn differential cross sections

Page 62: Introduction

E. Steffens - DSPIN2009

pp → nn differential cross sections

Page 63: Introduction

E. Steffens - DSPIN2009

pp → nn analyzing powers

Page 64: Introduction

Depolarization parameter D0n0n

E. Steffens - DSPIN2009

Page 65: Introduction

Novosibirsk Model predictions for the antiproton beam polarization after filtering for two beam lifetimes with Hydrogen target

E. Steffens - DSPIN2009

V.F. Dmitriev et al., NIM B 266, 1122 (2008)

Page 66: Introduction

E. Steffens - DSPIN2009 67 of 19

First Measurement of Polarization Lifetime at Tp = 45 MeV (Nov. 2007)

Page 67: Introduction

Expected antiproton beam polarization

• AD machine acceptance: Ax=180 m, Ay=200 m

• Cooled 2 beam emittance = 1 m

• Realistic calculation of qacc(mrad) using AD lattice functions and triangular density distribution in storage cell

• Model A: T. Hippchen et al., Phys. Rev. C 44, 1323 (1991)

• Model D: V. Mull, K. Holinde, Phys. Rev. C 51, 2360 (1995)

PAX ExperimentE. Steffens - DSPIN2009

0 2 4 6 8 100

10

20

Storage cell radius (mm)

Acc

epta

nce

angl

e (m

rad)

8

Page 68: Introduction

Beam lifetime

E. Steffens - DSPIN2009

d (mm) Θacc (mrad)

8 8.610 10.812 13.0

Single-Coulomb scattering at the target dominates beam loss

Page 69: Introduction

Polarization buildup cross section

E. Steffens - DSPIN2009

Page 70: Introduction

COSY low-b section

cell

Storage cell at COSY is not required to be openable

E. Steffens - DSPIN2009

Page 71: Introduction

Time plan for COSYPhase Time Beam time Description1 Summer 2009

Fall 2009 2 weeksInstallation of four magnets for the low–β insertion.Commissioning of the low–β section and machine acceptance measurement.

2 Summer 2010

2010 1 week2×1 week 4 weeks

Installation of the target chamber, ABS, BRP and a detection system for spin–filtering.Measurement of the acceptance angle at the target position.Measurement of the target polarisations in dp and pd.Spin filtering at COSY with transverse beam polarisation.

3 Summer 20112011 4 weeks

Installation of the complete AD detector.Commissioning of the installed equipment.

4 Summer 2012

20122012

1 week4 weeks

Implementation of the two additional solenoids in the injection beam line, ANKE ABS and detectors.Commissioning of the Siberian snake. Spin filtering at COSY with longitudinal beam polarisation.

5 Summer 20132013 3 weeks

Implementation of the AD Siberian snake.Commissioning of the AD Siberian snake.

E. Steffens - DSPIN2009

No way to measure Pz with an unpolarized target → Pz ∙ Qz ∙ Azz

Page 72: Introduction

PAX Experiment 73

Conclusions

Polarized antiprotons: a missing tool for spin physics First measurement of the spin-dependence of pbar-p interaction AD unique machine! Commissioning of equipment at COSY Clear strategy and commitment by PAX Collaboration

Now and here or never!

E. Steffens - DSPIN2009

Georg Christoph Lichtenberg(1742-1799)

If you want to see something new, you have to create something new.