Top Banner

of 29

Interplay between theory and experimentin AFM nanomechanical studies of polymers

Apr 09, 2018

Download

Documents

LIAKMAN
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    1/29

    Interplay between theory and experimentin AFM nanomechanical studies of polymers

    Sergey Belikov and Sergei Magonov

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    2/29

    2006 Veeco Instruments Inc.

    Agenda

    Introduction

    Simulation of Dynamic AFM Modes

    Euler-Bernoulli & Krylov-Bogoljubov-Mitropolsky approachTapping Mode and Frequency Modulation

    High-Resolution Imaging of Molecular Lattices: Experiment & Modeling

    Compositional Mapping of Model Polymer Blends

    Local Mechanical Probing: DvZ (indentation) & AvZ curves

    Tapping Mode Curves: Modeling & Experiment

    Summary

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    3/29

    2006 Veeco Instruments Inc.

    Main AFM Functions: High-Resolution ImagingCompositional MappingQuantitative Probing of Materials Properties

    Outstanding Technical Issues:

    Sensitivity of Optical Detection, Fast Imaging & Mapping, Minimization of Thermal Drift, Efficient Drive of Probe, Imaging under Liquids, Probes

    Key Hurdle:

    Tip-Sample Forces: Understanding, Measurements & Control

    Dynamic AFM & Quantitative Mechanical Data:

    Dream or Reality

    Introduction

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    4/29

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    5/29

    2006 Veeco Instruments Inc.

    Simulation of Dynamic AFM

    Main features of our approach

    1. Euler-Bernoulli with boundary conditions including piezodrive of the cantilever base(rare considered by others)

    2. Solution as a composite3. Van der Pole coordinates (amplitude, phase) transformation & separation of fast and

    slow variables

    4. Application of KBM averaging method

    5. Analysis of KBM-derived differential equations

    6. Classification of dynamic AFM modes (tapping mode, frequency modulation)

    [ ]( )

    [ ]( )

    +++

    +

    =

    ++

    +

    =

    d

    xg ydy y x Z F F

    N g

    d x

    ydy y x Z F F N g

    C r a

    C r a

    102

    1

    02

    1

    2coscos

    1

    21

    1cos

    sincos1

    21

    1sin

    ( )111

    =

    = Qg

    x = A sp

    d = A 0

    phase

    F a force in approach

    F a force in retract

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    6/29

    2006 Veeco Instruments Inc.

    ( ) ( ) ( )( )( )[ ] ( )( )=

    +

    +

    L x pt x Z H x

    t x Z at

    t x Z t

    t x Z ,

    ,,)(2

    ,4

    42

    2

    2

    t A sin0

    Boundary conditions: ( ) t A Z t Z sin,0 00 += ( ) 0,0 =

    t x Z ( ) 0,2

    2

    =

    t L x Z ( ) 0,3

    3

    =

    t L x Z

    L Z

    Z 0

    x

    p

    = 24

    2

    sec

    mS

    EI

    a ( ) [ ] N S Z H m1 [ ] N S pP = m1

    ( ) ( ) ( ) ( ) ( )t xt x zt x zt xU t x Z p ,,,,, +++=

    n

    n

    n

    n

    QQ 214 2

    =

    ( ) t A Z t xU C sin, 0+Oscillation of the base

    Probe Motion in Dynamic AFM

    Solution as a compositeThe tip weight

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    7/29

    2006 Veeco Instruments Inc.

    ( ) ( ) ( ) ( )( ) 21

    112111

    1,,2

    l

    p

    Z t l zt l zt lU H +++=++

    ( ) t A Z t lU C sin, 0+=

    ( ) ( ) ( ) ( ) ( )t ll zt l zt lU t x Z p ,,,, 11 +++=

    ( ) ( ) nt t eat At l z 022101111 coscos, +++=

    ( )( )

    ( )

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    8/29

    2006 Veeco Instruments Inc.

    2

    1

    11111

    21111

    sgn;2

    l

    c

    Z S

    Z F

    +++=++

    ( )d t d t At A +=++= coscossin 1101where

    1

    1

    21

    11 214 QQ

    = 111

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    9/29

    2006 Veeco Instruments Inc.

    Probe Motion in Dynamic AFM

    ( )

    ( )

    =

    ++=

    ++=

    y x

    gd y y x y x x

    y

    ygd y x y x x

    coscos4cossin,cos1

    sincos4sin,cos1

    221

    11

    1

    2211

    1

    ( ) ( )( ) ( )

    ( ) ( )( ) ( ) ( )

    =

    +

    ++=

    ++=

    g x

    gd x x

    x

    gd x x x

    coscos4

    cossin,cos1

    sincos4sin,cos1

    221

    11

    2211

    1

    y= Introducing phase difference(slow variable)

    Two fast variables

    Averaging over fast variable ( ) gives:

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    10/29

    2006 Veeco Instruments Inc.

    [ ]( )

    [ ]( )

    +

    ++++=

    +++=

    ggd ydy y x Z F F m x

    gd x ydy y x Z F F

    m

    x

    cr a

    cr a

    0

    2211

    1

    0

    2211

    21

    1

    cos4coscos1

    2

    sin4sincos1

    2

    KBM Approach

    ( )( )

    1

    sgn,, +=

    m

    Z F c ( ) ( ) ( ) ( )1,;1, +== zF zF zF zF r a

    ( )

    ( )

    +

    ++=

    +=

    ggd ydy y x y x x

    gd ydy y x y x x

    2

    0

    22111

    1

    2

    0

    22111

    1

    cos4cossin,cos2

    sin4sinsin,cos2

    The transition to stationary solutions gives:

    Viscoelasticity willbe added!

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    11/29

    2006 Veeco Instruments Inc.

    [ ]( )

    [ ]( )

    +++

    +

    =

    ++

    +

    =

    d xg

    ydy y x Z F F N g

    d x

    ydy y x Z F F N g

    C r a

    C r a

    102

    1

    02

    1

    2coscos

    1

    21

    1cos

    sincos1

    21

    1sin

    KBM Approach

    md N 21 =

    Stationary solutions:

    ( )111 == Qg

    x = A sp

    d = A 0

    phase Z c height

    Tapping mode (Amplitude modulation) Frequency modulation

    g constant (usually 0) constant (usually /2)Curves: AvZ, vZ

    ( A and are obtained by solving theequations for each Z c)

    Curves: r vZ, AvZ,

    ( r and A are obtained by solvingthe equations for each Z c)

    Images: F a and F r depend on surface location ( XY )

    Two FM modes

    constant excitationconstant amplitude

    ZvXY, vXY ( r = sp)

    ( Z and are obtained by solving theequations for each r )

    Height ZvXY, Phase vXY (A =A sp)

    ( Z and are obtained by solving theequations for fixed Asp)

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    12/29

    2006 Veeco Instruments Inc.

    ( )

    +=

    =

    00 coscos

    2cos

    sin

    ydy y x Z F N

    d x

    [ ]( )

    [ ]( )

    =++

    +=+

    d xg ydy y x Z F F

    N

    d xg

    ydy y x Z F F N

    cr a

    cr a

    0 1

    2

    10

    2coscos1

    21sincos

    1

    ( )( )

    ++=1

    1 2

    1

    11

    du

    u

    uua zF

    ak

    KBM Approach

    J.E. Sader & S.P.Jarvis APL 2004 ,84 , 1801

    u = cos y

    [ ]( )

    [ ]( )

    ++=

    ++=

    0

    0

    coscos1

    cos

    sincos1

    sin

    ydy y x Z F F N

    d

    x ydy y x Z F F

    N

    cr a

    cr a

    F F F r a ==1 =Tapping mode ( )

    2 =Frequency modulation ( )J. Cleveland et al APL 1998 , 72 , 2613

    Experimental data ( x(A), , Zc, g ) and use of two equations mighthelp to restore F a and F r in dynamic AFM modes

    tsF F F r a

    Conservative case

    ==

    Garcia&Perez Surf Sci Rep 2002 , 47 , 197

    x = A0=const; 211l Z Sk =

    ( ) [ ]

    d A Ad F

    kA f

    f Ak d f ts coscos21

    ,,, 002

    00

    000 ++=

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    13/29

    2006 Veeco Instruments Inc.

    15 nm

    20 nm

    20 nm

    20 nm

    0.8 nm0.8 nm 0.4 nm

    Si probes (5-10 nm)

    Carbon spike (~3nm) Diamond probe (~5nm)

    T XT Y TX

    0.5TX

    2T X2T X T Y

    Tapping Mode Imaging of Polydiacetylene Crystal

    bc

    T x

    T y

    How to explain the presence of 2T x and 0.5T x spacings in AFM images?

    15 nm 15 nm

    How true is true molecular resolution?

    0.49 nm c 1.41 nm

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    14/29

    2006 Veeco Instruments Inc.

    LabVIEW AFM Simulator

    Z

    Z1

    D

    1

    2

    O

    R

    O1

    O2

    R1R2

    P1

    P2

    XX1

    X2

    = iii PF cos2 / 3

    2T

    0.5T

    Tapping mode: Hertz model

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    15/29

    2006 Veeco Instruments Inc.

    R = 5 nmR = 0.15 nm R = 100 nm

    X

    Y

    Y

    X

    Y

    X

    Y Y

    X

    X X

    Y

    Height corrugations ~

    0.2 nm

    Height corrugations ~

    0.03 nm

    Height corrugations ~

    0.01 nm

    Imaging in Light Tapping (A sp=20 nm)

    Lattice Pattern: Dependence on Tip Radius

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    16/29

    2006 Veeco Instruments Inc.

    Asp =19 nmAsp =20 nm A sp =17 nm

    Y-bifurcation

    X-bifurcation12 peaks 11 peaks 9 peaks 8 peaks

    Tip with R = 5 nm

    YYY

    X X X

    X

    Y

    X

    Y

    X

    Y

    Experimental patterns

    Lattice Pattern: Imaging at Different Forces

    Y-bifurcation

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    17/29

    2006 Veeco Instruments Inc.

    Lattice w/Defects: Effect of Tip Radius & Force

    R = 150 pm, A sp = 19 nm R = 1 nm, A sp = 18 nm R = 5 nm, A sp = 18 nm

    X

    Y

    X

    Y

    X

    Y

    X

    Y

    X

    Y

    X

    YAtomic-scale images change their pattern as tip size and/or tip force increasesthat makes their assignment to real surface structures very difficult.

    A presence of single atomic or molecular defects in AFM images does not mean that true atomic-scale resolution in imaging of the surrounding lattice was achieved.

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    18/29

    2006 Veeco Instruments Inc.

    Sharp Spherical

    76nm10 nm

    Olympus Team-Nanotec

    Imaging with Sharp & Spherical Probes

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    19/29

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    20/29

    2006 Veeco Instruments Inc.

    2.2 GPa (6.0%)14.9 MPa (8.2%)

    EPDM PP

    Indentation & Phase Imaging of iPP/EPDM Blend

    0.73

    0.93

    0.50

    Asp /A 0

    0.33

    PPPP EPDMheight phase, sin

    0.20

    10 m10 m10 m

    EPDM PP

    I d i f M l il P l h l

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    21/29

    2006 Veeco Instruments Inc.

    380.5 MPa (4.8%)

    Indentation of Multilayer Polyethylene

    40.4 MPa (4.0%)

    PE-0.86 PE-0.92 Sneddon & Oliver-Pharr Models

    ( )

    ( )

    =1

    0

    2

    2

    2

    11

    ),(

    x

    dx x f x Ea E akD

    Smax

    hi hmaxpenetration, nm

    F o r c e , n N

    1.4 MPa (7.7%)

    76 nm

    PDMS

    (adhesion and viscoelasticity will be added!)

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    22/29

    2006 Veeco Instruments Inc.

    AFM Nanoindentation : nm-Scale Depth

    ~ 11 nm

    elastic plastic

    1 st

    1 st

    2 nd

    2 nd

    1st2 nd

    3 rd

    Elastic and Plastic Deformation of Single Crystals of Alkane C 390H782

    d l l

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    23/29

    2006 Veeco Instruments Inc.

    AFM Nanoindentation : Lateral Resolution

    z

    A

    z

    A

    250 nN90 nN 1.3 uN Asp /A 0=0.5V/1.0V Asp /A 0=1.0V/2.0V

    Force Volume (AvZ curves) of SBS triblock copolymer

    100 nm500 nm

    z

    A

    Deflection curves (nanoindentation) Amplitude curves (tapping mode)

    Si l ti f AvZ & vZ Curves i T i g M d

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    24/29

    2006 Veeco Instruments Inc.

    Simulation of AvZ & vZ Curves in Tapping Mode

    [ ]( )

    [ ]( )

    ++=

    ++=

    0

    0

    coscos1

    cos

    sincos1

    sin

    ydy y x Z F F N

    d x

    ydy y x Z F F N

    cr a

    cr a

    Tapping mode

    ( )

    =

    2

    0

    8

    0

    41

    38

    z z

    z z

    zU pp ( ) ( ) z RU zF pprp 2=

    MaugisMaterial-related avalanche

    Lennard-Jones

    Instrument- or environment-

    related avalanche

    Derjaguin

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    25/29

    2006 Veeco Instruments Inc.

    Simulation of TM Amplitude & Phase curves

    ModelingA sp /A 0

    Experiment (Si substrate)Asp /A 0 Asp /A 0

    Phase, Phase, Phase,

    Saddle-node bifurcation in amplitude/phase coordinates is a

    birth or annihilation of stable and unstable stationary points thathappened as Z is changing.

    S. L. Lee, S. W. Howell, A. Raman, R. Reifenberger Ultramicroscopy 2003 , 97 , 185

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    26/29

    2006 Veeco Instruments Inc.

    A

    z

    Phase,

    R1

    Conservative case: Tip size effect (R 1

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    27/29

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    28/29

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    29/29