Top Banner
INTERPOLATION AND THE BELTRAMI EQUATION Prague, September 2011 István Prause
23

INTERPOLATION AND THE BELTRAMI EQUATION

Jun 24, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: INTERPOLATION AND THE BELTRAMI EQUATION

INTERPOLATION

AND

THE BELTRAMI EQUATION

Prague, September 2011

István Prause

Page 2: INTERPOLATION AND THE BELTRAMI EQUATION

Quasiconformal mappingsin the plane

Beltrami equation Beurling transform

Page 3: INTERPOLATION AND THE BELTRAMI EQUATION

Beltrami equation

! ∈ "!,"#$% (C)

MorreyBojarski,

Ahlfors-Bers

existence and uniqueness

homeomorphism

analytic dependence

regularity

Astala,etc.

!(", #) > ! "#$#

i(}) = } +O(4/}) principal quasiconformal mapping

N =4+ n4− n

i}̄ = ´(}) i}, |´(})| � n ‐G(}), 3 � n < 4

Page 4: INTERPOLATION AND THE BELTRAMI EQUATION

L!-isometry!("#̄) = "#, " ∈ $!,"(C)

Calderón-Zygmund: ! : "# → "#

Riesz-Thorin:

Beurling transform

i}̄ = (Lg− ´V)−4(´) = ´+ ´V´+ ´V(´V´) + · · ·

i ∈ Z4,sorf (C), 5 ≤ s < s3(N)

Vi(}) = −

4ヽ

�C

i(、)(、 − })5

gp(、)

vrph s3 > 5,

Bojarski (1957):

�V�s3 =4n

Page 5: INTERPOLATION AND THE BELTRAMI EQUATION

Critical Sobolev exponent

Sobolev embeddings3(N) =5N

N− 44N

Hölder exponent

} �→}|}|

|}|4N

(Mori)

dimK{} ∈ C : ü(}) = ü} ≤ 4+ ü −|4− ü|

n

1/K K1

Astala (1994): “this is the worst case scenario”

Conjecture (Iwaniec): �!�"#(C) = #− !, # � "

Page 7: INTERPOLATION AND THE BELTRAMI EQUATION

Complex interpolation

homeomorphisms

diffeomorphisms

quasiconformal maps Lp

L2

L!

complex interpolation

!-lemma:

quasiconformal maps = “complex interpolation class”

Page 8: INTERPOLATION AND THE BELTRAMI EQUATION

analytic dependence

L functionsBeltrami equa

holomorphic mi equation/rphic motions

interpolateBeurling

transformdimension/pressure

p-norm of gradient

end-point estimates

L!-isometry dim " 2Jacobian null-Lagrangian

non-vanishing

- injectivityJacobian positive

a.e.

applicationgain in regularity

Bojarski

sharp exponent, area/dimension

distortionAstala

sharp weight,quasiconvexityAstala-Iwaniec-Prause-Saksman

p

Interpolation theme

Page 9: INTERPOLATION AND THE BELTRAMI EQUATION

Sharp weighted integrability

Theorem:

i(}) = } +O(4/})i}̄ = ´(}) i}, |´(})| � n ‐び(}), 3 � n < 4,

5 ≤ s ≤ 4+ 4/n

4|び|

4− s|´(})|

4+ |´(})|

|Gi(})|s � 4

• sharp weight, sharp constants

• “localized integrability” at the borderline

• partial quasiconvexityrank-one convexity quasiconvexityvs

(JAMS, to appear)

Astala-Iwaniec-Prause-Saksman

Page 10: INTERPOLATION AND THE BELTRAMI EQUATION

Rank-one convexity vs quasiconvexity Morrey

! ∈ "+ #∞! (",R$)

�!

E(!") �

�!

E(#) = E(#)|!|!"#$ ! = %

E : R!×! → R

! � ! "verák

! = !

? Faraco-Székelyhidi: “localization”

local global

!" (#) =� "

!det # + ("−

"

!)�

�#�

!�

· |#|"−!

Burkholder: rank-one concave!"(#$) = !"($%, $%̄)

w �→ E(D + w[) frqyh{

(lower semicontinuity)(ellipticity of Euler-Lagrange)

Page 11: INTERPOLATION AND THE BELTRAMI EQUATION

BurkholderMartingale inequality

subordinated martingales

⇒ �!"�# � (#− !) �$"�#.

!"(#,$) =�

|#| − ("− !) |$|�

·�

|#| + |$|�"−!

E !"(#$, %$) � E !"(#$−!, %$−!) � . . . � "

!" ≺ #"

|}|s − (s − 4)s |z|s � fs Es(},z)

|[q − [q−4| ≤ |¥q − ¥q−4| a.s.

Page 12: INTERPOLATION AND THE BELTRAMI EQUATION

Quasiconvexity result

E !"(#$, %$) � !

Burkholder’s martingale inequality

Theorem:

! � !!"(#,$) =�

|#| − ("− !) |$|�

·�

|#| + |$|�"−!

!"(#$) = !"($%, $%̄)

!(") ∈ "+ #∞! ("), $%(&!) � !, " ∈ "

for

(equiv.) �び

Es (Gi) �

�び

Es (Lg) = |び|

full quasiconvexity �V�Os(C) = s− 4

!" ≺ #"

Page 13: INTERPOLATION AND THE BELTRAMI EQUATION

Interpolation lemma

U

10

!! !

!

non-vanishing 漸゜(}) �= 3

analytic family,

3 < s3, s4 � ∞, 践 ∈ (3, 4)

゜ ∈ X = {Uh ゜ > 3}漸゜(})

�漸゜�s3 � P3 hf Uh゜

�漸4�s4 � P4

�漸践�s践 � P4−践3 ·P践

4

s践=

− 践s3

+践s4

Page 14: INTERPOLATION AND THE BELTRAMI EQUATION

Hadamard Harnack

change p freeze p

subharmonic harmonic

duality log-convexity

!

!

!

cf. Riesz-Thorin

orj �漸践�s � D ·4s+ E

Page 15: INTERPOLATION AND THE BELTRAMI EQUATION

Proof of the lemma

Harnack

harmonicnon-vanishing

orj �漸゜�s � D ·4s+ E(゜)

orj �漸践�s践 = D ·4s践

+ E(践) = D ·4s3

+ E(践) + 践 · D�

4s4

−4s3

� 践�

D ·4s4

+ E(4)�

� 践 orj �漸4�s4 � 3

D ·4s3

+ E(践) � 践�

D ·4s3

+ E(4)�

Page 16: INTERPOLATION AND THE BELTRAMI EQUATION
Page 17: INTERPOLATION AND THE BELTRAMI EQUATION
Page 18: INTERPOLATION AND THE BELTRAMI EQUATION

Corollaries

Müller: LlogL integrability under J(z,f)#0

sharp integrability estimates

LlogL integrability: !(") ∈ "+ #∞! ("), $%&'%&%()$*+&,

!!"

!"

"="

Proof:

4 + orj |Gi(})|5�

M(}, i) �

び|Gi(})|5.

Exp integrability:

!!"

!"

"=∞

Proof:

|´(})| � ‐G(}), } ∈ C

4ヽ

G

4− |´|�

h|´|+Uh V´� 4.

H(D) =45

|D|5

det D+ log

det D�

− log |D|, det D > 3

quasiconvexity:

Page 19: INTERPOLATION AND THE BELTRAMI EQUATION

Mappings of integrable distortion

EXUNKROGHU LQWHJUDOV DQG TXDVLFRQIRUPDO PDSSLQJV 54

Frqyhujhqfh"wkhruhpv" lq" wkh"wkhru¦"ri" lqwhjudov" ohw"xv"sdvv" wr"wkh" olplw"zkhq

/ dv"iroorzv

GU

M } i 4 Gi } 5 g}

GU

M } i 4 4 Gi 5 g}GU

M } i 4 Gi 5 g}

GU

M } i 4 4 Gi 5 g}

GU

M } i 4 Gi 5 g}

Khuh"wkh 0whup"lv"mxvwlÛhg"e¦"Idwrx*v"wkhruhp"zkloh"wkh 0whup"e¦

wkh"Ohehvjxh"grplqdwhg"frqyhujhqfh/ zkhuh"zh"revhuyh" wkdw" wkh" lqwhjudqg" lv

grplqdwhg"srlqw0zlvh"e¦ M } i Gi 5 41 Wkh"olqhv"ri"frpsxwdwlrq"frqwlqxh

dv"iroorzv

GU

M } i 4 Gi 5 g}

GU

Gi 5 g}GU

Gi } 5 g}

Ilqdoo¦/ zh"revhuyh"wkdw

GU びM } i 4 Gi } 5 g}

GU びGi } 5 g}

zklfk"frpelqhg"zlwk"wkh"suhylrxv"hvwlpdwh"¦lhogv +4143,/ dv"ghvluhg1

Wkh"deryh"hqhuj¦"ixqfwlrqdo"fdq"eh"ixuwkhu"fxowlydwhg"e¦"dsso¦lqj"wkh"lqyhuvh

pds/ dv"ghvfulehg"dw"wkh"hqg"ri"Vhfwlrq"61 D vhdufk"ri"plqlpdo"uhjxodulw¦"lq"wkh

fruuhvsrqglqj"lqwhjudo"hvwlpdwhv"ohdgv"xv"wr"pdsslqjv"ri"lqwhjudeoh"glvwruwlrq1

Fruroodu¦ 7161 Ohw び ⊂ R5 eh"d"erxqghg"grpdlq/ dqg"vxssrvh k ∈ W

4,4orf (び) lv"d

krphrprusklvp k : び onto→ び vxfk"wkdw k(}) = } iru } ∈ ∂び1 Dvvxph k vdwlvÛhv"wkh

glvwruwlrq"lqhtxdolw¦

|Gk(})|5 ! N(})M(}, k), a.e in び,

zkhuh 4 ! N(}) < ∞ doprvw"hyhu¦zkhuh"lq び. Wkh"vpdoohvw"vxfk"ixqfwlrq/ ghqrwhg"e¦

N(}, k)/ lv"dvvxphg"wr"eh"lqwhjudeoh1 Wkhq

+718, 5∫び[log |Gk(})|− log M(}, k)] g} !

∫び[N(}, k)− M(}, k)] g}

Lq"sduwlfxodu/ log M(}, k) lv"lqwhjudeoh1 Djdlq"wkhuh"lv"d"zhdowk"ri"ixqfwlrqv/ wr"eh"ghvfulehg

lq"Vhfwlrq"8/ vdwlvi¦lqj +718, dv"dq"lghqwlw¦1

cf. Koskela-Onninen

Page 20: INTERPOLATION AND THE BELTRAMI EQUATION

Many extremals

!

expanding

linear on rank-one connections!"

Baernstein-Montgomery-Smith�

E(3,U)Es(Gj) = ヽ

� U

3

[ ヾ(w) ]s

ws−5

gw = ヽU5

ヾ(w)w

� ˙ヾ (w), ヾ(w) = r(w −

5s )

j(}) = ヾ(|}|)}|}|

Page 21: INTERPOLATION AND THE BELTRAMI EQUATION

Stretching vs Rotation

stretching rotation

quasiconformal bilipschitz

Grötzsch problem John’s problem

Hölder exponent rate of spiralling

log J(z,f) ! BMO arg f ! BMO

higher integrability exponential integrability

(linear) multifractifractal spectrum

harmonic dependece “conjugate harmonic”

z

Page 22: INTERPOLATION AND THE BELTRAMI EQUATION

Complex exponentsQ: What complex exponents $ can we take to make

i é} ∈ O4orf ?

0 2

“null-Lagrangians”

controls

rotation & stretching

joint multifractal spectrum

eccentricity = ellipticity coefficient = k|é|+ |é − 5| <

5n

foci =

Page 23: INTERPOLATION AND THE BELTRAMI EQUATION

•mappings of finite distortion (Eero)

• distortion of Hausdorff measures, removability (Ignacio)

• quasisymmetric maps, harmonic measure

• higher/even dimensions...

Outlook