Top Banner
Interstellar Interstellar Scattering Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen, D. Jauncey, L. Kedziora- Chudczer, R. Ojha
37

Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Jan 04, 2016

Download

Documents

Brianne Webb
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Interstellar ScatteringInterstellar Scattering

Joseph Lazio(Naval Research Laboratory)

J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen, D. Jauncey, L. Kedziora-Chudczer, R. Ojha

Page 2: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Radio-wave Radio-wave ScatteringScattering

re ne ds

Electron density fluctuations

Refractive index fluctuations

Corrugated phase fronts Image distortions (cf.

atmospheric seeing) Characterized by a

scattering measureSM ne

2 dx

Page 3: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Ionized Interstellar MediumIonized Interstellar Medium

H II regions EM > 104 pc cm-6

Powered by O or B star(s)

Warm ionized medium (WIM)

n ~ 0.1 cm-3

T ~ 8000 K f ~ 0.2 1/6 of O star

luminosityWHAM survey

Page 4: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Scattering ObservablesScattering Observables Angular broadening

– Pulsars

– Extragalactic sources

– Masers and other Galactic sources

Intensity scintillations– Pulsars

– Extragalactic sources

Pulse broadening/scintillation bandwidth

Pulsars

(Spectral broadening)

Scattering characterized typically by scattering measure

SM ne2 dx

Not really scattering observables, but related observables include Rotation measure Optical emission from diffuse gas ( EM = ne

2 dx) Dispersion measure variations (DM = ne dx) Diffuse gamma-ray emission?

Page 5: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Radio-wave Scattering AnalysesRadio-wave Scattering Analyses

ne ds

~ 2 SM

Scattering physics– Density spectrum

• Spectral index

• Inner scale

– Scattering genesis

Distribution– “regional”

– Galactic

slope

coefficient SM

Page 6: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

The Density Spectrum and Angular The Density Spectrum and Angular BroadeningBroadening

Point source at infinity

V(b) = e-D(b)/2

Phase structure function

D(b) = [(x) - (x+b)]2D(b) dq Pn(q)

[1–J0(bq)]

Pn(q) q- (or …)

Page 7: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Density Fluctuation Power Density Fluctuation Power SpectrumSpectrum

Density spectrum in local interstellar medium

Power law, with spectral index near Kolmogorov value– Notable exceptions!– Large dynamic range!

Interstellar plasma has large Reynolds number.

Turbulent processes responsible for density fluctuations(?).

Density spectrum elsewhere in Galaxy similar, probably.

Armstrong, Rickett, & Spangler (1995)

1 pc 1 AU

Page 8: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Extreme Scattering Extreme Scattering EventsEvents

Events simultaneous at 2.2 and 8.1 GHz

Duration of few weeks to months

intrinsic: Tb 1015 K

extrinsic: AU-sized refracting clouds in our Galaxy

Page 9: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

ESE of 1741-038:ESE of 1741-038:1992 June 20 (18 cm)1992 June 20 (18 cm)

Need a new monitoring program!

Page 10: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Density Fluctuation Power Density Fluctuation Power SpectrumSpectrum

Armstrong, Rickett, & Spangler (1995)

1 pc 1 AUDensity spectrum in local

interstellar mediumPower law, with spectral

index near Kolmogorov value– Notable exceptions!– Large dynamic range!

Interstellar plasma has large Reynolds number.

Turbulent processes responsible for density fluctuations(?).

Density spectrum elsewhere in Galaxy similar, probably.

Page 11: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Turbulence Inner ScaleTurbulence Inner Scale If density fluctuations result

from turbulence, inner scale would be a dissipation scale.

Scattering resolved if b ~ /d.

Inner scale important if l1 ~ b. Inner scale estimates are

roughly 200 km. Spangler & Gwinn attribute it

to the ion inertial length or ion Larmor radius.

Note gap in coverage from 30 km to 1000 km.

Spangler & Gwinn (1990)

Page 12: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Sub-parsec magnetic fieldsSub-parsec magnetic fields

NGC 6334B and Cyg X-3 show rotation of image shape with frequency:– Different frequencies

sample different length scales in scattering medium.

Density fluctuations changing shape on these scales.

Magnetic fields aligning density fluctuations on this scale.

Yet Sgr A* and B1849+005 do not…

Page 13: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Scattering GenesisScattering Genesis

Scattering traces star formation– NGC 6334B (Trotter et al.)– Cygnus region (many

studies) Direct link more difficult

to establish– Spangler et al. vs. Simonetti

& Cordes and Spangler & Cordes

Should be able to do much better today and in future

2013+370/G74.9+1.2CTA 1

Page 14: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Where is the Scattering Medium?Where is the Scattering Medium?(“Regional”)(“Regional”)

Sources embedded in the medium are less scattered than background sources

Scattering must overcome the wavefront curvature.

Distance ambiguity for Galactic sources

No ambiguity for extragalactic sources

xgal = (DGC/GC) GC

Can solve for GC.

Page 15: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Where is the Scattering Medium?Where is the Scattering Medium?

B1849+005

B1849+005

PSR B1849+00

Page 16: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

GC Scattered ImagesGC Scattered Images

Sgr A* displays enhanced angular broadening

OH/IR stars have maser spots with comparable diameters

GC scattering diameter: 1" @ 1 GHz

Page 17: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

GC Scattering—Where?GC Scattering—Where?

Likelihood Results: xgal sources: GC < 500 pc OH masers:

50 pc < GC < 300 pc GC 150 pc xgal 75” @ 1 GHz Angular extent 1 (Note 1°

150 pc.) Inhomogeneous on  10–20 pc X-ray emitting gas + molecular

gas

Page 18: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Radial Extent of the WIMRadial Extent of the WIM(“Galactic”)(“Galactic”)

H I disks of nearby galaxies appear truncated

Due to extragalactic ionizing flux?

H II disk extends much farther?

Corbelli et al. 1989

H I

H (= H I + H II)

Page 19: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Radial Extent and Warp of the WIMRadial Extent and Warp of the WIM

WIM radial extent equals or exceeds H I:

H I disks truncated at R ~ 25–50 kpc (Galaxy a prototypical z = 0 Ly α cloud?)

C IV absorption toward H1821+643, R ~ 25 kpc

HVC models often require pressure support at R ~ 25 kpc

Page 20: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

VLBA SurveyVLBA Survey

12 sources– 7 with |b| < 1°

– 5 with l ~ 180° and |b| < 10°

Cf. Dennison et al. 1984

Page 21: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Best-fit Radial ModelBest-fit Radial Model

No Perseus spiral arm

Perseus spiral arm at 25% of TC93

truncated disk

sech2 disk

Page 22: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Sources of ScatteringSources of Scattering

Truncated disk because of star formation?

Molecular clouds show radial truncation;

Star formation follows molecular clouds;

Scattering truncates where star formation does.

Similar to what is seen in other galaxies.

Molecular cloud distribution from CO survey by Wouterloot & Brand

26 kpc

Page 23: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Ne2001Ne2001(Cordes & Lazio 2002, astro-ph/0207156)(Cordes & Lazio 2002, astro-ph/0207156)

Number of data have nearly doubled.

Modifications from TC93:– GC component added; Diffuse component

truncated at 20 kpc;– Diffuse component made

thicker; Spiral arms extrapolated; Spiral arms made thicker;– Orion-Cygnus arm added;– Local Bubble and similar

regions added; “Clumps” and “voids”

added.

Page 24: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Anomalous Scattering EffectsAnomalous Scattering Effects

Multiple media can lead to anomalous scattering effects– Phase – Scattering angle 2

Effects occur because size of scattering region can become important in determining size of scattering disk.E.g., scattering of sources seen

through other galaxies. Important for LOFAR?

Infinitely extended scattering screen …

Or not.

Page 25: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Cosmic Rays, Cosmic Rays, rays, and the WIMrays, and the WIM

CRs are charged particles

Smooth CR energy spectrum

Magnetic irregularities scatter CRs

Same magnetic irregularities cause scattering?

1 pc 1 AU

CR energy spectrum/gyroradii

Page 26: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Summary: Interstellar ScatteringSummary: Interstellar Scattering

Exquisite probe of sub-parsec plasma physics– Density spectrum– Magnetic fields– Interstellar “clouds” (ESEs)– Cosmic rays?

Galactic distribution of scattering– Large-scale tracer of Warm

Ionized Medium (WIM)– Traces star formation

See also– Intraday variability– Pulsar parallax and proper

motions

VLBA itself has been an immense step forward.VLBA + other telescopes is good.

NMA will close gap around 100 km.

LOFAR will be wonderful instrument for scattering studies (2).Difficult to avoid scattering at

LOFAR frequencies! Space VLBI would be good,

if frequency is low enough. SKA will be even better.

Page 27: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

FINISFINIS

Page 28: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

GC Scattering—PulsarsGC Scattering—Pulsars

107–108 neutron stars: Massive star

formation High-energy sourcesSelection Effects:– beaming & LF– velocities– background– pulse broadening

Page 29: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

GC Scattering—Pulse GC Scattering—Pulse BroadeningBroadening

GC ~ 350 seconds GHz-4

Periodicity search: long-period, shallow spectra pulsars,  > 8 GHz

Imaging search: steep-spectrum point sources, ~ 1” @ 1 GHz

10 seconds

Page 30: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Characterizing ScatteringCharacterizing Scattering

Strong scattering at SIRA (and LOFAR) frequencies:

• Fresnel radius RF = 3 x 1012 cm (D/100 pc)1/2(/1 MHz)-1/2

• rms phase in Fresnel radius >> 1

• Two characteristic regimes within strong scattering:o Diffractiveo Refractive

Rickett 1990

Page 31: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Refractive EffectsRefractive Effects

Unimportant time scales too long

• Refractive scintillation time scale -2

666

6660

tr (@ 1 MHz in yr)

Rickett et al. 1984

Page 32: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Diffractive EffectsDiffractive Effects

Diffractive scintillation seen commonly in pulsar observations at meter and centimeter wavelengths.

• Characteristic bandwidth, d ~ 3 kHz (@ 1 MHz)

• Characteristic time, td ~ 60 s (@ 1 MHz for v ~ 100 km/s)

No objects will scintillate (twinkle). Frequency

Tim

e

Scintille

Page 33: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Diffractive EffectsDiffractive Effects

• Pulse broadening smears out pulsar pulses.

• At SIRA frequencies, extreme pulse broadening can be obtained.

Most pulsars will not be seen as pulsed objects.

Page 34: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Diffractive EffectsDiffractive Effects• Angular broadening

distorts view of sources.

• Magnitude is large. Current SIRA specs

more than sufficient!

Local Bubble

Page 35: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Optical DepthOptical DepthElectrons responsible

for scattering also contribute to free-free optical depth.

0.24 MHz 0.4 MHz

Page 36: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Cosmic Rays and Cosmic Rays and raysrays

Diffuse -ray emission:

– p + p – e + p – e +

Page 37: Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,

Cosmic Rays and Cosmic Rays and raysrays