Top Banner
NUCLEAR SCIENCE COMMITTEE XN9700261 INTERNATIONAL CODES AND MODEL INTERCOMPARISON FOR INTERMEDIATE ENERGY ACTIVATION YIELDS January 1997 ) NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT
354

INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

May 01, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

NUCLEAR SCIENCE COMMITTEE XN9700261

INTERNATIONAL CODES AND MODEL

INTERCOMPARISON FOR

INTERMEDIATE ENERGY ACTIVATION YIELDS

January 1997

)

NUCLEAR ENERGY AGENCYORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT

Page 2: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Gestion INIS, /,D02. enreg. la : .[^l.j.J.7).Nc TRN : ..^.t4.^.Q.klLD e s t i n a t i o n ; 1,1 + D . D

NSC/DOC(97)-1NEA/P&T No 14

A

INTERNATIONAL CODES AND MODEL INTERCOMPARISONFOR INTERMEDIATE ENERGY ACTIVATION YIELDS

Rolf MichelCenter for Radiation Protection and Radioecology, University Hannover

Am Kleinen Felde 30, D30167 Hannover, Germany

Pierre NagelOECD Nuclear Energy Agency, Le Seine Saint-Germain

12, Boulevard des liesF-92130 Issy-les-Moulineaux, Paris, France

This report and the experimental data referred to herein are available on the Web at:http://www.nea.fr/html/science/pt/ieay

NUCLEAR ENERGY AGENCYORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT

Page 3: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

ORGANISATION FOR ECONOMIC CO-OPERATIONAND DEVELOPMENT

Pursuant to Article 1 of the Convention signed in Paris on 14th December 1960, and which came intoforce on 30th September 1961, the Organisation for Economic Co-operation and Development (OECD) shallpromote policies designed:

— to achieve the highest sustainable economic growth and employment and a rising standard of livingin Member countries, while maintaining financial stability, and thus to contribute to the developmentof the world economy;

— to contribute to sound economic expansion in Member as well as non-member countries in theprocess of economic development; and

— to contribute to the expansion of world trade on a multilateral, non-discriminatory basis inaccordance with international obligations.

The original Member countries of the OECD are Austria, Belgium,Canada, Denmark, France, Germany,Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland,Turkey, the United Kingdom and the United States. The following countries became Members subsequentlythrough accession at the dates indicated hereafter: Japan (28th April 1964), Finland (28th January 1969),Australia (7th June 1971), New Zealand (29th May 1973), Mexico (18th May 1994) the Czech Republic(21st December 1995), Hungary (7th May 1996), Poland (22nd November 1996) and the Republic of Korea(12th December 1996). The Commission of the European Communities takes part in the work of the OECD(Article 13 of the OECD Convention).

NUCLEAR ENERGY AGENCY

The OECD Nuclear Energy Agency (NEA) was established on 1st February 1958 under the name of theOEEC European Nuclear Energy Agency. It received its present designation on 20th April 1972, when Japanbecame its first non-European fall Member. NEA membership today consists of all European Member countriesof OECD as well as Australia, Canada, Japan, Republic of Korea, Mexico and the United States. TheCommission of the European Communities takes part in the work of the Agency.

The primary objective of NEA is to promote co-operation among the governments of its participatingcountries in farthering the development of nuclear power as a safe, environmentally acceptable and economicenergy source.

This is achieved by:— encouraging harmonization of national regulatory policies and practices, with particular reference

to the safety of nuclear installations, protection of man against ionising radiation and preservationof the environment, radioactive waste management, and nuclear third party liability and insurance;

— assessing the contribution of nuclear power to the overall energy supply by keeping under review thetechnical and economic aspects of nuclear power growth and forecasting demand and supply for thedifferent phases of the nuclear fael cycle;

— developing exchanges of scientific and technical information particularly through participation incommon services;

— setting up international research and development programmes and joint undertakings.In these and related tasks, NEA works in close collaboration with the International Atomic Energy

Agency in Vienna, with which it has concluded a Co-operation Agreement, as well as with other internationalorganisations in the nuclear field.

© OECD 1997Applications for permission to reproduce or translate all or part

of this publication should be made to:Head of Publications Service, OECD

2, rue Andre-Pascal, 75775 PARIS CEDEX 16, France

Page 4: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Foreword

The study presented in this report was initiated at the request of the NEA Nuclear Science Committeeas part of the programme of work of the Agency in the area of Partitioning and Transmutation ofradioactive nuclear waste. The aim of the exercise was to determine the predictive power of currentnuclear reaction models and codes when calculating activation yields in the intermediate energyrange (up to 5000 MeV). The results of the study help assess the needs for improvements in thenuclear reaction codes which would be used in calculating nuclear reaction processes for the designof various accelerator-based transmutation concepts. This exercise is the third one in a series. It waspreceded by intercomparisons of calculations of double differential spectra in thin targets and ofparticle production and transport in thick targets.

Emphasis has been placed on evaluating the quality of calculated activation yields for a wide range oftarget elements (O, Al, Fe, Co, Zr, and Au) by comparison with high-quality experimental data.Calculated results from 29 contributions by 18 participants or participating collaborations have beencompared with a total of nearly 6000 experimental cross sections for 202 target/productcombinations. 22 different models or codes have been applied giving a representative survey ontoday's modeling capabilities. Most major codes participated in the exercise.

This report gives detailed information about the different models and codes used and surveysextensively the target element and product nuclide coverage of the different contributions. Thelargest part of the report is dedicated to the graphical representation of the results. Comparative plotsdemonstrate significant differences between reaction cross sections calculated by the differentmodels and codes. However, these differences cannot account for the partially extreme differencesamong the calculations for individual target/product combinations. Such reaction-wise comparisonsof calculated and experimental activation yields as function of proton energy make up the main bodyof this report. They give detailed information about the predictive power of models and codes whencalculating cross sections for the production of residual nuclides from thresholds up to 5000 MeV.

The agreement or disagreement between experimental and calculated data is quantitatively describedby factors of deviation which were calculated for each contribution reaction-wise and globally. Fromthese deviation factors and from the entire exercise we may conclude that modeling calculations ofintermediate energy activation yields on a predictive basis may at best have uncertainties of the orderof a factor of two. Frequently, average deviations are much lager and individual reaction-wisedeviations may go up to two or three orders of magnitude. There are no general over- orunderestimates by individual models or codes, but rather a broad scatter of calculated data.Occasionally, the calculations are contradictory among each other by up to 3 orders of magnitude fora given reaction.

Problems are encountered which are connected with the calculation of nuclear masses, bindingenergies and consequently Q-values, with the consideration of shell effects and the various leveldensity formulas used, with the neglect of competition between y- and particle deexcitation of excitedintermediate nuclei, and , last but not least, with the basic modeling of medium energy fission andFermi break-up. The causes of the individual deviations are multi-factorial and can - for a givenmodel, code or contribution - only be evaluated by model and parameter exercises for a wide range ofreactions. The present intercomparison gives a first survey over these problems. It should beunderstood by the modelers and code developers as a starting point for the improvement of modelsand codes.

Page 5: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Other International code and model comparisons carried out by the NEA Data Bank

- Average resonance parameters. Data Bank Newsletter 27, 1982- Coupled Channel Model Study. NEANDC-182A, 1984,- Spherical Optical and Statistical Model Study. NEANDC-152A, 1983.- Spherical Optical Model for Charged Particles. NEANDC-198U, 1985.- Pre-equilibrium Effects. NEANDC-204U, 1985.- Blind Intercomparison for pre-equilibrium effects for n+184W. NEANDC-253U, 1989.- Thick target intermediate energy nuclear reactions (NSC/DOC(95)-2 and NSC/DOC(96)-15)- Thin Target intermediate energy nuclear reactions (OECD, 1994)- Proceedings of the specialist' meeting on intermediate energy nuclear data: models and codes (OECD, 1994)

Other reports on Partitioning and Transmutation available from the NEA

Review of fission product yields and delayed neutron data for the actinides NP-237, Pu-242, AM-242m, Am-243, Cm-243andCm-245, R.W. Mills, NEA/P&T Report N°. 1, OECD/NEA, 1990.

Proceedings of the Information Exchange Meeting on Actinide and Fission Product Separation and Transmutation, MitoCity, Japan, 6-8 November 1990, NEA/P&T Report N°. 2, OECD/NEA, 1991.

Role and Influence of Partitioning and Transmutation on the Management of Nuclear Waste Streams, L.H. Baetslc.NEA/P&T Report N°. 3, OECD/NEA, August 1992.

Review of High Energy Data and Model Codes for Accelerator-Based Transmutation, A.J. Koning, NEA/P&T Report N°. 4,OECD/NEA, 1992.

Survey of Codes Relevant to Design, Engineering and Simulation of Transmutation of Actinide by Spoliation (The costestimation of accelerator for incinerator and the problem of radiation hazard), H. Takahashi, NEA/P&T Report N°. 5,OECD/NEA, 1991.

Requirements for an Evaluated Nuclear Data File for Accelerator-Based Transmutation, A.J. Koning, NEA/P&T ReportN°. 6, OECD/NEA, June 1993.

Proceedings of the Information Exchange Meeting on Actinide and Fission Product Separation and Transmutation,Argonne National Laboratory, Argonne, Illinois, USA, 11-13 November 1992, NEA/P&T Report N°. 7, OECD/NEA, 1993.

Results of an International Code Intercomparison for fission cross-section calculations, H. Derrien, NEA/P&T Report N°.8, OECD/NEA, 1993.

Many of the above reports are available in Acrobat PDF on the Web athttp://www.nea.fr/html/trw/docs.

The NEA Data Bank also offers online access to information on activities carried out by theNuclear Energy Agency as well as to large databases of nuclear reaction data (www.nea.fr).

Page 6: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table of Contents

1. Introduction2. Summary of contributions and types of codes3. Sources of experimental data4. Methodology of the intercomparison4.1 Calculation of cumulative cross sections4.2 Graphical presentation of results4.3 Quantification of agreement between experiment and theory5. Results and Discussion6. ConclusionsAcknowledgments

References

Appendix I Tables

Table 1 Participation in the intercomparison by code name and physics employed.

Table 2 List of participants.

Table 3 Sources of experimental data used for the intercomparison.

Table 4 Radioactive progenitors considered in the calculation of cumulative cross sectionsand nuclear decay data used for the calculation.

Table 5 Coverage of target/product combinations by the different contributions.

Table 6 Deviation factors of calculated from experimental cross sections for energiesbetween 1 MeV and 50 MeV. For each reaction the average deviation factor <F> ace.to equ. 4 and the smallest and largest deviation factors (Fmin, Fmax ace. to equs. 5and 6) are given.

Table 7 Deviation factors of calculated from experimental cross sections for energiesbetween 51 MeV and 200 MeV. For each reaction the average deviation factor <F>ace. to equ. 4 and the smallest and largest deviation factors (Fmin, Fmax ace. to equs.5 and 6) are given.

Table 8 Deviation factors of calculated from experimental cross sections for energiesbetween 201 MeV and 5000 MeV. For each reaction the average deviation factor<F> ace. to equ. 4 and the smallest and largest deviation factors (Fmin, Fmax ace. toequs. 5 and 6) are given.

Table 9 Mean deviation factors for each contribution averaged over all reactions and targetelements for energy groups from 0 MeV - 50 MeV, 51 MeV - 200 MeV and 201MeV to 5000 MeV.

Page 7: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Appendix II Graphical presentation of the results of the intercomparison.

Figure Captions 1 to 341

Figures 1

Figures 2 - 7

Figures 8-13

Figures 14-21

Figures 22 - 34

Figures 35 - 59

Figures 60 - 64

Figures 65 - 92

Figures 93- 139

Figures 140-147

Global mean deviation factors for each contribution averaged over all reactionsand target elements for energy groups from 0 MeV - 50 MeV, 51 MeV - 200MeV and 201 MeV to 5000 MeV.

Reaction cross sections for energies up to 200 MeV.

Reaction cross sections for energies between 1 MeV and 5000 MeV.

Results for the target element oxygen up to 200 MeV.

Results for the target element aluminum up to 200 MeV.

Results for the target element iron up to 200 MeV.

Results for the target element cobalt up to 200 MeV.

Results for the target element zirconium up to 200 MeV.

Results for the target element gold up to 200 MeV.

Results for the target element oxygen for energies between 1 MeV and 5000MeV.

Figures 148 - 160 Results for the target element aluminum for energies between 1 MeV and 5000

MeV.

Figures 161 - 193 Results for the target element iron for energies between 1 MeV and 5000 MeV.

Figures 194 - 198 Results for the target element cobalt for energies between 1 MeV and 5000 MeV.

Figures 199 - 253 Results for the target element zirconium for energies between 1 MeV and 5000MeV.

Figures 254 - 341 Results for the target element gold for energies between 1 MeV and 5000 MeV.

Appendix HI Detailed description of codes used

Appendix IV Specifications of the intercomparison exercise

Page 8: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

1. Introduction

Nuclear power is confronted with the problem of safe storage of long lived radioactive wastes,especially very hazardous transactinides. Recently proposals have been made to transmute (or"burn") these wastes either within a reactor, or via very high flux secondary neutron sources poweredby high current, intermediate energy accelerators [BO92a, NA92]. In addition, accelerator-basedenergy amplification has been proposed as an alternative to the present nuclear energy productionusing the uranium fuel cycle [CA93]. Based on a spallation neutron sources subcritical arrangementsshall be used as energy amplifier, at the same time minimizing the problem of possible proliferationof fissile materials by using the thorium fuel cycle. Evaluation of the practicality of these proposedschemes requires, among other factors, the ability to calculate the spectrum and fluence of secondaryneutrons from targets of various materials and geometric design. This requires either experimentalmeasurements or nuclear reaction codes capable of reproducing both the microscopic nuclearphysics, and the radiation transport through the target.

Experimental measurements are long, expensive, and for some aspects, such as total nucleonemission multiplicity, on the edge of available technology. Additionally, at the energies of 800 -1600 MeV being suggested in some proposals, there are just few accelerators on which themeasurements could be made. The more appealing option is to use nuclear reaction codes. Manyexist; we need to gain some insights as to the limits of each, whether results are to be trusted to 20%,50%, or less accuracy. The present code intercomparison exercise is intended to provide suchinsight. It is the third one in a series up to now three exercises. The first part was dealing with thecalculation of (p,xpyn) double differential cross sections for incident proton energies of 25, 45, 80,160, 256, 800 and 1600 MeV [BL94a]. The second involved modeling of particle production andtransport for nuclear reactions in thick targets [FI95, SO96].

In this report we test the capabilities of models and codes to predict activation yields. Since nuclearreactions at all energies from thresholds up to the highest energies of the primary particles willcontribute to residual nuclide production in accelerator-based waste transmutation and energyamplification systems, such an intercomparison has to cover the entire energy range. Reaction typessuch as compound nucleus reactions, preequilibrium and direct reactions, spallation, fragmentationand fission have to be considered.

In Section 2 we present a summary of contributors to this exercise, and a qualitative description ofsome of the nuclear models and code options employed. Since in this exercise emphasis is laid upona comparison of the various calculated contributions with experimental data, we describe the sourcesand selection criteria of the experimental data in section 3. Section 4 gives details of the methodologyof the intercomparison, i.e. the calculations necessary to make the contributed theoretical datacomparable to experimental cross sections, the systematics of graphical presentation of the resultsand, last but not least, an attempt to derive a quantitative measure of the agreement or of thedeviations between experimental and theoretical data. In Section 5 we discuss results in some detail,and in Section 6 we present conclusions of this exercise. In a number of appendices we then give thedetailed results of this intercomparison in tabular (Appendix I) and graphical form (Appendix II).Finally, the specifications of this intercomparison are given (Appendix IV) along with questionnairesreturned by many of the participants (Appendix III) summarizing the models used in the variouscodes and giving references to more detailed reports or to manuals.

7

Page 9: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

The motivation for this exercise came from data needs of accelerator-based waste transmutation andenergy amplification. The same capabilities of nuclear modeling and radiation transport calculationare valuable in many other areas of science and technology. They relate to dosage calculation inradiation oncology, personnel dosimetry for space stations and a possible new generation of highaltitude supersonic aircraft, and stability of microelectronics for satellite communications andcommercial avionics. In basic research they are valuable for simulation needed in detector design.There is a further wide range of applications of medium energy nuclear reactions connected with theinteractions of cosmic ray particles with matter. Cosmogenic nuclides are widely used as naturalradioactive tracers. To understand their production in terrestrial and extraterrestrial matter has to relyon models of nuclide production at medium energies. We think that this exercise will be valuable formany of these needs, in addition to fulfilling the primary motivation of accelerator-driven wastetransmutation and energy amplification data needs.

2. Summary of Contributions and Types of Codes

Historically, reactions at intermediate energies have been treated with the intranuclear cascade model[SE47, GO48, BE69], at the early stages of the reaction, followed by an evaporation calculation[WE40, DO59] for nucleons falling below some arbitrary level of excitation (typically of the order of7-10 MeV above the binding energy or coulomb plus binding energy). The physics is based on theimpulse approximation of Serber [SE47], with consideration of Fermi motion mediating collisionsaccording to the work of Goldberger [GO48]. The evaporation phase was often modeled after theearly works of Dostrovsky et al. [DO59], using classical sharp-cutoff approximations for chargedparticle barrier penetrabilities, and simplified approximations for the nuclear level densities, allapplied in the Weisskopf evaporation model [WE40].

Many of the approximations made in these codes rest with the fact that their development wascontemporary with the evolution of digital computers. As computational abilities improved, some ofthe codes were revised to take advantage of improved speed and core size, although this was notalways the case.

In the early 1970s, semi-classical precompound models [BL75] which treated the intranuclearcascade in a closed form evolved, which easily allowed the direct cascade contributions to befollowed until the system was fully equilibrated. In the master-equation formulation [CL71a], thisapproach may even be used to treat the equilibrium decay channels. Precompound decay modelswere incorporated into some cascade plus evaporation codes to fill the gap between the arbitrarycutoff of the INC and the equilibrium evaporation decay [GU83]. This produced a markedimprovement in the reaction models. Angular distributions in precompound decay arecharacteristically put in using nucleon-nucleon scattering for an incident nucleon colliding withnucleons having a Fermi momentum distribution [ZI82], or more simply by using expressions whichhave been fitted to experimental results for purposes of interpolation - so called systematics [KA88].

Precompound decay models effect great simplifications over INC calculations due to the use ofstatistical few quasi particle distribution functions [ER60, GR66, WI70, WI71] (or exciton statedensities) with an equal a-priori population assumption in place of explicit calculation of energypartition following two body scattering. It has been shown that, for the most important leading termin the series, this result is consistent with the kinematics of nucleon-nucleon scattering [BL83] atenergies below the pion threshold (approximately 270 MeV). Because pion production is not part ofthe exciton distribution functions, it is at best questionable to employ this approach at incident

8

Page 10: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

nucleon energies in excess of the pion threshold. This limitation has indeed been observed for thesubmissions in this work. The INC codes, in contrast, have single and double pion productionchannels (with some approximations) as well as additional particle production channels asappropriate for the energies involved, and may be valid for incident energies of many GeV or tens ofGeV.

More recently quantal approaches have been suggested for treating direct continuum reactions in theregion below the pion threshold [FE80, TA82, NI88]. There are still some constraints on theseapproaches; they represent work in progress, and a hope for improved understanding and success inthe future. In many regimes they are already starting to become a useful tool in our ability to modelnuclear reaction data. Several examples of this type of approach are a part of this intercomparison.Additionally, results have been submitted using a "quantum molecular dynamics" code, which is likethe INC for N-N collisions, but with nonlinear nucleon trajectories between collisions as eachnucleon is permitted to interact with every other nucleon via a two body force [AI88]. This alsorepresents work in progress; practical use of the QMD models may await massively parallelcomputing.

In Table 1 we summarize the codes which have been used in this intercomparison, give an alpha-numerica! reference to each contribution distinguishing different contributions from the sameparticipant, and list the models used in each. The contribution reference code used is of the formABmn having the following meaning: AB is an abbreviation of the (first) contributor's name, m and nare running numbers, m counting the number of models or codes used by a particular participant andn counting different options used for the same code indicated by Abm. This reference code is usedboth in tables and figures making sure that always the same plot symbol is used for a particularcontribution reference code. Note that several different laboratories have used some of the samemodels and codes, sometimes exercising different options or modifications. The names andlaboratory affiliations of participants are given in Table 2.

We represent intranuclear cascade approaches as INC, precompound exciton model approaches asPE, compound nucleus evaporation models as EVAP, and use FKK for the only quantal approachused in this exercise, that due to Feshbach, Kerman and Koonin [FE80]. The evaporation routinesare all forms of the Weisskopf-Ewing [WE40] formulation, except for the FKK-GNASH code, forwhich a Hauser-Feshbach approach (specific coupling of angular momenta) may be used, and themaster equation model from the Bratislava group.

Many of the INC codes are taken from the HETC transport code of Armstrong and Chandler [AR72],which incorporated the INC code of Bertini [BE69, BE63]. The HETC/KFA2, HETC/Bruyere,HETC-FRG and HETC-3STEP codes are modifications of the HETC code. In addition to the BertiniINC code, there are also contributions using the ISABEL code of Yariv and Fraenkel [YA81],derived from the Vegas code of Chen et al. [CH68], one of them coupling the ISABEL code to theSMM code [BO92b] in order to account for nuclide production by fragmentation reactions. Manyadditional options and physics have been incorporated into the HETC/KFA2, HETC/Bruyere,HETC-FRG and HETC-3STEP versions of HETC [AR84, CL88, BE96, NA86, IS93]. For furtherdetails of the physics used in each set of results presented, we refer to the questionnaires contained inAppendix II, and to the references cited therein.

The codes in Table 1 can be categorized from the practical point of view according to the energyregions for which they are applicable. It is convenient to distinguishing coarsely three energy regionswhich are dominated by nuclear reactions involving a compound nucleus in statistical equilibrium (0

Page 11: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

- 50 MeV), by preequilibrium reactions (50 - 200 MeV) and by an initial intranuclear cascade (above200 MeV). It is quite natural that preequilibrium codes such as ALICE 92 [BL91] (BLJ1, BL12,BUS), ALICE-IPPE [BL82] {SHU), FKK-GNASH [CH93] (CMU.CM12, CM13), MINGUS[KO94] (KOU) and PEQAG2 [BE89] {BE11) are confined to energies below 200 MeV, the actualupper limits in the contributions depending a little on the degree of confidence of the differentcontributors.

There are, however, two contributions in which the pre-equilibrium approach is extended to higherenergies. The AREL code [BL94b] {GUI, GL12) is a modification of the hybrid model ofpreequilibrium reactions [BL71, BL72] which formally can be run up to energies of 900 MeV. Itshows some improvements compared to earlier attempts of such an extension (code ALICE 900[BL90]) by taking into account relativistic kinematics, but being still limited by the neglect ofmultiple preequilibrium emission of particles [SC96]. This problem was overcome by using MonteCarlo techniques to describe multiple preequilibrium decay. The contributions (BL21, BL22) givesresults for this approach using the code HMS-ALICE [BL96a] for energies up to 290 MeV.

Among the contributions calculated by PE-EVAP-type codes there are some which tested differentsets of parameters or options which can be chosen in the respective codes. This may be due to whichset of level density parameters are considered best for particular target elements, which nuclear massformulas or mass data are used or what level of complexity has been adopted for the calculations.

The first of these reasons applies to the contributions {BL11, BL12, BL13 and BL21, BL2J). For theALICE 92 calculations Fermi gas level densities were used for all target elements (BL1I). Inaddition, calculations were done for the target element oxygen using Chadwick level densityparameters [CH96] (BL12) and for the target element cobalt with Kataria Ramamurthy level densities[KA90] (BL13). For the same reason the HMS-ALICE calculations were done for the target elementgold with Fermi gas level densities (BL21) and with Kataria-Ramamurthy level densities for cobalt{BUS).

The second reason applies to the choice of calculational options for the AREL calculations {GL11,GL12). As investigated in detail elsewhere [BO93, SC96] the choice of mass options and the neglector consideration of shell effects in the mass formulas has partially strong influences on the results ofthe calculations. The two options used here are the extremes, namely Myers and Swiatecki (MS)mass formula [MY66] neglecting shell corrections and pairing effects (GL11), on the one hand, andexperimental nuclear masses according to Wapstra and Audi [WA85] as far as available, else MSmasses with both shell and pairing corrections {GL12).

The third reason applies for the FKK-GNASH calculations (CM/7, CM12, CM13). For the targetelement oxygen the contributors took into account emission of neutrons, protons, H-3, He-3 and Be-7(CMJ3), for the target element aluminum no evaporation of Be-7 was accounted for (CM/7), and forthe target element iron emission of complex particles such as H-3, He-3 and Be-7 was neglected(CM12).

The restriction of PE-EVAP-type codes to energies below 200 MeV causes a problem in thecalculations of activation yields for gold, because medium-energy fission is not included in therespective models though it could be treated within the frameworks of the respective models. In caseof the ALICE-type codes a considerable recording would be necessary in addition since there ispresently a restriction in the array sizes resulting in maximum numbers of emitted protons andneutrons.

10

Page 12: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

All other codes which give results for energies significantly above 200 MeV include INC models or aQMD model and make use of Monte Carlo techniques. Among the 15 contributions, only one thecode {CS11) makes use of a quanta! approach for the intranuclear cascade in form of theQMDRELP+SDMRELP code [NI95]. All others originate from HETC- or VEGAS-like approaches.These latter codes can be categorized depending on whether they include preequilibrium phasesbetween the intranuclear cascade and the evaporation stages or not. Six contributions make use ofINC-PE-EVAP codes, namely CEM95 [MA96, MA93] (MA11), HETC-FRG (IS11), HETC-3STEP[NA86, IS93] (TA11), INUCL [ST90, SH93] (KAJJ), MSDM [AD93, AM89, AM90, BO87, BO90,GU75, GU83, TO83] (SOU), and PACE/MSM [ER94] (FOU), while nine contributions use codeswhich follow the classical INC-EVAP scheme. These latter are CASCADE [BA85] (SH21), DISCA[KO96] (SH3J), HETC/BRUYERE [BE96] (FLU), HETC/KFA2 [AR84, CL88] (Mill), ISABEL-EVA [YA81] (FR11, FR12), ISABEL/SMM [YA81, BO92b] (LA11) and MECC7+EVAP_F [BE69,DR62, AT80] (YOU).

A further distinction of the versatility of codes applicable to energies above 200 MeV is whether ornot they take into account Fermi break-up and allow for calculation of fragmentation products. In thisintercomparison there are three contributions which do so. The MSDM code (see refs. in App. 3)(SOU) considers Fermi break-up. In the contribution LA11 the MSM code by Botvina and Mishustin[BO92b] was coupled to the ISABEL code [YA81] to improve the calculations of fragmentationproducts. HETC-FRG (IS11) considers fragmentation reactions by using a liquid-gas phase transitionmodel.

While modeling of Fermi break-up is a necessary addition for many codes, all but the CEM95[MA96,MA93] (MA11) and DISCA codes [KO96] (SH31) take into account medium-energy fission.

Among the contributions using Monte Carlo techniques to describe the intranuclear cascade differentcalculational options for the same code were only used in case of the ISABEL-EVA code [YA81]where to contributions for the target elements aluminum to gold were given, one using a local (FR11)and one a uniform (FR12) Thomas Fermi density approximation for momenta.

The INC codes and, in particular, the QMD code need large amounts of computation time per event.This causes partially problems with when calculating production cross sections which are smallcompared to the reaction cross section. Therefore, rare reaction channels show great statisticaluncertainties in the cross sections due to the statistical limitations of running small numbers ofevents. Some INC contributions even show a general lack of statistical accuracy. Here, thisintercomparison clearly demonstrates that excessive use of computing time is indispensable whenrunning INC codes to calculate activation yields. This is particularly true and has another quality thanfor INC codes for the new QMD approach which, however, may considerably improve as massivelyparallel computer technology becomes increasingly available.

There is one contribution (MI21) which is basically different from all others since it makes us of asemi-empirical cross section formula. Besides models employing the wide range of nuclear reactiontheories, semi-empirical models of medium energy nuclear reactions and semi-empirical crosssection formulas [RU66, SI73,SU91,WE91] have a long tradition in attempts to satisfy the crosssection data needs of various fields of applications. In this intercomparison, one contribution (MI21)applies the semi-empirical model by Silberberg and Tsao [SI73] in a modified and updated form. Theparticular appeal of the semi-empirical models is that a minimum of computing time allows forestimates of production cross section which, however, often are applied without precautions or with

11

Page 13: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

wrong presumptions about the achievable accuracy. Though semi-empirical model do not necessarilyreflect the status of our basic understanding of nuclear reaction modes, it was felt to be important toinclude such a model into this intercomparison in order to evaluate the capabilities of such frequentlyapplied models.

In this "part 3" code intercomparison we test the nuclear physics of the codes by comparingcalculated activation yields with experimental results. Only in case of the reaction cross sections andof some important residual nuclides for which no experimental data exist we restrict ourselves to themere comparison of the calculational results. Given the importance of experimental activation yieldsfor this intercomparison we give a detailed survey on the sources of experimental data used in thenext chapter. Since, moreover, we try to avoid a subjective view when comparing experimental andcalculated data we devote chapter 4 to the detailed description how the contributed calculated ,,zerotime" cross sections were consistently transformed to be comparable to measured cross sections andhow quantitative methods are used to make this comparison a mathematically well-founded objectiveone.

3. Sources of experimental data

Though a large number of experimental investigations has been performed during the last fourdecades, see e.g. [TO71, MC76, BU80, BU81, HO82, HO85, KE73, IL91] and the EXFORcompilations at the international nuclear data banks] for references, the experimental data base ofintegral cross sections for the production of residual nuclides by proton-induced reactions is neithercomprehensive nor reliable. It is widely contradictory and except for a few reactions [TO71] there donot exist evaluated data. For many of the reactions which were somewhat more intensely investigateda scatter of data of up to an order of magnitude is observed; see e.g. [MI95, SC96] for a detaileddiscussion. For a comparison with theoretical calculations as in this exercise the consistency of theexperimental data set to which the model and code predictions should be compared is essential.

During the last two decades such a consistent data set was established for proton-induced reactionson target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au forenergies up to 2.6 GeV [MI96a]. It was mainly aimed to satisfy the data needs of model calculationsof cosmic ray interactions with extraterrestrial matter [MI96b]. Some target elements withoutcosmophysical relevance such as V, Co, Nb, and Au were included into these studies for systematicreasons to allow for some comparison with theories of nuclear reactions. This data base covers today547 different target/product combinations and a total of more than 15,000 cross sections. Anextension of this work contributing to waste transmutation and energy amplification studies ispresently underway. In experiments at Laboratoire National Saturne/Saclay and the SvedbergLaboratory/University of Uppsala residual nuclide production by proton-induced reaction from targetelements Na, Cr, Rb, Mo, Rh, Ag, Te, I, Cs, La, Ta, W, Re, Os, Ir, Hg, Pb, Bi, U and Th isinvestigated; see [GL96a, GL96b, BL96b] for first results. However, it will take some time until allthe results from these ongoing experiments are available and therefore they could not be used for thisexercise.

Therefore, it was decided to base this intercomparison on the data available in 1995 and toconcentrate on the target elements oxygen, aluminum, iron, cobalt, zirconium and gold. Of all theexperimental data used for the intercomparison only a minor part was published before thespecifications of this intercomparison, [MI95] and references therein. In particular, data for targetelements (Z < 29) for energies between 200 MeV and 400 MeV [SC96] were not yet published at thattime and those for Zr and Au were not published at all.

12

Page 14: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

In parallel to this intercomparison a report on the complete data base is prepared [MI96a]. All thenew data of [MI96a] will be transformed to EXFOR format (EXFOR number O0276) and will bemade available by the NEA Data Bank.

For this intercomparison it was decided that at first hand only data from this data base are usedbecause of the consistency of this data set. Table 3 gives the sources of experimental data of allreactions used in this intercomparison. Cross sections from the data set described above arereferenced to as ,,MI96". Under this label all data published by our collaboration [BO93] (EXFORnumber O0282 ) , [DI90a] (EXFOR number O0098 ) , [DI90b] (EXFOR number O0281 ) , [MI78a](EXFOR number B0100), [MI78b] (EXFOR number B0083), [MI79a] (EXFOR number A0146),[MI79b] (EXFOR number A015J), [MI80] (EXFOR number A0145), [MI84a] (EXFOR numberA0100), [MI84b] (EXFOR number AO100), [MI85] (EXFOR number AO100), [Mi86](EXFOR numberA0344), [MI89a] (EXFOR number O0078), [MI89b] (EXFOR number O0280), [MI95] (EXFORnumber O0277), [SC96] (EXFOR number O0284), [WE75] (EXFOR number O0088) as well as theunpublished ones [MI96a] (EXFOR number O0276) are summarized. From the published work citedabove only two references were omitted in this intercomparison. The data published in a paper byDittrich et al. [DI90a] (EXFOR number O0281) were not corrected for interference by secondariesand superseded by a later work [MI95] (EXFOR number O0277). Further, the cross sections reportedby Weigel et al. [WE75] (EXFOR number O0088) for the target element iron were omitted forreasons discussed elsewhere [MI95] (EXFOR number O0277).

There are, however, some reactions which, on the one hand, are not or just incompletely covered bythis data base. But, on the other hand, they were considered to be important for this intercomparison.For these reactions some selected work of other authors was added to the experimental data set. Table3 gives detailed references to them. The different sources of experimental cross sections are notdistinguished in the figures for better readability. But it must be kept in mind that for the respectivereactions less internal consistency has to be anticipated.

For the target elements from oxygen to zirconium this was done for particular reactions only:and l^c from oxygen, ^H, 3 He, ^He, 20Ne, 2lNe and 22>je from aluminum and iron, ^Na 2 8 g36ci, 36Ar, 38Ar and 5$Fe from iron, 56NJ from cobalt, and 22]s[a ancj stable Kr-isotopes fromzirconium. For the target element gold it was more frequently necessary to add data from otherauthors. Some rejections were made in a quite subjective way if the data from a particular publicationshowed extreme deviations from the work of most other authors. Table 3 lists exclusively thereferences used in this work and is not meant as a compilation of all existing references.

4. Methodology of the intercomparison

This intercomparison is based on comparing the calculated cross sections with high qualityexperimental data. Only in some exceptional cases the results of different models and codes werecompared with each other if no experimental data were available. This was done for products such ashydrogen and helium isotopes because of the importance of such data with respect to materialdamage, on the one hand, and because of the strongly differing results of some codes on the otherhand. It is the purpose of this intercomparison to provide a basis for the model and code developersto become aware of still existing shortcomings and to be able to recognize particular products wherethe calculations fail because of not or wrongly considering particular reaction modes. To this end acomprehensive graphical presentation of all the results is necessary which, on the one hand, shows

13

Page 15: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

the general reliability or the failure of models and codes and which, on the other hand, enables thereader to look for all the individual reactions in detail.

Further, by asking for calculation of as many as possible target/product combinations and an ascomplete as possible coverage of the energy region from zero to 5000 MeV the ranges ofapplicability and the inherent restrictions of models and codes become evident.

In order to make the results more easily understandable for non-specialists we also tried to find amathematical formulation of the degree of agreement or disagreement between theories andexperiment. The procedures developed for this allow to reduce the large amount of results to a set ofthree or four tables or even to one figure. The so compressed results are for a quick glance and allowsome judgment about different models and codes, but it has to be stressed that an improvement andqualified judgment is only possible by looking at the individual results for each reaction. Only by thatthe real shortcomings and some reasons for failure can be recognized which is a necessaryprerequisite for improvements of models and codes.

4.1 Calculation of cumulative cross sections

Calculated activation yields were reported by the participants as ,,zero time" or independent crosssections not taking into account decay of short-lived progenitors. Among the nuclides used in thisintercomparison, however, the shortest half-life is 10 min (1 ̂ C). Therefore, cumulative cross sectionshad to be calculated from the ,,zero time" results delivered by the participants. Table 4 gives a surveyon the radioactive progenitors considered and the nuclear data used to calculate the cumulative crosssections.

It is to emphasize that in particular for a heavy target element such as gold the cumulative crosssections can differ from the independent ones by an order of magnitude for special products. Forother product nuclides and for light target elements this effect may be smaller and sometimes it iseven negligible. In order to add no ambiguity to the interpretation of the results of thisintercomparison due to possibly differing calculations of cumulative cross sections by particularcontributors and to avoid one source of misinterpretation of the specifications the cumulative crosssections all were calculated from independent ones as described below.

Let there be a decay chain

> ... -> nucln

of n radionuclides (nuclj, i = l,...,n) with decay constants X\ and branching probability rj whendecaying from nuclj to nuclj+i. oj are the independent or ,,zero time" cross sections for theproduction of nuclide i from a target nucleus or element. Then the cumulative cross section a n c u m

for the production of the nth nuclide is calculated as

equ. 1: °n,cum = °n + ( V l / ( V l - *-n )) * s i CTi * ri

This approximation requires

equ. 2: Xn I (k\ - ?in ) « 1 for all i > 1.

14

Page 16: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

The condition given in equ. 2 is checked with a limit of 0.05 which is equivalent to a contributionless than 5 %.

If the half-lives of all radioactive progenitors are very short compared to that of the nuclide inquestion then all radioactive progenitors are completely decayed before measurement of an irradiatedtarget. In this case A.n_i / (A.n_] - A.n ) is unity and the cumulative cross sections is the sum of allindependent cross sections of nuclides decaying to the product times their respective branchingprobabilities plus the direct cross section of this nuclide.

The assumption of very short-lived progenitors holds in many cases, but not in all. There are a fewcases (e.g. %&Zr and 86y, %%Zr and 88y, 9$Zr and 95gNb) where a progenitor (n-1) decays to theproduct nuclide (n) with a decay constant Xn.\ comparable to A,n. In this case, equ. 1 gives a betterapproximation of the experimental reality.

The cumulative cross sections were calculated consistently from the delivered contributions and thencompared with the experimental data. Since this procedure was announced in the specifications of theintercomparison, it is not discussed here in detail whether a particular contribution does consider allprecursors necessary for such a calculation.

There may be some codes which according to dimensional limitations in the tables of residualnuclides are not capable to calculate each necessary precursor. But this problem will not show upfrequently at lower energies (< 200 MeV). For Monte Carlo codes, it does not pose a problem if thehistories are carefully analyzed.

Remark: Because of the isobaric yields being nearly Gaussian shaped with small half-value widths atintermediate energies, such a calculation is possible in most cases without particular problems. Onlyin the case of heavy target elements such as gold problems can occur. Due to the prevalence ofneutron emission in the evaporation phase highly neutron deficient radionuclides far off from thevalley of stability have to be considered as progenitors. The cumulative production for heavy targetelements can be larger by an order of magnitude than the direct one. This may cause problems incodes which have fixed size tables of possible product nuclides being even limited in the numbers ofemitted protons or neutrons. This particular problem can already show up at relatively low energies.However, for fission products from gold or for intermediate mass fragments this is not important.Nuclides very close to the target should also not be too much affected.

4.2 Graphical presentation of results

Generally, the intercomparison is based on the comparison of calculated and experimental crosssections. Therefore, figures in which such comparisons are performed make up the majority of plots.Only for a few reactions for which no experimental data exist, plots are included into this report andwhich only the calculated results of the different contributions are compared. This is commonly thecase for the production of light nuclei and nucleons for which integral data are rare; e.g. ^H, ^H, ^H,^He and ^He. Because of the particular importance of the production of theses nuclei in view ofmaterial damage and because partially severe differences between the different contributions theyshall also be exemplified here.

Since the various codes employed have different energy ranges of application a uniform type ofgraphical presentation of the intercomparison is not justified. Therefore, the results are presented intwo different types of plots for

15

Page 17: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

• 0 MeV to 200 MeV on a linear energy scale• 1 MeV to 10 GeV on a logarithmic energy scale.

The numbers of figures covering energies from 0 to 200 MeV, only, was restricted by excluding allplots with less than 20 experimental plus theoretical data. Always logarithmic scales are used for thecross sections, but not more than four decades were allowed for. Uncertainties of the cross sectionswhich were given by the participants were plotted only if they exceeded the symbol sizes.

All calculated data are shown in the figures except for a very small number which was omitted fordifferent reasons. These omitted cross sections were

• data which did not fit into the maximum of four decades which was allowed for when plotting theresults. These were very few extreme outlyers as results of Monte Carlo calculations with badstatistics

• data with relative uncertainties exceeding 70 % were arbitrarily removed from the data set. Suchdata relied on one or two events found in the Monte Carlo histories.

4.3 Quantification of agreement between experiment and theory

In order to quantify somehow the quality of a contribution in comparison with the experimental crosssections, mathematical measures were searched. It was found that the agreement between experimentand theory can be described by deviation factors which are calculated for each reaction point-wise ateach energy for which an experimental cross section exists. These point-wise deviation factors canthen be averaged over certain energy ranges and also over all or a part of the different reactions.

For a given reaction (target/product combination) we have (a e Xp ; j , i = l,...,neXp) experimental crosssections at energies (Ej, i = 1, ..., neXp). Then we define a mean square logarithmic deviation by

equ. 3: <(log a e x p - log a t h e o ) 2 > = Si (log aexp,i - log a the o , i)2 / NS

The theoretical cross sections omeo,i a t m e energies Ej were obtained from the calculated crosssections by double-logarithmic interpolation. No extrapolations were made. NS is the number ofenergy points with experimental cross sections for which this procedure is possible in a given energyinterval.

Then the average deviation factor <F> is defined by

equ: 4: <F> = 10. ** SQRT(<(log a e x p - log a theo)2>)

Logarithmic deviation factors have the advantage of being illustrative. They were chosen instead oflinear ones since the variations observed for a given experimental cross section are often largecompared to the cross section value. Consequently, a linear normal distribution of deviations betweentheories and experiment is unlikely. A log-normal distribution would then be the simplestassumption. For such a distribution <F> represents the standard deviation transformed back to alinear scale.

The uncertainties of the experimental cross sections have been neglected in the calculations for tworeasons. Firstly, they are usually much smaller than the deviation between theories and experiments.Secondly, They are affecting all contributions is the same way.

16

Page 18: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Since the average deviation factor does not allow to distinguish underestimates from overestimates,we define in addition the maximum and minimum deviation factors, F m a x and F m j n , respectively by:

equ. 5: F m a x = max (aeXp5j / atheo,i >» = 1> •••»NS)

equ. 6: F m m = min (aeXp5j / a theo,i »' = h •••> NS)

It is not meaningful to average such deviation factors over the entire energy range since the energycoverage of the different models and codes differs too much. Therefore, it was necessary todistinguish three energy regions, namely 0 MeV - 50 MeV, 51 MeV - 200 MeV and 201 MeV - 5000MeV. This was done in order to coarsely distinguish energy ranges dominated by reactions involvinga compound nucleus in statistical equilibrium, a precompound dominated preequilibrium region anda range in which intranuclear cascades dominate the initial phase of a nuclear reaction. For allreactions we calculated <F>, F m a x and F m m for each of the three energy regions independently. Intables 6 - 8 for each reaction the values of the <F>, F m a x and F m j n are given for the energy regionsup to 50 MeV, from 51 MeV to 200 MeV and above 200 MeV, respectively. This allows for adetailed judgment on the basis of individual reactions.

It is to note that for a given contribution and a given reaction the number NS of pointwise deviationfactors may deviate from neXp because of the different energy coverage of the contributions.Therefore, it is meaningful to define the number of cross sections of a given reaction i for which sucha comparison was made NSj. Since, moreover, the coverage of reactions is also differing fromcontribution to contribution one also has to know the number NR of reactions for which acomparison was possible.

In order to obtain also some global judgment about the quality of a given contribution we can nowdefine a global mean deviation factor « F » by averaging for each contribution in addition over allreactions j :

equ. 7: « ( l o g aexp - log a l h e o ) 2» = ^ (log aexpJ - log a theo,)2/ ^ NS,

equ: 8: « F » = 10. ** SQRT(«( log aexp - log a t h e o) 2»)

For all three energy ranges these calculations were also performed. The results are shown in table 9which in addition to the « F » values give the total NS = Zj NSj and NR values for each of thethree energy regions. Thus a numerical result is derived which measures the global capabilities of acontribution in one number, « F » , for each energy region.

5. Results and Discussion

This model and code exercise provides an in-depth survey on the capabilities of a priori calculationsof activation yields for target elements O, Al, Fe, Co, Zr and Au from thresholds up to 5 GeV. Thecomparison of calculational results with high-quality experimental data for more than 200target/product combinations allows in an unprecedented way to analyze the advantages andshortcomings of nuclear models and codes. It provides a tool to recognize the weak points in modelsand codes and thereby it can serve as a basis for future improvements.

17

Page 19: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Surveying the results of this intercomparison and the different types of problems encountered in itone has to mention:

• Most contributions tried to cover as many requested target element/product combinations aspossible. Some codes could only cover all requested reactions due to limitations in array sizes,some models have restrictions with respect to the range of applicable energies, and somecontributors hesitated to give results for one or some target elements. In spite of that the coverageof reactions and energies for a given target element allows for a good survey on the applicabilityof the models and codes in general.

• There was no contribution giving results for the production of isomeric states.

• There are just few contributions giving results for light complex particles.

• For many product nuclides the deviations between the different contributions fill a range of abouttwo orders of magnitude and many calculated cross sections are widely contradictory to theexperimental data.

• There are reactions for which the range of calculations is just a factor of two covering nicely theexperimental data.

• Though there are just few experimental data for the production of light complex particles (H-3,He-3, He-4) to compare with, the discrepancies between the different contributions are striking.The calculated excitation functions partially differ by up to two orders of magnitude, e.g. for Fe,and the agreement with the rare experimental data often is poor.

• There are deviations among the different calculated reaction cross sections which are particularlyimportant in the low-energy region. However, the differences in the reaction cross sections cannotaccount for the differences seen in the individual excitation functions for the production ofresidual nuclides.

• There are some contributions where the calculations suffer from poor statistics. But, the widerange of calculational results in general is not dominated by statistical problems. It seems to bemore likely that there are real differences in the understanding of the individual reactions by thedifferent models and codes. The deviations show no systematics when globally comparing thereactions. There is no model or code which from the underlying physics is evidently wrong.

• There are problems with nuclear masses and the calculations of binding energies and consequentlyof reaction thresholds. In particular for reactions for which just apparent threshold can be givenbecause no clear cut reaction paths are defined due to large numbers of emitted particles. Also thefact that some INC codes do not conserve energy, having always the same neutron and protonbinding energies, can be a source of problems when calculating thresholds. Finally, the neglect ofcluster channels can add to such failures, since the cluster binding energy is 'lost' if one makes aproduct by nucleon or nucleon plus alpha channels, only.

• Calculations for the target element oxygen were not given by many contributors, e.g. table 1. As amatter of fact one has to accept that quite a number of the statistical assumptions underlyingpreequilibrium and equilibrium reactions are not valid for systems with such small numbers ofnucleons. Given, however, the importance of elements such as carbon, nitrogen and oxygen for

18

Page 20: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

calculations in radiation protection and dosimetry and for the activation of shields and ambient airof medium energy accelerators, also for the light target elements the calculational methods have tobe available.

• There are extreme problems when calculating products near to or at double magic configurationssuch as 56Ni a nd 57]sjj from cobalt. This points to real problems with accounting for shell effectsand choosing level density formulas.

• There is clear evidence that preequilibrium emission of light complex particles, in particular He-4,has to be taken into account. Otherwise the structures in the excitation functions of reactions inthe course one or two He-4 particles might be emitted cannot be adequately described.

• Particular problems are encountered when looking for the nuclide production by fission fromgold, some nuclides being systematically over- and some underestimated.

• There are fission products which show strongly different shapes of the excitation functions, withrespect to both the apparent thresholds and the energy dependence above 1 GeV. Thesedifferences point to these nuclides being produced either by fission of an excited nucleus with amass close to the target nucleus, on the one hand, or by that of an nucleus resulting from a longintranuclear cascade with a large difference in mass between fissioning and target nuclide on theother. The first way of production results in relatively low apparent thresholds below 100 MeV,the second one exhibits thresholds significantly larger than 100 MeV. The fission models used inthe different codes mostly do not adequately describe this phenomenon.

• There are strong discrepancies in the calculated excitation functions near the thresholds, inparticular for the heavy target elements. This may be partially due to the use of simple massformulas, but also can be caused by a neglect of the competition between gamma-emission andparticle-emission in the deexcitation of the nuclides in the final stages of the reactions.

• There are some plots for the energy region below 200 MeV in which there are no experimentaldata. These have been included to demonstrate the partially extremely large differences among thecalculations in the low-energy part.

• From this intercomparison only limited information about the influences of different level densityformula can be derived. This problem has to be investigated by systematic variations of differentlevel density formulas and parameters for a given code. This is one of the many task remaining forthe code developers and evaluators.

• There is just one contribution describing the low-energy production (E < 100 MeV) of Be-7 frome.g. iron {SHI 1). The contribution of evaporation of Be-7 from highly excited equilibratedsystems is not accounted for by all other models and codes.

• Calculations of activation yields from heavy target elements such as gold pose a particularproblem since the measurable cumulative activation yields partially differ by an order ofmagnitude from zero time cross sections. Thus, for reliable modeling of medium and long-livedproducts from heavy target elements the suite of possible progenitors has to be carefully evaluatedand covered by the model calculations to allow for reliable calculation of cumulative yields.

19

Page 21: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

• An adequate description of Fermi break up and of residual nuclide production by fragmentation isurgently needed. The present intercomparison demonstrates that the up-to-now efforts are still notsatisfying. Taking into account Fermi break-up removes the ,,orders of magnitude" discrepancieswhen calculating the production of light fragmentation products. However, the differencesbetween experiment and theory and between the different calculational approaches are still in therange of those seen for other reaction modes.

This general survey makes evident that there is presently no model or code available which reliablypredicts activation yields for all possible target-product combinations. Therefore, for the time being,calculation of the production of residual nuclides has to rely on experimental cross sections. In thickor extended targets a reliable modeling only is possible by combining experimental cross sections ofthe underlying nuclear reactions with energy dependent flux densities of primary and secondaryparticles. As inclusive data, the latter can be more reliably calculated than activation yields. Inaddition, computing power still is not sufficient to handle particle transport and activation in thick orextended targets.

There is a caveat with respect to use this intercomparison as a basis of comparative judgment aboutthe different models and codes. The different models used in this intercomparison are not necessarilycomparable. There are differences in applicability from the physics used with respect to energy,target and product ranges. Since there does not exist a comprehensive model of medium-energynucleon-induced reactions, all models and codes are in one way or the other incomplete with respectto the coverage of nuclear reaction phenomena. Here this intercomparison may help to distinguishwhich phenomena have to be included if a global code system covering all aspects of the relevantnuclear reactions.

Moreover, such a comparative judgment would be erroneous since the contributions are biased by thepersonal presumptions of the contributors about applicability of the models and codes used. Thedifferent contributions cover different energy, target and product ranges reflecting the differentcapabilities of models and codes but also the estimate of this capabilities by the contributors somebeing more cautious than others. A quick survey on the coverage of an individual contribution istherefore helpful. For the energy ranges this is given in table 1, for the individual reactions in table 5.

Even with respect to semi-empirical systematics one has to consider that such systematics can onlybe as good as the experimental data which are used to derive the parameters of the semi-empiricalformulas. Due to the fact that a large number of old experimental data is widely contradictory also incase of the systematics an estimate of the general applicability of this approach cannot be obtainedfrom this exercise but rather a means to improve such systematics.

Each of the contributions deserves an in-depth discussion which is impossible within the limitedspace of this report. Such analyses are left to the contributors themselves hoping that they provide abasis for improvements. However, in order to obtain some comparability of the differentcontributions in this report and to distinguish some advantages and disadvantages, somequantification of agreement and deviation between experimental and calculated data was searchedfor.

For such a quantification mean deviation factors were chosen. They can be used globally as well asreaction- or target-element-wise. The global mean deviation factors (Fig. 1, table 9) demonstrate thatthere is no contribution which is significantly better than predicting activation yields within a factorof two on the gross average. If there are now entries for a contribution in Fig. 1 or table 9, this means

20

Page 22: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

that the respective energy range was not covered by it. Apparently small deviation factors can also bethe result of a small energy coverage of a contribution, therefore we have indicated also the numbersof reactions and individual cross sections which were used as basis to calculate the global deviationfactors into table 9.

The global deviation factors range from a little less than two up to fourteen. It is to emphasize,however, that there is a considerable number of contributions for which the global mean deviationfactors are significantly larger than four.

One has, however, to keep in mind that individual, reaction-wise deviation factors can reach evenorders of magnitude. Therefore, a detailed judgment can only be made reactionwise. Such data aregiven in tables 6 - 8 for the three energy regions from 0 MeV to 50 MeV, from 51 MeV to 200 MeVand from 201 MeV to 5 GeV, respectively. Even these reactionwise deviation factors do not exhibitwhether the shapes of the excitation functions have been correctly calculated which might indicatethat all relevant reaction modes are accounted for properly and that there are just problems of book-keeping. Therefore, one has to look for the maximum and minimum deviation factors which are alsogiven in tables 6 - 8 . Small deviations between maximum and minimum deviation factors point to theshape of the excitation functions being correctly reproduced, while large differences indicate thatthere are problems with the calculated energy dependence of cross sections.

Looking for the deviation factors as function of energies two effects were observed. Extremely largedeviation factors may be observed when comparing experimental and calculated cross sections nearthe thresholds since many codes occasionally wrongly calculate the thresholds or the excitationfunctions near their thresholds and, at the same time, give cross sections far below the nb-region.This can be due to different reasons, e.g. problems with nuclear masses, optical model parameters,and y-competition in deexcitation. Furthermore, very large deviations are observed if cross sectionsare in the nano-barn region.

Since such extreme deviations strongly bias a realistic judgment on the basis of mean deviationfactors, the calculation of deviation factors was restricted to theoretical cross sections larger than 1(j.b. Since experimental data are available typically down to 10 u.b this limit allows to seeunderestimates up to a factor often. The dependence of the mean deviation factors on the value ofthis limit was carefully tested. A limit of 1 u.b does not remove any reaction from theintercomparison and the mean factors do not change significantly between 0.1 [ib and 10 u.b. Anincrease of the lower limit up to 1 mb does decrease the global mean deviation factors by up to afactor of two for some contributions. However, the best global mean deviation factors remain to havevalues of about two.

A global mean deviation factors of two can already be considered as the best what can be presentlyachieved. These deviation factors have, however, to be distinguished for different energy regions.The causes of deviations between theories and experiment differ for the three energy rangesconsidered in this intercomparison.

Finally, it has to be emphasized that the quantification of agreement used here for comparison favorsour desire for simplicity. There must, however, be a caveat that the mere deviation numbers cannotprovide the basis for a physically adequate judgment about any model, or code. The causes of theindividual deviations are multi-factorial and can - for a given model, code or contribution - only beevaluated by model and parameter exercises for a wide range of reactions. The present

21

Page 23: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

intercomparison gives a first survey over the related problems. It should be understood by themodelers and code developers as a starting point for the improvement of models and codes.

6. Conclusion

This exercise has, as a main goal, the display of results of model calculations versus high qualityexperimental data and offer a tool to the model and code developer to work with in order to improvetheir theoretical approaches or code formulations. The comparison given in this report can beregarded only as a first step. Detailed reactionwise discussion and interpretation of the results as wellas systematic parameter studies aimed on the evaluation of the reasons for particular discrepanciesbetween calculations and experiments are beyond the scope of this report and will rest with the modeland code developers. In spite of that, it was a task of this intercomparison to derive a general surveyand to draw conclusions about the capabilities of present days nuclear models and codes whencalculating activation yields.

Conclusions of such comparisons are subjective in nature. We have tried, however, to give aquantitative judgment on the basis of individual and global average deviation factors betweenexperiment and theory. Such numbers are biased due to the availability of experimental data whichdo not represent necessarily a meaningful grid of energy points for such a judgment. To achieve somegrade of justification we distinguished three energy regions, namely 0 MeV - 50 MeV, 51 MeV - 200MeV and 201 MeV - 5000 MeV. This was done in order to coarsely distinguish energy rangesdominated by reactions involving a compound nucleus in statistical equilibrium, a precompounddominated preequilibrium region and a range in which intranuclear cascades dominate the initialphase of a nuclear reaction.

From this exercise we may conclude that modeling calculations of intermediate energy activationyields on a predictive basis may at best have uncertainties of the order of a factor of two. Frequently,average deviations are much lager and individual reaction-wise deviations may go up to two or threeorders of magnitude. There are no general over- or underestimates by individual models or codes, butrather a broad scatter of calculated data which occasionally among the different contributions arecontradictory up to 3 orders of magnitude for a given reaction. It is not possible within the limitedsize of this report to trace the reasons for these discrepancies in detail. It can just be stated that thecauses of the discrepancies are multi-factorial and not merely due to wrong book-keeping. Problemsare encountered which are connected with the calculation of nuclear masses, binding energies andconsequently Q-values, with the consideration of shell effects and the various level density formulasused, with the neglect of competition between y- and particle deexcitation of excited intermediatenuclei, and , last but not least, with the basic modeling of medium energy fission and Fermi break-up.

Considering all these observations there is a need for major improvement of models and codes. Suchefforts would be well spent given the importance of intermediate energy nuclear data for futuretechnological development. In an ultimate conclusion one can state that calculation of activationyields turns out to be an extremely difficult task which cannot be adequately solved by present daysnuclear models and codes. This emphasizes the importance of experimental work for futuretechnological applications, on the one hand, and opens up a broad field of work for theoreticians andmodel and code developers, on the other.

Acknowledgments

22

Page 24: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

The tabulators/authors of this report wish to express their great appreciation to the many contributorswhose efforts comprise this exercise, first for taking their time to do the many calculations requested,and secondly for transmitting them as digital files in computer accessible form. Martin Gloris andAndreas Krins provided substantial assistance in the handling of data exchange, reformatting andevaluation.

References

[AD93] G.D. Adeev, A.S. Botvina, A.S. Iljinov, M.V. Mebel, N.I. Pischasov and O.I. Serduk,Preprint INR, 816/93, Moscow, 1993.

[AI88] J. Aichelin, G. Peilert, A Bohnet, A. Rosenhauer, H. Stocker, W. Greiner, Phys. Rev.C37 (1988) 2451.

[AL63] G. Albouy, J.P. Cohen, M. Gusakow, N. Poffe, H. Sergolle, L. Valentin, J. Phys. etRadium 24 (1963) 67.

[AM89] N.S.Amelin, K.K.Gudima, V.D.Toneev, "Nuclear Equation of State, Part B: QCD andthe Formation of the Quark-Gluon Plasma", Eds. W.Greiner, H.Stocker, Plenum Press,1989, p.473; V.D. Toneev, N.S. Amelin, K.K. Gudima, S.Yu. Sivoklokov. Nucl. Phys.A519 (1990) 463c; N.S. Amelin, E.F. Staubo, L.S. Csernai et al. Phys. Lett. B261(1991) 352; Phys.Rev. C44 (1991) 1541; Phys.Rev.Let. 67(1991)1523.

[AM90] N.S. Amelin, K.K. Gudima, S.Yu. Sivoklokov, V.D. Toneev, Sov. Jour, of Nucl. Phys.52 (1990) 272; V.D. Toneev, K.K. Gudima, Preprint GSI-93-52, Darmstadt, 1993.

[AR72] T.W. Armstrong, K.C. Chandler, Nucl. Sci. Eng. 49 (1972) 110.[AR77] T. W. Armstrong, K. C. Chandler, Radiation Shielding Information Center, HETC

Monte Carlo Nucleon-Meson Transport Code, report CCC-178, ORNL (1977) and Nucl.Sci. Eng. 49 (1972) 110.

[AR84] T. W. Armstrong, P. Cloth, D. Filges, and R. D. Neef, Nucl. Instrum. Methods. Phys.Res. A 222, 540 (1984). plus references

[AS85] Y. Asano, S. Mori, M. Noguchi, M. Sakano, K. Katoh, K. Kondo , J. Phys. Soc. Japan 54(1985)3734.

[AS91] Y. Asanao, S. Mori, M. Sakano, K. Katoh, K. Kondo, M. Noguchi, J. Phys. Soc. Japan60(1991)107.

[AT80] F. Atchison paper II, Juel. Conf. 34, 17 (1980)[BA58] E. Baker, G. Friedlander, J. Hudis, Phys. Rev. 112 (1958) 1319.[BA70] K. Bachmann, J. Inorg. Nucl. Chem. 32 (1970) 1.[BA75] M. Baklouti, thesis, Bordeaux (1975).[BA84] F. Baros, S. Regnier, J. Physique et le Radium 45 (1984) 855.[BA85] V.S.Barashenkov et al., Preprint of JINR, R2-85-173, 1985.[BE63] H. W. Bertini, Phys. Rev. 131 (1963) 1801.[BE69] H. W. Bertini, Phys. Rev. 188 (1969) 1711.[BE96] O. Bersillion (1996), modification of K.C. Chandler and T.W. Armstrong, ORNL 4744

(1972)[BE89] E. Betak, Report INDC(CSR)-016/LJ (IAEA Vienna 1989) and Report FU SAV 89/5

(Inst. Phys. Bratislava 1989)[BI62] R.H. Bieri, W. Rutsch, Compte Rend, de la Societe Suisse de Physique 35 (1962) 553.[BL71] M. Blann, Phys. Rev. Lett. 27 (1971) 337.[BL72] M. Blann, Phys. Rev. Lett. 28 (1972) 757.[BL75] M. Blann, Ann. Rev. Nucl. Sci. 25, (1975) 123.[BL82] M. Blann, Reports UCID-19614 (1982), UCID-20169, and IAEA Report INDC(CCP)-

385, Vienna 1995.

23

Page 25: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

[BL83] M. Blann, H. K. Vonach, Phys. Rev. C28 (1983) 1475.[BL90] M. Blann, CODE ALICE LIVERMORE 900, priv. comm. (1990).[BL91] M. Blann, UCRL-JC-109052, Lawrence Livermore National Laboratory report,

November 1991.[BL94a] M. Blann, H. Gruppelaar, P. Nagel, J. Rodens, International code intercomparison for

intermediate energy nuclear data, OECD/NEA, 1994.[BL94b] M. Blann, CODE AREL, priv. comm. (1994).[BL94] M. Blann relativistic extension of the ALICE version described in M. Blann, H.K.

Vonach, Phys. Rev. C28 (1983) 1475.[BL96a] M. Blann, UCRL-JC-109052, Lawrence Livermore National Laboratory, November

1991, & UCRL-JC-123495, February 1996[BL96b] X. Blanchard, J.L. Flament, J. Frehaut, J. Laurec, P. Morel, B. Cordier, N, Diallo, F.

Albernhe, in: Proc. 2nd Int. Conf. on Accelerator-Driven Technologies andApplications, 3.-7. Juni 1996, Kalmar, Schweden, in press.

[BO87] A.S. Botvina, A.S. Iljinov, I.N. Mishustin et al., Nucl.Phys. A475 (1987) 663.[BO90] A.S. Botvina, A.S. Iljinov and I.N. Mishustin, Nucl.Phys. A507 (1990) 649.[BO95] J.P. Bondorf, A.S. Botvina, A.S. Iljinov, I.N. Mishustin and K. Sneppen. Physics

Reports 257(1995)133-221.[BO92a] CD. Bowman, E.D. Arthur, P.W. Lisowski, G.P. Lawrence, R.J. Jensen, J.L. Anderson,

B. Blind, M. Cappiello, J.W. Davidson, T.R. England, L.N. Engel, R.C. Haight, H.G.Highes, J.R. Ireland, R.A. Krakowski, R.J. LaBauve, B.C. Letellier, R.T. Perry, G.J.Russell, K.P. Staudhammer, G. Versamis, W.B. Wilson, Nucl. Instr. Meth. Phys. Res.A320(1992)336.

[BO92b] A. S. Botvina, I. N. Mishustin, Phys. Lett. B 294 (1992) 23-26[BO93] R. Bodemann, H.-J. Lange, I. Leya, R. Michel, T. Schiekel, R. Rosel, U. Herpers, H.-J.

Hofmann,B. Dittrich, M. Suter, W. Wolfli, B. Homqvist, H. Conde, P. Malmborg, Nucl.Instr. Meth. Phys. Res. B52 (1993) 9.

[BR62] C. Brun, M. Lefort, X. Tarago, J. Phys. Radium 23 (1962) 167.[BU80] T.W. Burrows, P. dempsey, BNL-NCS-50640, 4th edition (1980).[BU81] T.W. Burrows, G. Wyant, BNL-NCS-50640, 4th edition, Suppl. 1 (1981).[CA58] A.A. Caretto, J. Hudis, G. Friedlander, Phys. Rev. 110 (1958) 1130.[CA93] F. Carminati, R. Klapisch, J.P. Revol, Ch. Roche, J.A. Rubio, C. Rubbia, CERN/AT/93-

47(ET) (1993).[CH68] K. Chen et al., Phys. Rev. 166 (1968) 949; 176 (1968) 1208.[CH69] L.B. Church, A.A. Caretto, Phys. Rev. 178 (1969) 1732.[CH72] A. Cheng, thesis, Stony Brook (1972).[CH93] M. B. Chadwick, P. G. Young, LA-UR-93-104[CH96] M.B. Chadwick et al., Nucl. Sci. Eng. 123 (1996) 1; ibid 123 (1996) 17.[CL71a] C. K. Cline, M. Blann, Nucl. Phys. A172 (1971) 225.[CL71b] J.E. Cline, E.B. Nieschmidt, Nucl. Phys. A169 (1971) 437.[CL88] P. Cloth, D. Filges, R.D. Neef, G. Sterzenbach, Ch. Reul, T.W. Armstrong, B.L.

Colborn, B. Anders, H. Brueckmann, Juel-2203 (1988).[CR63] V.P. Crespo, J.M. ALexander, E.K. Hyde, Phys. Rev. 131 (1963) 1765.[CU56] L.A. Currie, W.F. Libby, R.L. Wolfgang, Phys. Rev. 101 (1956) 1557.[CU59] L.A. Currie, Phys. Rev. 114 (1959) 878.[DA91] P. Danielewicz, G.F. Bertsch, Nucl. Phys. A533 (1991) 172.[DR62] L. W. Dresner ORNL-TM-196 (1962)[DE79] J. Dedieu, thesis, University Bodeaux (1979).

24

Page 26: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

[DI90a] B. Dittrich, U. Herpers, M. Liipke, R. Michel, H. J. Hofmann, W. Wolfli, RadiochimicaActa50(1990) 11.

[DI90b] B. Dittrich, U. Herpers, H. J. Hofmann, W. Wolfli, R. Bodemann, M. Liipke, R. Michel,P. Dragovitsch, D. Filges, Nucl. Instr. Meth. Phys. Res. B 52 (1990) 588.

[DO59] I. Dostrovsky, Z. Fraenkel, G. Friedlander, Phys. Rev. 116 (1959) 683.[GO48] M. L. Goldberger, Phys. Rev. 74 (1948) 1269.[ER60] T. Ericson, Adv. Physics 9 (1960) 425.[ER94] D.O.Eremenko, O.V.Fotina et al., in: Intermediate Energy Nuclear Data: Models and

Codes, Proceedings of Specialists' meeting, ISSY-les-Moulineaux,(France) 30 May - 1June 1994, OECD, Paris, 1994, p.287.

[FE80] H. Feshbach, A. Kerman, S. E. Koonin, Ann. Phys. (N.Y.) 125 (1980) 429.[FI55] E.L. Fireman, Phys. Rev. 97 (1955) 1303.[FI57] E.L. Fireman, J. Zahringer, Phys. Rev. 107(1957)1695.[FI93] D. Filges, P. Cloth, D. Theis, in: Ch.L. Dunford (ed.), Nuclear Data Evaluation

Methodology, World Scientific Publishing, Singapore (1993) 535.[FI95] D. Filges, P. Nagel, R.D. Neef, International code comparison for intermediate energy

nuclear data, Thick target benchmark for Lead and Tungsten, NA/NSC/DOC(95)-2[FR65] E.M. Franz, G. Friedlander, Nucl. Phys. 76 (1966) 123.[GL96a] M. Gloris, R. Michel, U. Herpers, F. Sudbrock, Proceedings ecaart 4, 4th European

Conference on Accelerators in Applied Research and Technology, Aug. 29 - Sept. 2,1995, Zurich, Nucl. Instr. Meth. Phys. Res. B 113 (1996) 429.

[GL96b] M. Gloris, R. Michel, U. Herpers, F. Sudbrock, D. Filges, B. Holmqvist, H. Conde, P.Malmborg, P.-W. Kubik, H.-A. Synal, M. Suter, Proc. 2nd Int. Conf. on Accelerator-Driven Technologies and Applications, 3.-7. Juni 1996, Kalmar, Schweden, in press.

[GO58] K. Goebel, CERN Rep. 58 - 2 (1958).[GO60] J. Gonzalez-Vidal, W.H. Wade, Phys. Rev. 120 (1960) 1354.[GO61] K. Gobel, D. Halting, J.C. Kluyveer, A. Kusumegi, H. Schultes, Nucl. Phys. 24 (1961)

28.[GO64] K. Gobel, H. Schultes, J. Zahringer, CERN Rep. CERN - 64 - 12 (1964) 78.[GR63] V.T. Gritsyna, A.P. Klyucharev, V.V. Remaev, L.N. Reshetoua, Soviet Phys. JETP 17

(1963)1186.[GR66] J. J. Griffin, Phys. Rev. Lett. 17 (1966) 478.[GR73] S.M. Grimes, J.D. Anderson, J.C. Davis, W.H. Dunlop, C. Wong, Phys. Rev. Lett. 30

(1973)992.[GR88] S.L. Green, W.V. Green, F.H. Hegedus, M. Victoria, W.F. Summer, B.M. Oliver, J.

Nucl. Mat. 155 - 157 (1988) 1350.[GU60] M. Gusakov, Y. Legoux, H. Sergolle, Compt. Rend. 251 (1960) 70.[GU61] M. Gusakov, G. Albouy, N. Poffe, C. Riehl, J. Phys. Radium 22 (1961) 636.[GU75] K.K. Gudima, G.A. Ososkov, V.D. Toneev, Sov. Journ. of Nuclear Phys. 21 (1975) 260;

K.K. Gudima, S.G. Mashnik, V.D. Toneev, Nucl. Phys. A401 (1983) 329.[GU83] K.K. Gudima, S.G. Mashnik, and V.D. Toneev, Nucl. Phys., A401 (1983) 329. JINR

Communications P2-80-774, P2-80-777, Dubna, 1980 [in Russian].[HA62] F. Hansen, R.C. Jopson, H. Mark, CD. Swift, Nucl. Phys. 30 (1962) 389.[HO60] M. Honda, D. Lai, Phys. Rev. 118 (1960) 1618.[HO82] N.E. Holden, T.W. Burrows, BNL-NCS-50640, 4th edition, Suppl. 2 (1982).[HO85] N.E. Holden, S. Ramavataram, C.L. Dunford, BNL-NCS-51771 (1985).[IL91] A.S. Iljinov, V.G. Semenov, M.P. Semenova, N.M. Sobolevsky, L.V. Udovenko,

Production of radionuclides at intermediate energies, Springer Verlag, LandoldtBornstein/New Series I, Vol. 13 a (1991), 13b (1992), 13c (1993), 13d (1994).

25

Page 27: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

[IS93] K. Ishibashi et al, "Inclusion of Preequilibrium Calcuation into High Energy TransportCode", Proc. 12th International Collaboration on Advanced Neutron Sources (ICANSXII), May 1993, Abingdon, UK.

[KA61] T.M. Kavanagh, R.E. Bell, Can. J. Phys. 39 (1961) 1172.[KA67] P.J. Karol, J.M. Miller, Phys. Rev. 166 (1967) 1089.[KA80] S.B. Kaufmann, E.P. Steinberg, Phys. Rev. C22 (1980) 167.[KA88] C. Kalbach, Phys. Rev. C37 (1988) 2350.[KA90] S.K. Kataria, V.S. Ramamurthy, M. Blann, T.T. Komoto, Nucl. Instr. Meth. Phys, Res.

A288 (1990) 585.[KE73] K.A. Keller, J. Lange, H.. Miinzel, Landolt Bornstein, New Series, Group I: Nuclear and

Particle Physics, Vol. 5. Part b: Excitation functions for charged-particle induced nuclearReactions, Springer Verlag, Berlin (1973).

[KO67] R.G. Korteling, A.A. Caretto, J. Inorg. Nucl. Chem. 29 (1967) 2863.[KO70] R.G. Korteling, A.A. Caretto, Phys. Rev. C 1 (1970) 1960.[KO76] S.M. Kormali, D.L. Swindle, E.A. Schweikert, J. Radioanal. Chem. 31 (1976) 437.[KO91] N.P. Kocherov, Intermediate Energy Nuclear Data for Applications, INDC(NDS)-245

(1991) IAEA, Wien.[KO93a] A.J. Koning, Review of high energy data and model codes for accelerator-based

transmutation, Report ECN-C-93-05 (1993).[KO93bJ A.J. Koning, Requirements for an evaluated nuclear data file for accelerator-based trans-

mutation, Report ECN-C-93-041 (1993).[KO94] A.J. Koning, O. Bersillon and J.-P. Delaroche, "Quantum-mechanical direct, pre-

equilibrium and equilibrium spectra up to 200 MeV", proceedings of the InternationalConference on Nuclear Data for Science and Technology, 1072-1074, ed. J.K. Dickens,May 9-13 1994, Gatlinburg, Tennessee USA

[KO96] A.Yu.Konobeyev, V.P.Lunev, Yu.N.Shubin, Report IPPE, 1996 (in preparation)[LA59] A.K. Lavrukhina, L.P. Moskaleva, L.D. Krasavina, I.M. Grechishcheva, J. Nucl. Energy

8(1959)231.[LA63] A.K. Lavrukhina, L.P. Moskaleva, V.V. Malyshev, L.M. Satarova, Sov. Phys. JETP 16

(1963)1.[LA64] A.K. Lavrukhina, R.I. Kusnetsova, El.M. Satarova, Geochemistry International 1 (1964)

1129.[LA66] M.S. Lafleur, N.T. Porile, L. Yaffe, Can. J. Chem. 44 (1966) 2749.[LA88] M.C. Lagunas-Solar, O.F. Carvacho, R.R. Cimy, AppL. Rad. Isot. 39 (1988) 41.[LE83] J.R. Letaw, R. Silberberg, C.H. Tsao, Astrophys. J. Suppl. 51 (1983) 271.[MA96] S.G. Mashnik, Izv. Akad. Nauk, Ser. Fiz., 60 (1996) 73 [Bull. Russian Acad. Sci.:

Physics, 60(1996)].[MA93] S.G. Mashnik, Acta Phys. Slovaca, 43 (1993) 86; 43 (1993) 243.[MC76] F.K. McGowan, W.T. Milner, Atomic Data Nucl. Data Tables 18(1976) 1.[ME67] V.N. Mekhedov, Sov. J. Nucl. Phys. 5 (1967) 24..[ME70] B.N. Mekhedov, V.N. Mekhedov, Sov. J. Nucl. Phys. 11 (1975) 397.[MI78a] R. Michel, G. Brinkmann, H. Weigel, W. Herr, J. Inorg. Nucl. Chem. 40 (1978) 1845.[MI78b] R. Michel, H. Weigel, W. Herr, Z. Phys. A286 (1978) 393.[MI79a] R. Michel, G. Brinkmann, H. Weigel, W. Herr, Nucl. Phys. A322 (1979) 40.[MI79b] R. Michel, G. Brinkmann, W. Herr, in: Progress Report on Nuclear Data Research in the

Federal Republic of Germany for the Period April 1 1978 to March 31 1979, NEANDC(E) - 202 U VOL. V, INDC (GER) - 21/L + SPECIAL (1979) 68.

[MI80] R. Michel, G. Brinkmann, J. Radioanal. Chem. 59 (1980) 467.

26

Page 28: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

[MI84a] R. Michel, R. STQck, Proc. 14th Lun. Plan. Sci. Conf. , J. Geophys. Res. 89 (1984)B673.

[MI84b] R. Michel, F. Peiffer, R. Stuck, in: Progress Reprot on Nuclear Data Research in thefederal Republic of Germany for the Period April 1 1983 to March 31 1984, NEANDC(E) - 252 U VOL. V, INDC (GER) - 27/L + SPECIAL (1984) 32.

[MI85] R. Michel, F. Peiffer, R. Stack, Nucl. Phys. A 441 (1985) 617.[Mi86] R. Michel, P. Dragovitsch, P. Englert, F. Peiffer, R. Stuck, S. Theis, F. Begemann, H.

Weber, P. Signer, R. Wieler, D. Filges, P. Cloth, Nucl. Instr. Meth. Phys. Res. B16(1986)61 -82.

[MI89a] R. Michel, B. Dittrich, U. Herpers, T. Schiffmann, P. Cloth, P. Dragovitsch, D. Filges,Analyst 114(1989)287.

[MI89b] R. Michel, F. Peiffer, S. Theis, F. Begemann, H. Weber, P. Signer, R. Wieler, P. Cloth,P. Dragovitsch, D. Filges, P. Englert, Nucl. Instr. Meth. Phys. Res. B42 (1989) 76.

[MI92] S.J. Mills, G.F. Steyn, F.M. Nortier, Appl. Radiat. Isotopes 43 (1992) 1019.[MI95] R. Michel, M. Gloris, I. Leya, H.-J. Lange, M. Liipke, U. Herpers, B. Dittrich-Hannen,

R. Rosel, D. Filges, P. Dragovitsch, M.Suter, H.J. Hofmann, P.W. Kubik, W. Wolfli, H.Baur, R. Wieler, Nucl. Instrum. Meth. Phys. Res. B 103 (1995) 183.

[MI96a] R. Michel, R. Bodemann, H. Busemann, R. daunke, M. Gloris, B. Klug, A. Krins, I.Leya, M. Liipke, S. Neumann, H. Reinhardt, M. Schnarz-Buttgen, U. Herpers, Th.Schiekel, F. Sudbrock, B. Holmqvist, H. Conde, P. Malmborg, M. Suter, B. Dittrich-Hannen, P.-W. Kubik, H.-A. Synal, Cross Sections for the Production of ResidualNuclides by Low- and Medium-Energy Protons from the Target Elements C, N, O, Mg,Al, Si, Ca, Ti, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au, to be submitted to Nucl.Instr. Methods in Phys. Res. B (1996).

[MI96b] R. Michel, I. Leya, L. Borges, Nucl. Instr. Meth. B 113 (1996) 434.[MY66] W.D. Myers and W.J. Swiatecki, Nucl. Phys. 81 (1966) 1.[NA86] Y. Nakahara and T. Nishida: JAERI-M86-074 (1986), "Monte Carlo Algorithms for

Simulating Particle Emissions from Pre-equilibrium States during Nuclear SpallationReactions", (written in English).

[NA92] Y. Nakahara, Nuclear and Nucleon Data Needs for Incineration of the RadioactiveWaste from Fission Reactors with a Proton Accelerator, in: S.M. Qaim (ed.) NuclearData for Science and Technology, Jiilich, 13-17 May, 1991, Springer verlag, Berlin(1992) p. 23.

[NI88] H. Nishioka, H. A. Weidenmuller, S. Yoshida, Ann. Phys. (N.Y.) 183 (1988) 166.[NI86] T. Nishida, Y. Nakahara and T. Tsutsui: JAERI-M-86-116 (1986). "Development of a

Nuclear Spallation Simulation Code and Calculations of Primary Spallation Products",(written in Japanese).

[NI87] T. Nishida, Y. Nakahara and T. Tsutsui: JAERI-M87-088 (1987), "Analysis of the MassFormula Dependence of the Spallation Product Distribution", (written in English).

[NI95] K. Nita, S. Chiba, T. Maruyama, H. Takada, T. Fukahori, Y. Nakahara, A. Iwamoto,Phys. Rev. C52 (1995) 2620.

[OR76] C.J. Orth, H.A. O'Brien, M.E. Schillacy, J. Dropesky, J. Inorg. Nucl. Chem. 38 (1976)13.

[PE89] S. Pearlstein, J. Astrophys. 346 (1989) 1049.[PO59] N. Poffe, M. Riou, J. Teillac, Compt. Rend. 248 (1959) 3552.[PO61] N. Poffe, G. Albouy, M. Gusakow, J.L. Sarrouy, J. Phys. Radium 22 (1961) 639.[PO78] N.T. Porile, B.J. Dropesky, R.A. Williams, Phys. Rev. C 18 (1978) 2231.[RA79] G.M. Raisbeck, J. Leztringez, S. Salaun, A. Vlieks, D. Bourles, F. Yiou, 16th Int.

Cosmic Ray Conf. Kyoto 2 (1979) 207.

27

Page 29: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

[RE82] S. Regnier, B. Lavielle, M. Simonoff, G.N. Simonoff, Phys. Rev. C26 (1982) 931.[RE77] S. Regnier, M. Baklouti, M. Simonoff-Lagarde, Phys. Lett. 68B (1977) 202.[RO74] E. Ross, K. Bachmann, Radiochim. Acta 21 (1974) 13.[RU66] G. Rudstam, Z. Naturf. 21a (1966) 1027[SC58] O.A. Schaeffer, J. Zaehringer, Z. Naturforsch. 13a (1958) 346.[SC59] O.A. Schaeffer, J. Zahringer Phys. Rev. 113 (1959) 674.[SC71] D.N. Schramm, Astrophys. Space Sci. 13 (1971) 249.[SC74] S.D. Schery, A.D.Lind, H.W. Fielding, CD. Zafiratos, Phys. A234 (1974) 109.[SC94] B. Scholten, S.M. Qaim, G. Stocklin, Radiochimica Acta 65 (1994) 81.[SC96] T. Schiekel, U. Herpers, M. Gloris, I. Leya, R. Michel, B. Dittrich-Hannen, H.-A. Synal,

M. Suter, P.W. Kubik, Nucl. Instr. Meth. Phys. Res. B (1996) in press.[SE47] R. Serber, Phys. Rev. 72 (1947) 1114.[SH56] R.A. Sharp, R.M. Diamond, G. Wilkinson, Phys. Rev. 101 (1956) 1493.[SH93] Shvedov.O.V. et al, Preprint ITEP 81-93, Moscow, 1993 (the most recent one).[SI73] R. Silberberg, C.H. Tsao, Astrophys. J. 220 (1973) 315; ibid 335.[SI91] J.M. Sisterson, A.J. T. Jull, D.J. Donahue, A.M. Koehler, R.C. Reedy, P.A.J. Englert,

Meteroritics XXV (1991) 395 - 396 (ABSTRACTS).[SI92] J.M. Sisterson, A.M. Koehler, A.J.T. Jull, D.J. Donahue, L. McHargue, R.C. Reedy,

LPSC XXVI (1992) 1309-1310 (ABSTRACTS).[SI94] J.M. Sisterson, A.J. T. Jull, A. Beverding, A.M. Koehler, C. Castanda, J. Vincent, D.J.

Donahue, P.A.J. Englert, C. Gans, J. Young, R.C. Reedy, Nucl. Instr. Meth. Phys. Res.B92 (1992) 510.

[SO96] N. Sobolevsky, Conclusions of International code comparison for intermediate energynuclear data, Thick target benchmark for Lead and Tungsten (NEA/NSC/DOC(95)-2),NEA/NSC/DOC(96)-15.

[ST90] N. Stepanov Ph.D. thesis, ITEP, Moscow, 1990[SU90] K. Summerer, W. Bruchle, D.J. Morrissey, M. Schadel, B. Szwerxyn, Y. Weifan, Phys.

Rev.C 42(1990)2546.[SU91] K. Summerer, W. Bruchle, D.J. Morissey, M. Schadel, B. Szweryn, Yang Weifang,

Phys. Rev. C42 (1991) 2546.[TA61] M.A. Tamers, G. Delibrias, Compt. Rend. Acad. Sci. 253 (1961) 1202.[TA82] T. Tamura, T. Udegawa, H. Lenske, Phys. Rev. C26 (1982) 379.[TI63] R.S. Tilbury, L. Yaffe, Can. J. Chem. 41 (1963) 2634.[TO71] J. Tobailem, C.H. de Lassus St. Genies, CEA-N-1466, Parts 1 - 8, (1971 and following

years).[TO83] V.D.Toneev, K.K.Gudima, Nucl. Phys. A400 (1983) 173c.[VA63] L. Valentin, G. Albouy, J.P. Cohen, M. Gusakow, Phys. Lett. 7 (1963) 163.[WA76] J.R. Walton, D. Heymann, A. Yaniv, D. Edgerley, M.W. Rowe , J. Geophys. Res. 81

(1976)5689.[WE40] V. Weisskopf, D. H. Ewing, Phys. Rev. 57 (1940) 472.[WA85] A.H. Wapstra, G. Audi, Nucl. Phys. A383 (1985) 1.[WE75] H. Weigel, R. Michel, U. Herpers, W. Herr, Radiochim. Radioanal. Let. 21 (1975) 293.[WE91] W.R. Webber, J.C. Kish, D.A. Schrier, Phys. Rev. C41 (1991) 530, 533, 547, 566.[WI70] F. C. Williams Jr., Phys. Lett. 3IB (1970) 184.[WI71] F. C.Williams Jr., Nucl. Phys. A166 (1971) 231.[YA81] Y. Yariv, Z. Fraenkel, Phys. Rev. C24 (1981)488.[YU60] H.P. Yule, A. Turkevich, Phys. Rev. 118(1960) 1591.[ZI82] Sun Ziyang, Wang Shunuan, Zhang Jingshang, Zhuo Yizhong, Z. Phys. A305 (1982) 61.

28

Page 30: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Appendix I

Tables 1 - 9

Table 1 Survey on participation in the Intercomparison by names, models, codes, calculational options andelement and energy coverage

Table 2 List of Participants

Table 3 Survey on experimental cross sections used for the intercomparison. KR77 omited generally for Au.All cross sections are cummulative if not otherwise noted as type ,,i" for i or ,,d" for d. An entry ,,p.c."indicates that the different references are partially contradictory.

Table 4: Listing of radioactive progenitors considered and of nuclear decay data used in the calculation ofcummulative cross sections

Table 5 Coverage of target/product combinations by the different contributions.

Table 6 Average deviation factors of calculated from experimental data for energies between 1. and 50. MeV.For each reaction three entries are given: <F>, Fmin and Fmax.

Table 7 Average deviation factors of calculated from experimental data for energies between 51. and 200.MeV

Table 8 Average deviation factors of calculated from experimental data for energies between 201. and 5000.MeV.

Table 9 Mean deviation factors for each contribution averaged over all reactions

29

Page 31: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 1 Survey on participation in the Intercomparison by names, models, codes, calculational options and element and energy coverage

plot code

BE1I

BL11BL12BL13

BL21HL23

CM11

CM12

CM13

CS11FLUFO11

FR11

FR12

GUIGL12IS11

KA11KO11LA11MA11MillMI21

SHUSH21SH31SOU

participant

Betak

BlannBlannBlann

BlannBlann

Chadwick &YoungChadwick &YoungChadwick &YoungChibaFlamentFotina

Fraenkel

Fraenkel

GlorisGlorisIshibashi

KazaritskyKoningLangeMashnikMichelMichel

ShubinShubinShubinSobolevsky

physical model employed

PE + EVAPvia MASTER EQ.

PE + EVAPPE + EVAPPE + EVAP

HMS + EVAPIIMS + liVAP

FKK + EXCITON + HAUSERFESHBACH EVAPFKK + EXCITON + HAUSERFESHBACH EVAPFKK + EXCITON + HAUSERFESHBACH EVAPQMD + SDM1NC+ EVAPINC + MSM

INC + EVAP

INC + EVAP

PE + EVAP (GDH)PE + EVAP (GDH)INC + PE + EVAP +FRAGMENTATIONINC + EVAPFKK + EVAPINC + SMM + EVAPINC + PE + EVAPINC + EVAPTSAO & SILBERBERGSYSTEMATICSPE + EVAPINC + EVAPINC + EVAPINC + PE + SMM + EVAP +

code used

PEQAG2 (extended)

ALICE 92ALICE 92ALICE 92

I1MS-AL1CEMMS-AI.ICI;

FKK-GNASH

FKK-GNASH

FKK-GNASH

QMDRHLP+SDMRELPHET/BRUYEREPACE + MSM

ISABEL-EVA

ISABEL-EVA

ARELARELHETC-FRG

INUCLMINGUSISABEL/SMMCEM 95HET-KFA2SPALL (modified)A'IELD

ALICE -IPPECASCADEDISCAMSDM

options used

Fermi gas level densitiesChadwick level densitiesKataria-Ramamurty leveldensitiesFermi gas level densitiesKataria-Ramamurty leveldensitiesno evaporation of Be-7

no evap. of H-3, He-3 and Be-7

local thomas fermi densityapproximation for momentauniform thomas fermi densityapproximation for momentaMyers-Swiatecki (MS) massesexp. + MS masses + shell corr.

reaction crosssection given

no

yesyesyes

yesyes

yes

yes

yes

noyes

yes

yes

yesyesno

yesyesyesyesyesno

yesyesyesyes

target elements

0 Al Fe Co Zr Au-

XX-

--

-

-

X

X-

-

-

X-X

--XXXX

---X

X--

--

X

*

~

XXX

X

X

XXX

X

XXX

- X

XXXX

X

X--

--

X

~

XXX

X

X

XXX

XXXXXX

XXXX

X

X-X

-X

-

~

XXX

X

X

XXX

XXXXXX

XXXX

X

X--

--

-

-

-

XXX

X

X

-XX

XXXXXX

XXXX

X

X--

X-

-

-

-

XXX

1

X

X

-XX

XXXXXX

XXXX

energy range|MeV]

50 - 200 (Fe, Co)26 -200 (Zr,Au)7-2001 -2001 -200

3-29012 -250

10-200

8-200

15-200

50 - 500050 -200100-300 (Al), 800(Fe, Co), 900 (Zr),1000 (Au)100-1000

100-1000

10 -90010 -90010 -5000

4 - 50008 -200200 - 500010 -5000200 - 500010 -5000

3 -10050 -500014 -8001 - 5000

30

Page 32: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

TA11YOU

TakadaYouinou

FERMI BREAKUPINC + PE + EVAPINC + EVAP

HETC-3STEPMECC7 + EVAP F

yesyes

XX

XX

XX

XX

XX

XX

15 -5000100-3000

31

Page 33: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 2: List of Participants

Participants: coordinates, types of contributions and plot codes

Emil BetakInstitute of Physics, Slovak Academy of Science, Dubravska Cesta 9, 84228 Bratislava, Slovakiaphone: +421-7-3782715, Fax: +421-7-376085, email: [email protected] used: PEQAQ2 plot code: BE11

Marshall BlannL-289, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550, USAphone: +1-510-422-4515, FAX: +1-510-422-9523, email : [email protected] used: ALICE 92, HMS-ALICE plot code: BL11, BL12, BL13, BL21, BL23Mark B. ChadwickL-412, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550, USAphone: +1-510-422-5879, FAX: +1-510-422-9523, email : [email protected] G. YoungT-2 MS-B243, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USAphone:+1-505-667-7670 FAX:+1-505-667-9671 email: [email protected] Alamos National Laboratorycodes used: FKK/GNASH plot code: CM 11, CM 12, CM 13

Satoshi ChibaNuclear Data Center, Japan Atomic Energy Research Institute, Tokai, Naka, Ibaraki 319-11, Japanphone: +81-29-282-5483 FAX: +81-29-282-6122 email: [email protected] used: QMDRELP + SDMRELP plot code: CS11

Jean-Luc FlamentCEA, Centre d'Etudes de Bruyeres-le-Chatel, Service de Physique et Techniques Nucleaires,B.P. 12, F-91680 Bruyeres-le-Chatel, Francephone: +33-1-6926-5414, FAX: +33-1-6926-6094, email: [email protected] used: HET/BRUYERE plot code: FL11Olga FotinaInstitute of Nuclear Physics, Moscow State University, Moscow 119899, Russiaphone: 095-939-5092, FAX: 095-939-0896, email: [email protected] / [email protected] used: PACE + MSM plot code: FO11Zeev FraenkelParticle Physics Department, Weizmann Institute of Science, Rehovot 76100, Israelphone: +972-8-342565, FAX: +972-8-344106, email: [email protected] used: ISABEL-EVA plot code: FR11, FR12Martin GlorisCenter for Radiation Protection and Radioecology, University Hannover, Am Kleinen Felde 30,D30167 Hannover, Germanyphone: +49-511-762-3327, FAX: +49-511-762-3319, email: [email protected] used: AREL plot code: GL11,GL12Kenji Ishibashi, Nobuhiro ShigyoDepartment of Nuclear Enegeneering, Kyushu University, Japanphone: FAX: email:[email protected]; [email protected] used: HETC-FRG plot code: IS11Vladimir D. KazaritzkyInstitute for Theoretical and Experimental Physics (ITEP), 25 B.Cheremushkinskaya, Moscow 117259,Russiaphone: +7-095-1259252, FAX: +7-095-1270823, email: [email protected] used: INUCL plot code: KA11

32

Page 34: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 2 (continued): List of Participants

Participants: coordinates, types of contributions and plot codes

Arjan KoningNetherlands Energy Research Foundation ECN, Nuclear Analysis Department, P.O. Box 1,NL-1755 ZG Petten, The Netherlandsphone:+31-22456-4051, FAX:+31-22456-3490, email : [email protected] used: MINGUS plot code: KOI 1

Hans-Jiirgen LangeCenter for Radiation Protection and Radioecology, University Hannover, Am Kleinen Felde 30,D30167 Hannover, Germanyphone: +49-511-762-3311, FAX: +49-511-762-3319, email: [email protected] used: ISABEL+SMM plot code: LA 11Stepan G. MashnikBogoliubov Lab. of Theoretical Physics, Joint Institute for Nuclear Research, 141980, Dubna, MoscowRegion, Russiaphone: +7-096-21-63339, FAX: +7-096-21-65084, email: [email protected]

[email protected] used: CEM95 plot code: MA 11Rolf Michel

Center for Radiation Protection and Radioecology, University Hannover, Am Kleinen Felde 30,D30167 Hannover, Germanyphone: +49-511-762-3312, FAX: +49-511-762-3319, email: [email protected] used: HET-KFA2, SPALL (modified)/YIELD plot code: MI11.MI21Yuri N. ShubinTheory Division, Institute of Power Engineering, 249020 Bondarenko Sq. 1, Obninsk, Kaluga Region,Russiaphone: +7-084-39-98611, FAX: +7-095-23 02326, email: [email protected] used: ALIC-IPPE, CASCADE, DISCA plot code: SH11, SH21, SH31

Nikolai M. Sobolevsky, A.S. Botvina, A.V. Dementyev, O.N. SmirnovaInstitute for Nuclear Research of Russian Academy of Science, 60-th October Anniversary prosp. 7a,117312 Moscow, Russiaphone: +7-095-334-0714, FAX: +7-095-135-2268, email: [email protected]. ToneevJoint Institute for Nuclear Research, Dubna, Head Post Office - P.O. Box 79, Moscow, Russiaphone:+7-096-21-62118, FAX: email: [email protected] used: MSDM plot code: SOI 1

Hiroshi TakadaApplied Radiation Laboratory, Department of Reactor Engineering, Japan Atomic EnergyResearch Institute, 2-4 Shirakata, Tokai-mura, Naka-Gun, Ibaraki-ken 319-11, Japanphone: +81-29-282-5336, FAX: +81-29-282-5663, email: [email protected] used: HETC-3STEP plot code: TA11Gilles Youinou*, F. Atchison, H.U. WengerPaul Scherrer Instirut, CH-5303 Wuerenlingen, Switzerlandphone: FAX: email: [email protected]* on attachment from CEA, CEN Cadarache, F-13108 St-Paul-Lez-Durance, France

codes used: MECC7 + EVAPF plot code: YO11

33

Page 35: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 3: Sources of experimental cross sections used for the intercomparison. KR77 omited generallyfor Au. All cross sections are cummulative if not otherwise noted as type "I" for i or "d" for direct.

reactionO-0(p,5pxn)BE-7O-0(p,5pxn)BE-10O-0(p,3p3n)C-llO-0(p,3pxn)C-14AL-27(p,13pxn)H-3AL-27(p,12pxn)HE-3

AL-27(p,12pxn)HE-4

AL-27(p,10plln)BE-7AL-27(p,10p8n)BE-10AL-27(p,Spxn)F-18AL-27(p,4pxn)NE-20

AL-27(p,4pxn)NE-21 1

AL-27(p,4pxn)NE-22

AL-27(p,3p3n)NA-22AL-27(p,3pn)NA-24AL-27(p,pn )AL-26FE-0(p,26pxn)H-3

FE-0(p,25pxn)HE-3

FE-0(p,25pxn)HE-4

FE-0(p,23pxn)BE-7FE-0(p,23pxn)BE-10FE-0(p,17pxn)NE-21

FE-0(p,17pxn)NE-22FE-0(p,16pxn)NA-22FE-0(p,16pxn)NA-24

FE-0(p,15pxn)MG-28FE-0(p,14pxn)AL-26FE-O(p,10pxn)CL-36

FE-0(p,9pxn)AR-36FE-0(p,9pxn)AR-38

FE-0(p,8pxn)K-42FE-0(p,8pxn)K-43FE-0(p,6pxn)SC-46FE-0(p,4pxn)V-48FE-0(p,3pxn)CR-51FE-0(p,2pxn)MN-52FE-0(p,2pxn)MN-54FE-0(p,pxn)FE-55FE-0(p,xn )CO-55FE-0(p,xn )CO-56FE-0(p,xn )CO-57FE-0(p,xn )CO-58CO-59(p,p3n)CO-S6CO-59(p,p2n)CO-57CO-59(p,pn )CO-58CO-59(p,4n )NI-56CO-59(p,3n )NI-57ZR-0(p,37pxn)BE-7ZR-0(p,30pxn)NA-22ZR-0(p,20pxn)SC-46

type1

I

I

i

l

l

l

l

d

I

i

I

I

i

d

I

i

d

I

I

i

i

i

i

I

I

i

I

i

I

referencesMI96MI96AL63 VA63TA61 SI91 SI92SI94CU56 GO60 GO64BI62 ME67 ME70 GO64GR88 MI89B MBSWA76BI62 GO64 GR88MI89B MI95 WA76MI96MI96LA88BI62 BA84 GO64 MI89BMI95 WA76BI62 BA84 GO64 MI89BMI95 WA76B162 BA84 GO64 MI89BMI95 WA76MI96MI96MI96BR62A CU56 CU59 F15SFI57 GO58 GO61 GO64B162GO61 GO64ME67MI95 MI96 SC58BI62GO61GO64GR88MI95 MI96 SC58MI96MI96BA84BI62GO61 GO64MI95 MI96 SC59BA84 BI62 GO61 GO64MI96AS91 CL71B KO67KO70LA63 MI95 OR76LA63 MI95 OR76MI96BA75 CH72 DE79HO60 LA64 MI96RE84 SC59 SC96BI62 GO61,GO64BI62 GO61 GO64M196 SC59MI96MI96MI96MI96MI96MI96M196LA63 RA79MI96MI96MI96M196MI96MI96MI96CH69 MI96 SH56M196MI96KO67 MI96MI96

reactionZR-0(p,18pxn)V^t8ZR-O(p,17pxn)CR-51ZR-0(p,16pxn)MN-52ZR-0(p,16pxn)MN-54ZR-0(p,15pxn)FE-59ZR-0(p,14pxn)CO-56ZR-0(p,14pxn)CO-57ZR-0(p,14pxn)CO-58ZR-0(p,14pxn)CO-60ZR-0(p,13pxn)NI-57ZR-0(p,llpxn)ZN-65ZR-0(p,I0pxn)GA-67 .ZR-0(p,9pxn)GE-69ZR-0(p,8pxn)AS-71ZR-0(p,8pxn)AS-74ZR-0(p,7pxn)SE-75ZR-0(p,6pxn)BR-77ZR-0(p,5pxn)KR-78ZR-0(p,5pxn)KR-79ZR-0(p,5pxn)KR-80ZR-O(p,5pxn)KR-81ZR-0(p,5pxn)KR-82ZR-0(p,5pxn)KR-837R-(1Oi SnxnWR-84

ZR-0(p,5pxn)KR-85

ZR-0(p,5pxn)KR-86ZR-0(p,4pxn)RB-83

ZR-0(p,4pxn)RB-84ZR-0(p,4pxn)RB-86ZR-O(p,3pxn)SR-83ZR-0(p,3pxn)SR-85

ZR-0(p,2pxn)Y-86ZR-0(p,2pxn)Y-87ZR-0(p,2pxn)Y-88ZR-0(p,pxn)ZR-86ZR-0(p,pxn)ZR-88ZR-0(p,pxn)ZR-89ZR-0(p,pxn)ZR-95ZR-0(p,xn )NB-90

ZR-0(p,xn )NB-95ZR-0(p,n )NB-96AU-197(p,76pxn)BE-7

AU-197(p,69pxn)NA-22Al)-197(p,69pxn)NA-24

AU-197(p,59p93n)SC-46AU-197(p,57p93n)V-48AU-197(p,55p89n)MN-54AU-197(p,54p85n)FE-59AU-197(p,53p89n)CO-56AU-197(p,53p87n)CO-58AU-197(p,53p85n)CO-60AU-197(p,50p83n)ZN-65AU-197(p,47p77n)AS-74AU-197(p,46p77n)SE-75AU-197(p,43p72n)RB-83AU-197(p,43p71n)RB-84AU-197(p,43p69n)RB-86AU-197(p,42p71n)SR-85Al)-197(p,41p70n)Y-87AU-197(p,41p69n)Y-88AU-197(p,40p70n)ZR-88

type

I

i

i

i

I

i

I

i

i

i

I

i

i

l

i

i

t

referencesMI96MI96MI96MI96MI96MI96MI96MI96MI96MI96MI96MI96MI96MI96MI96MI96MI96RE82MI96RE82RE82RE82RE82RE82RE82

RE82MI96

MI96MI96MI96MI96

MI96MI96MI96MI96MI96MI96MI96MI96MI96MI96BA58 LA66 MI96SC94KA67 KO67 MI96CA58 CR63 KA80KO67 LAS9 MI96 PO78KA80 MI96 RO74MI96MI96MI96MI96MI96M196M196MI96MI96MI96MI96MI96MI96M196MI96MI96

34

Page 36: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

reactionAU-197(p,40p69n)ZR-89AU-197(p,40p63n)ZR-95AU-197(p,39p64n)NB-95AU-197(p,37p65n)TC-96AU-t97(p,36p59n)RU-103AU-197(p,35p61n)RH-102AU-197(p,33p60n)AG-105AU-197(p,30p55n)SN-113AU-197(p,28p49n)TE-121AU-197(p,26p45n)XE-127AU-197(p,24p43n)BA-131AU-197(p,24p41n)BA-133AU-197(p,22p37n)CE-139AU-197(p,17p36n)EU-145AU-197(p,17p34n)EU-147AU-197(p,17p33n)EU-148AU-197(p,17p32n)EU-149AU-197(p,16p36n)GD-146AU-197(p,16p35n)GD-]47AU-197(p,16p33n)GD-149AU-197(p,16p31n)GD-151AU-197(p,16p29n)GD-153AU-197(p,15p34n)TB-149AU-197(p,15p32n)TB-151AU-197(p,15p30n)TB-153AU-197(p,15p28n)TB-155AU-197(p,I lp22n)TM-165AU-197(p,llp20n)TM-167AU-197(p,llpl9n)TM-168AU-197(p, 10p22n)YB-166AU-197(p,10pl9n)YB-169AU-197(p,9p20n)LU-169AU-197(p,9pl9n)LU-170

AU-197(p,9pl8n)LU-171AU-197(p,9pl7n)LU-172AU-197(p,9pl6n)LU-173AU-197(p,8pl8n)HF-172AU-197(p,8pI7n)HF-173AU-197(p,8pl5n)HF-175AU-I97(p,5pl2n)RE-18IAU-197(p,5plln)RE-182AU-197(p,5pl0n)RE-183AU-197(p,4pl2n)OS-182AU-197(p,4p9n)OS-185AU-197(p,4p3n)OS-191AU-197(p,3pl0n)IR-185AU-197(p,3p9n)IR-186AU-197(p,3p8n)[R-187AU-197(p,3p7n)IR-188

AU-197(p,3p6n)IR-189AU-197(p,3p5n)lR-190

AU-197(p,3p3n)lR-192AU-197(p,2p8n)Pt-188AU-197(p,2p7n)Pt-189AU-197(p,2p5n)Pt-191AU-197(p,p4n)AU-193

AU-197(p,p3n)AU-194

AU-197(p,p2n)AU-195AU-197(p,pn )AU-196

AU-197(p,5n )HG-193

type

l

i

i

I

i

i

l

i

I

l

i

i

referencesMI96MI96MI96MI96MI96MI96KA80 M196 RO74AS85 MI96AS85 KA80 MI96KA80 MI96KA80 MI96MI96MI96KA80 MI96 SU90MI96MI96 SU90MI96MI96MI96MI96MI96MI96BA70 FR65MI96MI96MI96MI96MI96AS85 MI96MI96MI96MI96AS85 KA80 MI96SU90M196AS85 SU90MI96MI96AS85 MI96 SU90MI96AS85 KA80 M196 SU90AS85 M196 SU90MI96KA80 MI96MI96AS85 MI96 SU90M196 SU90MI96AS85 MI96 SU90AS85 KA80 MI96SU90MI96AS85 KA80 MI96SU90MI96MI96M196M196AS85 KA80 MI96SU90AS85 KA61 KA80MI96 SU90MI96AS85GU61 KA61KA80 MI96 SU90 YU60

P061

reactionAU-197(p,4n)HG-194AU-197(p,3n)HG-195

AU-197(p,n)HG-197

typel

l

I

referencesPO59 MI96GU60 TI63GR63 GR73 HA62SC74 TI63

35

Page 37: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 4: Radioactive progenitors considered in the calculation of cummulative cross sections and nuclear decay data used for these calculations.

nuclide

HE-3C-14

F-18

NE-20

NE-21

NE-22

NA-22

NA-24MG-28

AR-36

AR-38

V-48CR-51

MN-53

FE-55

half-life

[h]1.000E+10

5.019E+07

1.830E+00

1.000E+10

1.000E+10

1.0pOE+10

2.278e+04

1.503e+012.090E+011.000E+20

1.000E+10

3.833e+026.648E+02

3.241E+10

2.365E+04

pro-genitor

H-3

B-14

BE-14

NE-18

NA-20

MG-20

F-20

O-20

N-20

C-20

NA-21

MG-21

F-21

0-21

N-21F-22

0-22N-22

NA-22

MG-22MG-22

NE-24NA-28K-36

CA-36

CL-36K-38

CA-38CL-38

S-38P-38SI-38

CR-48MN-51

FE-51

FE-53

CO-53

CO-55

NI-55

hall-life

[h]1.080E+05

• 4.472E-06

l.OOOE+004.667E-04

1.239E-04

2.778E-053.056E-03

3.750E-03l.OOOE+00

l.OOOE+00

6.244E-033.389E-05

1.156E-039.444E-04

l.OOOE+001.175E-03

l.OOOE+00l.OOOE+002.278e+04

1.072e-031.072e-03

5.633e-028.333E-061 OOOE+00l.OOOE+00

2.628E+091 .OOOH+00

l.OOOE+00

l.OOOE+00

l.OOOE+00l.OOOE+00

l.OOOE+00

2.193e+0l0.770E+00

7.500E-05

l.OOOE+00

l.OOOE+00

1.754E+00

5.250E-05

branchingratio

1.0

1.0

1.0

1.0

1.0

1.01.0

1.01.0

1.0

1.01.0

1.01.0

1.01.0

1.01.01.0

1.01.0

1.01.01.01.0

0.981

1.01.01.0

1.01.01.0

1.01.01.0

1.0

1.0

1.01.0

nuclide

FE-59

CO-56

CO-57

ZN-65

GA-67

GE-69

AS-71

SE-75

BR-77

KR-78

KR-79

KR-80

KR-8I

KR-82

KR-83

half-life

[h]1.068e+03

1.891E+03

6.523E+03

5.858E+03

7.824E+01

3.905E+01

6.480E+01

2.875E+03

5.712E+01

1.000E+10

3.504E+01

1.000E+10

1.800E+09

1.000E+10

1.000E+10

pro-genitor

MN-59

Nl-56

Nl-57

GA-65

GE-65

GE-67

AS-67

AS-69

SE-69

SE-71

BR-71

KR-71

BR-75

KR-75

RB-75

KR-77

RB-77SR-77

RB-78

RB-79SR-79BR-80

RB-80

SR-80Y-80

RB-81

SR-81Y-81

ZR-81BR-82

R13-82

SR-82Y-82

ZR-82

BR-83

SE-83

AS-83

GE-83

GA-83

half-life

[h]

1.278e-03

1.464E+02

3.600E+01

2.533E-01

8.583E-03

3.117E-01

1.181E-02

2.533E-01

7.611E-03

7.900E-02

5.944E-03

2.694E-05

1.620E+007.167E-02

4.778E-03

1.240E+006.167E-02

2.500E-031.000E+00

3.833E-01

3.833E-02

1.000E+00

1.000E+001.000E+00

1.000E+001.000E+00I.000E+00

1.000E+00

1.000E+001.000E+O0

1.000E+00

1.000E+001.000E+00

1.000E+00

1.000E+00

1.000E+00

1.000E+00

1.000E+00

1.000E+00

branchingratio

1.0

1.0

1.0

1.0

1.0

1.01.0

1.0

1.0

1.0

1.0

1.01.0

1.0

1.01.0

1.0

1.0

1.0

1.0

1.00.916

1.01.0

1.01.0

1.01.0

1.01.01.0

1.0

1.0

1.01.0

1.0

1.0

1.0

1.0

36

Page 38: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

nuclide

KR-84

KR-85

KR-86

RB-83

SR-83

SR-85

Y-87

Y-88

ZR-86

ZR-88

ZR-89

ZR-95

RU-103

AG-105

half-life

[h]

l.OOOE+10

9.426E+04

l.OOOE+10

2.069E+03

3.240E+01

1.556E+03

8.040E+01

2.558E+03

1.650E+01

2.002E+03

7.848E+01

1.537E+03

9.420E+02

9.840E+02

pro-genitor

RB-83

SR-83

Y-83

ZR-83BR-84

SE-84

AS-84

GE-84RB-84

BR-85

SE-85

AS-85

BR-86SE-86

AS-86

SR-83

Y-83

ZR-83

Y-83ZR-83

Y-85

ZR-85NB-85

ZR-87

NB-87MO-87

ZR-88

NB-88

MO-88

NB-86

NB-88

MO-88

NB-89

MO-89

Y-95SR-95

RB-95

TC-103

MO-103

NB-103

CD-105

half-life

[h]

1.000E+00

1.000E+00

1.000E+00

1.000E+00

1.000E+00

1.000E+00

1.000E+00

1.000E+00

1.000E+004.783E-02

9.167E-03

5.694E-04

1.000E+00

1.000E+00

1.000E+003.240E+01

1.177E-01

1.167E-021.177E-01

1.167E-02

4.900E+001.583E-01

3.833E-02

1.730E+005.330E-02

4.056E-03

2.002E+031.667E-01

1.366E-01

2.167E-02

1.667E-01

1.366E-01

1.500E+00

3.583E-02

1.716E-01

6.778E-03

1.056E-04

1.505E-02

1.875E-024.166E-04

0.925E+00

branchingratio

1.01.01.01.01.01.01.01.01.0

0.214

0.214

0.214

1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0

nuclide

SN-113

XE-127

BA-131

BA-133

CE-139

EU-145

EU-147

EU-149

half-life

[h]

2.762E+03

8.738E+02

2.832E+02

9.198E+04

3.305E+03

1.426E+02

5.760E+02

2.234E+03

pro-genitor

IN-105

SN-105

SB-113

TE-113

1-113

XE-113

CS-127

BA-127LA-127

CE-127

LA-131

CE-131

PR-131

ND-131

LA-133

CE-133

PR-133

ND-133

PR-139

ND-139

PM-139

SM-139

EU-139

GD-145

TB-145HO-149

DY-149

TB-149ER-153

TM-153

YB-153

GD-147TB-147

DY-147

DY-151

HO-151

ER-151

YB-155

GD-149

TB-149

DY-149

half-life

[h]8.000E-02

8.600E-03

1.112E-01

2.833E-02

1.833E-03

7.778E-04

6.250E+00

2.1I2E-016.333E-02

8.889E-03

0.983E+00

1.667E-012.833E-02

6.667E-03

0.111E+00

4.930E+00

0.823E-01

0.194E-014.410E+00

5.5OOE+OO

6.917E-02

4.283E-02

6.110E-03

3.833E-O1

8.056E-03

5.833E-03

7.667E-02

4.150E+00

1.556E-02

4.444E-04

1.U1E-03

3.810E+01

1.600E+00

1.667E-02

2.783E-01

1.111E-02

6.389E-03

4.583E-04

2.256E+02

4.I50E+00

7.667E-02

branchingratio

1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0

0.158

0.158

0.1580.08374

0.158

0.158

1.01.01.0

0.056

0.21176

0.21176

0.17788

1.00.842

0.842

37

Page 39: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

nuclide

GD-146

GD-147

GD-149

GD-151

GD-153

TB-149

TB-151

TB-153

TM-165

half-life[h]

1.159E+03

3.81OE+01

2.256E+02

2.88OE+O3

5.832E+03

4.150E+00

1.760E+01

5.616E+01

3.006E+01

pro-genitorHO-149ER-153TM-153YB-153TB-146HO-150DY-150TB-147DY-147DY-I5IHO-151ER-151YB-155TB-149DY-149HO-149ER-153TM-153YB-153TB-151DY-151HO-151ER-151YB-155TB-153DY-153HO-153ER-153DY-149HO-149ER-153TM-153YB-153DY-151HO-151ER-151YB-155DY-153HO-153ER-153YB-165

half-life[h]

5.833E-031.S56E-024.444E-041.U1E-036.389E-032.444E-021.167E-011.600E+001.667E-022.783E-011.111E-026.389E-034.583E-044.15OE+OO7.667E-025.833E-031.556E-024.444E-041.111E-031.760E+012.817E-011.111E-026.389E-034.583E-045.616E+016.50OE+OOO.155E+OO1.556E-027.667E-025.833E-O31.556E-024.444E-041.1UE-032.817E-011.U1E-026.389E-034.583E-046.500E+000.156E+001.556E-02

0.165E+00

branchingratio0.842

0.446260.8420.842

1.00.330.331.01.0

0.0560.211760.211760.177880.8420.8420.8420.4460.8420.842

1.00.9440.1560.1560.131

1.01.01.0

0.471.01.0

0.471.01.0

0.9440.1560.1560.131

1.01.0

0.471.0

nuclide

TM-167

YB-166

YB-169

LU-169

LU-170

LU-171

LU-173

HF-172

HF-173

HF-175

RE-181

half-life[h]

2.218E+02

5.664E+01

7.685E+02

3.406E+01

4.800E+01

1.973E+02

1.200E+04

1.638E+04

2.390E+01

1.680E+03

2.000E+01

pro-genitorLU-165HF-165YB-167LU-167HF-167TA-167LU-166HF-166TA-166W-166LU-169HF-169TA-169HF-169TA-169HF-170TA-170W-170RE-170OS-170HF-171TA-171W-171HF-173TA-173W-173

TA-172W-172RE-172OS-172PT-176IR-176HG-180TA-173W-173TA-175W-175R£-175OS-175OS-181IR-181

half-life[h]

0.197E+002.083E-022.917E-018.583E-013.417E-025.000E-024.417E-021.128E-018.889E-034.444E-033.406E+015.417E-028.000E-025.417E-028.000E-021.600E+011.127E-016.667E-022.222E-031.972E-031.210E+013.883E-011.500E-012.390E+013.650E+002.750E-016.133E-011.117E-011.528E-025.278E-031.667E-032.222E-038.333E-043.650E+002.750E-011.050E+015.667E-018.333E-022.333E-020.110e+008.167E-02

branchingratio

.0

.0

.0

.0

.0

.0

.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0

0.401.0

0.141.0.0.0.0.0.0.0.0

38

Page 40: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

nuclide

RE-183

OS-182

OS-185

OS-191IR-185

IR-187

IR-189

PT-188

PT-189

PT-191

AU-195

half-life[h]

1.680E+03

2.160E+01

2.246E+03

3.696E+021.400E+01

1.050E+01

3.168E+02

2.448E+02

1.087E+01

6.960E+01

4.392E+03

pro-genitorPT-181AU-181HG-181OS-183IR-183PT-183AU-183HG-183IR-182PT-182AU-182HG-182IR-185PT-185AU-185HG-185RE-191PT-185AU-185HG-185PT-187AU-187HG-187PT-189AU-189HG-189AU-188HG-188AU-189HG-189AU-191HG-191HG-195

half-life[h]

1.417E-023.194E-031.000E-031.300E+019.167E-010.100E+000.122E-012.444E-030.250E+004.333E-026.139E-033.111E-031.400E+011.182E+007.167E-021.389E-021.633E-011.182E+007.167E-021.389E-022.350E+001.333E-013.667E-021.090E+014.783E-011.267E-011.473E-015.417E-024.783E-011.267E-013.180E+008.167E-014.160E+01

branchingratio1.0

0.9900.733

1.01.01.01.0

0.7681.01.01.0

0.8481.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0

39

Page 41: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 5: Coverage of target/product combinations by the different contributions.

Note that some contributors did their calculations for ^O and 5&Fe instead of assuming natural isotopic composition. In case of oxygen this does not cause any problems. Foriron, however, there are some products which either can only be produced from from the heavier iron isotopes and other near-target products can be significantly producedfrom target nuclides not considered in the calculations. However, because of the low abundances of the neglected iron target isotopes no major discrepancies can be explainedby this neglect. Except for those products which are marked as type ,,i" for independent, all cross sections are cummulative. A ,,d" as reaction type indicates a direct productionwithout a particular long-lived progenitor, e.g ̂ H without ̂ H or ̂ Ne without ^Na.

PLOTCODE

REACTIONO-0(p,8pXn)H-2O-0(p,8pXn)H-3O-0(p,7pXn)HE-3O-0(p,7pXn)HE-4O-0(p,5pXn)BE-7O-0(p,5pXn)BE-10O-0(p,3p3n)C-llO-0(p,3pXn)C-14AL-27(p,13pXn)H-2AL-27(p,13pXn)H-3AL-27(p,12pXn)HE-3AL-27(p,12pXn)HE-4AL-27(p,10plln)BE-7AL-27(p,10p8n)BE-10AL-27(p,5pXn)F-18AL-27(p,4pXn)NE-20AL-27(p,4pXn)NE-21AL-27(p,4pXn)NE-22AL-27(p,3p3n)NA-22AL-27(p,3pn)NA-24AL-27(p,pn)AL-26FE-0(p,26pXn)H-2FE-0(p,26pXn)H-3FE-0(p,25pXn)HE-3FE-0(p,25pXn)HE-4FE-0(p,23pXn)BE-7FE-0(p,23pXn)BE-10FE-0(p,17pXn)NE-20FE-0(p,17pXn)NE-21

RE-ACT-ION

TYPE

d

BE11

BL11

XXXX

XXXXXXX

BL12

XXXX

BL13

BL21

BL23

CM11

XXX

XXX

cM12

X

cM13

XXXX

cs11

XXXX

XXXXXXXXXXXX

XXXXXXX

FL11

XXXXX

XX

XXXXXXX

Fo11

XXXX

XXXXXXX

XX

FR11

XXXXXXX

XX

FR12

XXXXXXX

X

GL11

XXXX

XXXXXXX

GL12

XXXXXXX

Is11

XXXX

XXXXX

XX

XXXXXXX

KA

1

XXXXX

XX

XXXXXXX

Ko11

LA11

XXXX

XXXXX

XXX

XXXXXXX

MA11

XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

M

1

XXXXXXXXXXXXXXXXXXXXX

XX

MI21

XXXX

XXXXXXXXX

XXXX

sH11

XXX

XXXX

sH21

XX

XXX

XXXX

sH31

X

XXX

XXX

XX

so11

XXXX

XX

XX

XXXX

XXXXXXX

TA11

XXXX

XXXXX

XXX

XXXXXXX

Y011

XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

40

Page 42: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

PLOTCODE

REACTIONFE-0(p,17pXn)NE-22FE-0(p,16pXn)NA-22FE-0(p,16pXn)NA-24FE-0(p,15pXn)MG-28FE-0(p,14pXn)AL-26FE-0(p,10pXn)CL-36FE-0(p,9pXn)AR-36FE-0(p,9pXn)AR-38FE-0(p,8pXn)K-42FE-0(p,8pXn)K-43FE-0(p,6pXn)SC-46FE-0(p,6pXn)SC-47FE-0(p,6pXn)S(M8FE-0(p,5pXn)TI-44FE-0(p,4pXn)V-48FE-0(p,3pXn)CR-48FE-0(p,3pXn)CR-51FE-0(p,2pXn)MN-52FE-0(p,2pXn)MN-54FE-0(p,pXn)FE-52FE-O(p,pXn)FE-55FE-0(p,Xn)CO-55FE-0(p,Xn)CO-56FE-0(p,Xn)CO-57FE-0(p,Xn)CO-58CO-59(p,p3n)CO-56CO-59(p,p2n)CO-57CO-59(p,pn)CO-58CO-59(p,4n)NI-56CO-59(p,3n)NI-57ZR-0(p,40pXn)H-2ZR-0(p,40pXn)H-3ZR-0(p,39pXn)HE-3ZR-0(p,39pXn)HE-4ZR-0(p,37pXn)BE-7ZR-0(p,30pXn)NA-22ZR-0(p,30pXn)NA-24ZR-0(p,20pXn)SC-46

RE-ACT-ION

TYPE

d

1

d

i

l

I

I

i

I

l

i

l

I

l

l

l

l

l

1

l

BE11

XXXXXX

XXXXX

B

11

XXXXXXXXXXXXXXXXXXXXXXXX

B

2

B

3

XXXXX

B

21

B

23

XXXXX

cM11

CMI2

XX

X

XXX

XXX

cM13

CS11

XXXXXXXXXXXXX

XXXXXXXXX

XXXXX

FL11

XXXXXXXX

X

XXXXXXXXX

XXXXX

X

X

Fo11

X

XXXXXXXXXXXXXXXXXXX

X

X

FR11

X

XX

XXXXXXXX

X

XXXXXXX

X

FRI2

X

XX

XXXXXXXXXXXXXX

XXX

GL11

XXXXXXXXXXXXXXXXXXXX

GL

2

XXXXXXXXXXXXXXXXXXXX

Is11

XXXXXXXX

X

XXX

XXXXX

XXXXX

XX

X

KA1

XXXXXXXX

X

XXXXXXXXX

XXXXX

X

X

Ko1I

XXXXXXXXXXXXXXXXXXX

XXXXX

LA11

XXXXXXXX

X

X

XXX

X

X

XXXXX

XX

X

MA11

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

M

1

XX

XXXXXX

XXXXXX

XXXXXXXXX

XXXX

MI21

XXXXXXXXXXXXXXXXXXXXXXX

XXXXX

XXXX

sH11

XXXXXXXXX

XXXXX

X

sH21

XXXXXXXX

X

XXXXXXXXX

XXXXX

XX

X

sH31

XXXXXXXX

X

XXXXXXXXX

XXXXX

so11

XXXXXXXX

X

XXXXXXXXX

XXXXX

XX

X

TA11

XXXXXXXX

X

XXXXXXXXX

XXXXX

XX

X

Y011

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

41

Page 43: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

PLOTCODE

REACTIONZR-0(p,20pXn)SC^I7ZR-0(p,18pXn)V-48ZR-0(p,17pXn)CR-51ZR-0(p,16pXn)MN-52ZR-0(p,16pXn)MN-54ZR-0(p,15pXn)FE-59ZR-0(p,14pXn)CO-56ZR-0(p,14pXn)CO-57ZR-0(p,14pXn)CO-58ZR-0(p,14pXn)CO-60ZR-0(p,13pXn)NI-57ZR-0(p,llpXn)ZN-65ZR-0(p,10pXn)GA-67ZR-O(p,9pXn)GE-68ZR-0(p,9pXn)GE-69ZR-0(p,8pXn)AS-71ZR-0(p,8pXn)AS-73ZR-0(p,8pXn)AS-74ZR-0(p,7pXn)SE-72ZR-0(p,7pXn)SE-75ZR-0(p,6pXn)BR-76ZR-0(p,6pXn)BR-77ZR-0(p,5pXn)KR-78ZR-0(p,5pXn)KR-79ZR-0(p,5pXn)KR-80ZR-O(p,5pXn)KR-81ZR-0(p,5pXn)KR-82ZR-0(p,5pXn)KR-83ZR-0(p,5pXn)KR-84ZR-0(p,5pXn)KR-85ZR-0(p,5pXn)KR-86ZR-0(p,4pXn)RB-83ZR-0(p,4pXn)RB-84ZR-0(p,4pXn)RB-86ZR-0(p,3pXn)SR-82ZR-0(p,3pXn)SR-83ZR-0(p,3pXn)SR-85ZR-0(p,2pXn)Y-86

RE-ACT-ION

TYPE

i

i

i

1

i

i

i

i

BE11

BL11

XXXXXXXXXXXXXXXXXXXXXXXX

BL12

BL13

BL21

BL23

CM11

CM12

CM13

CS11

FL11

XX

X

X

XX

XX

XX

X

X

XXXXXXXXXXXXXXXXX

Fo11

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

FR11

X

X

XX

XXXX

XXXXXXXXXXXXXXXXXXX

FR12

X

X

XX

XXXXXXXXXXXXXXXXXXXXXXXX

GL

GL12

X

XXXXXXXXXXXXXX

X

X

s11

XX

X

X

XX

XX

XX

X

X

XXXXXXXXXXXXXXXXX

KA11

XX

X

X

XX

XX

XX

X

X

XXXXXXXXXXXXXXXXX

K011

X

XXXXXXXXXXXXXXXXXXXXXX

LA11

XX

X

X

XX

XX

XX

X

X

XXXXXXXXXXXXXXXXX

MA1I

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

MI11

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXX

M

2

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

sH11

XXXXXXXX

XXXXXXX

sII21

XX

X

X

XX

XX

XX

X

X

XXXXXXXXXXXXXXXXX

sII31

XX

X

X

XX

XX

XX

X

X

XXXXXXXXXXXXXXXXX

so11

XX

X

X

XX

XX

XX

X

X

XXXXXXXXXXXXXXXXX

IA11

XX

X

X

XX

XX

XX

X

X

XXXXXXXXXXXXXXXXX

Yo1I

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

42

Page 44: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

PLOTCODE

REACTIONZR-0(p,2pXn)Y-87ZR-0(p,2pXn)Y-88ZR-0(p,pXn)ZR-86ZR-0(p,pXn)ZR-88ZR-0(p,pXn)ZR-89ZR-O(p,pXn)ZR-95ZR-0(p,Xn)NB-90ZR-0(p,Xn)NB-95ZR-0(p,n)NB-96AU-197(p,79pXXn)H-2AU-197(p,79pXXn)H-3AU-197(p,78pXXn)HE-3AU-197(p,78pXXn)HE-4AU-197(p,76pXXn)BE-7ALf-197(p,69pXXn)NA-22AU-197(p,69pXXn)NA-24AU-I97(p,59p93n)SC-46AU-197(p,55p89n)MN-54ALM97(p,54p85n)FE-59AU-197(p,53p87n)CO-58AU-197(p,53p85n)CO-60AU-197(p,50p83n)ZN-65AU-197(p,47p77n)AS-74AU-197(p,46p77n)SE-75AU-197(p,45p71n)BR-82AU-197(p,43p72n)RB-83AU-197(p,43p71n)RB-84AU-197(p;43p69n)RB-86AU-197(p,42p7!n)SR-85AU-197(p,41p70n)Y-87AU-197(p,41p69n)Y-88AU-197(p,40p70n)ZR-88AU-I97(p,40p69n)ZR-89AU-197(p,40p63n)ZR-95AU-197(p,39p64n)NB-95AU-197(p,37p65n)TC-96AU-197(p,36p59n)RU-103AU-197(p,35p61n)RH-102

RE-ACT-ION

TYPE

i

ii

i

ii

i

i

l

i

ii

i

i

i

i

i

i

i

i

i

BE1

X

XXX

B

1J

XXXXXXXXX

B

12

B

13

B

21

B

23

CM

1

CM12

CM13

CS11

XXXXXXXXXXX

XXXXXXX

XXX

FLI1

XXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXXXX

Fo11

XXXXX

X

FR11

XXXXX

X

X

X

X

XX

XX

X

FR12

XXXXX

X

X

X

XX

XX

X

GL11

GL12

XXXXXXXX

I

s1

XXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXXXX

KA1

XXXXXXXXX

XXXXXXXXXX

XXXXXXXXXXXXX

Ko1

XXXXXXXXX

LAI1

XXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXXXX

MA11

XXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXX

MI11

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

MI21

XXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXX

sH1J

XXXXX

XX

X

sH21

XXXXX

X

XXXXXXXXX

XXXXXXXXXXXXX

sH31

XXXXX

X

so11

XXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXXXX

TA11

XXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXXXX

Yo11

XXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXX

43

Page 45: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

PLOTCODE

REACTIONAU-197(p,33p60n)AG-105AU-197(p,30p55n)SN-113AU-197(p,28p49n)TE-121AU-197(p,26p45n)XE-127AU-197(p,24p43n)B A-131AU-197(p,24p41n)BA-133AU-197(p,22p37n)CE-139AU-197(p,19p36n)PM-143AU-197(p,17p36n)EU-145AU-197(p,17p34n)EU-147AU-197(p,17p33n)EU-148AU-197(p,17p32n)EU-149AU-197(p, 16p36n)GD-146AU-197(p,16p35n)GD-147AU-197(p,16p33n)GD-149AU-197(p,16p31n)GD-151AU-197(p,16p29n)GD-153AU-197(p, 15p34n)TB-149AU-197(p,15p32n)TB-I51AU-197(p,15p30n)TB-153AU-197(p,15p28n)TB-155AU-197(p, 12p26n)ER-160AU-197(p,llp22n)TM-165AU-197(p,l lp20n)TM-167AU-197(p,llpl9n)TM-168AU-197(p,10p22n)YB-166AU-197(p, I Op 19n)YB-169AU-197(p,9p20n)LU-169AU-197(p,9pl9n)LU-170AU-197(p,9pl8n)LU-171AU-197(p,9pl6n)LU-173AU-197(p,8pl8n)HF-172AU-197(p,8pl7n)HF-173AU-I97(p,8pl5n)HF-175AU-197(p,7p9n)TA-182AU-197(p,6pl4n)W-178AU-197(p,5pl2n)RE-181AU-197(p,5plln)RE-182

RE-ACT-ION

TYPE

i

i

BE11

BL11

XXXX

XXX

BL12

BL13

BL21

BL23

CM

1

CM12

CM13

CS11

XXXXX

X

XXXXX

XXXXX

XXXXXXXXXXXX

FL11

XXXXX

X

XXXXXXXXXXXX

XXXXXXXXXXXX

XX

Fo11

XX

XXXXXXXXX

XX

FR

1

XX

XX

X

XX

XXXXXXXXXXXXXXXXXXXX

VR12

XXXXX

XX

XX

XXXXXXXXXXXXXXXXXXX

GL1

GL12

XXX

X

s

XXXXX

X

XXXXXXXXXXXXX

XXXXXXXXXXXX

X

KA11

XXXXX

X

XXXXXXXXXXXX

XX

XXXXXXXXX

XX

Ko11

X

LA

1

XXXXX

X

XXXXXXXXXXXX

XXXXXXXXXXXX

XX

MA1I

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

MI11

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXX

M12

XXXXXXXXXXXXXXXXX

XXXXXXXXX

XXXXXXXX

sH11

sH21

XXXXX

X

XXXXXXXXXXXX

XXXXXXXXXXXX

XX

sII31

X

XX

XXXXXXXXX

XX

XXXXXXXXX

XX

so11

XXXXX

X

XXXXXXXXXXXX

XX

XXXXXXXXX

XX

IA11

XXXXX

X

XXXXXXXXXXXX

XXXXXXXXXXXX

XX

Yo1I

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

44

Page 46: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

>, o - -

[•• ^ •«« ^M

«3 B «•> —

VI X M —

03 B - -

s - « -2 • • ^* ••*

s < - -

J < - -

a o - -

_ ( / > — —

O «J — M

O J - -

to. as — «

to, OS — —

to- O - -

to. J - -

<J w — —

U £ - ">

u S - N

U S - -

sa - J <s —

as - - m

aa — — (M

aa — — —

oa u — —

RE

-A

CT

-IO

NT

YP

E

PLO

TC

OD

E

RE

AC

TIO

N

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

|AU

-197

(p,5

plO

n)R

E-1

83

|x

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

| A

U-1

97(p

,4pl

2n)O

S-18

2

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

|AU

-197

(p,4

p9n)

OS-

185

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

|AU

-197

(p,4

p3n)

OS-

191

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

|AU

-197

(p,3

plO

n)IR

-185

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

|AU

-197

(p,3

p9n)

IR-1

86

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

|AU

-197

(p,3

p8n)

IR-1

87

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

-

00oo

c

o.

o.

a*

<

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

-

|AU

-197

(p,3

p6n)

IR-1

89

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

-

| AU

-197

(p,3

p5n)

IR-1

90

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

-

| A

U-1

97(p

,3p3

n)IR

-192

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

|AU

-197

(p,2

p8n)

PT-1

88

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

|AU

-197

(p,2

p7n)

PT-1

89

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

|AU

-197

(p,2

p5n)

PT-1

91

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

2<1o.

o

3<

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

-

| A

U-1

97(p

,p3n

)AU

-194

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

| A

U-1

97(p

,p2n

)AU

-195

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

| A

U-1

97(p

,pn)

AU

-196

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

| A

U-1

97(p

,5n)

HG

-193

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

| A

U-1

97(p

,4n)

HG

-194

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

251?r*\a.

til

•<

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

| A

U-1

97(p

,n)H

G-1

97

Page 47: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 6, part I: Average deviation factors of calculated from experimental data for energies between 1.0 and 50.0 MeV. For each reaction three entries are given: <F>, Fm j n and F m a x .

contributionreactionO-0(P,5PXN)BE-7

O-0(P,5PXN)BE-10

O-0(P,3P3N)C-ll

O-0(P,3PXN)C-14

AL-27(P,13PXN)H-3

AL-27(P,12PXN)HE-3

AL-27(P,12PXN)HE-4

AL-27(P,5PXN)F-18

AL-27(P,4PXN)NE-20

AL-27(P,4PXN)NE-21

AL-27(P,4PXN)NE-22

AL-27(P,3P3N)NA-22

AL-27(P,3PN)NA-24

BE11 BL11

0.15E+020.54E+010.52E+020.21E+010.58E+000.48E+010.73E+010.13E+010.12E+020.11E+020.13E-020.21E+010.19E+010.58E+000.27E+020.18E+020.12E+01

BL12

0.64E+020.25E+020.21E+030.88E+010.88E+010.88E+010.65E+01O.55E+OO0.37E+020.38E+010.15E+000.31E+01

BL13 BL21 BL23 CM11

0.36E+010.28E+000.28E+000.23E+010.22E+000.15E+020.16E+010.39E+000.10E+01

O.53E+O10.11E+000.13E+040.22E+020.40E+00

CM12 CM13

0.19E+020.15E+010.89E+02

0.38E+010.13E+000.11E+010.18E+010.39E+000.23E+01

CS11

0.24E+010.42E+000.42E+00

FLU FO11 FRU FR12 GUI

0.14E+020.21E+010.25E+030.19E+010.54E+000.54E+000.44E+010.15E+000.36E+000.30E+010.26E+000.43E+01

0.34E+010.11E+010.81E+010.10E+020.22E+010.10E+030.37E+010.16E+010.82E+010.21E+020.37E-030.56E+000.23 E+010.26E+000.17E+020.61E+010.24E+00

46

Page 48: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 6, part I: Average deviation factors of calculated from experimental data for energies between 1.0 and 50.0 MeV. For each reaction three entries are given: <F>, Fm j n and F m a x .

contributionreaction

AL-27(P,PN)AL-26

FE-0(P,26PXN)H-3

FE-0(P,4PXN)V-48

FE-0(P,3PXN)CR-48

FE-0(P,3PXN)CR-51

FE-0(P,2PXN)MN-52

FE-0(P,2PXN)MN-54

FE-0(P,PXN)FE-52

FE-0(P,XN)CO-55

FE-0(P,XN)CO-56

FE-0(P,XN)CO-57

FE-0(P,XN)CO-58

CO-59(P,P3N)CO-56

BE11 BUI

0.33E+030.14E+010.58E+000.12E+01

0.21E+020.43E+0!0.I2E+O30.95 E+010.95E+010.95E+010.27E+010.46E+000.17E+020.17E+010.39E+000.55E+010.30E+010.48E+000.30E+020.22E+010.37E+0O0.63E+000.23E+0I0.31E+000.62E+000.17E+010.21E+000.97E+000.16E+010.62E-010.15E+0I0.14E+010.46E+00O.I3E+010.26E+01

BL12 BL13

0.23E+01

BL21 BL23

0.49E+01

CM11

0.85E+030.18E+01O.67E+OO0.52E+01

CM12

0.95E+010.12E+000.58E+02

0.56E+010.24E+000.52E+030.30E+010.85E-020.33E+020.25E+010.39E-010.44E+01

0.15E+010.71E+000.21 E+010.16E+010.44E+000.38E+01

CM13 CSU

0.27E+OI0.27E+010.27E+01

FLU

0.1SE+020.15E+020.1SE+02

FOU FR11 FR12 GUI

0.17E+030.15E+010.53E+000.86E+00

[O33E+010.12E+000.12E+010.19E+010.19E+010.19E+010.25E+010.73E-010.84E+010.27E+010.20E-010.94E+000.38E+010.26E-01O.17E+010.12E+010.94E+000.16E+010.24E+010.91E+000.53E+020.15E+01O.57E+000.23E+010.I5E+010.47E+000.12E+010.19E+010.29E+000.12E+010.63E+01

47

Page 49: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 6, part I: Average deviation factors of calculated from experimental data for energies between 1.0 and 50.0 MeV. For each reaction three entries are given: <F>, Fm j n and F m a x .

contributionreaction

CO-59(P,P2N)CO-57

CO-59(P,PN)CO-58

CO-59(P,4N)NI-56

CO-59(P,3N)NI-57

ZR-0(P,4PXN)RB-84

ZR-0(P,3PXN)SR-85

ZR-0(P,2PXN)Y-86

ZR-0(P,2PXN)Y-87

ZR-0(P,2PXN)Y-88

ZR-0(P,PXN)ZR-88

ZR-0(P,PXN)ZR-89

ZR-0(P,PXN)ZR-95

BEU

0.48E+010.21E+000.21E+00

BL11

0.I4E+000.33E+010.18E+010.53E+000.11E+020.36E+010.98E+000.13E+030.78E+010.28E-010.13E+010.65E+010.81E-010.26E+010.16E+020.16E+020.16E+020.44E+010.20E+010.18E+020.56E+010.22E+010.27E+020.48E+010.32E+000.34E+020.20E+010.25E+000.26E+010.32E+010.16E+000.59E+020.64E+010.69E+000.18E+050.26E+010.15E+010.25E+02

BL12 BL13

0.48E+000.62E+010.16E+010.70E+000.59E+010.30E+010.68E+000.12E+030.26E+010.32E+00O.HE+020.25E+010.61 E+000.39E+02

BL21 BL23

0.45E+000.71E+020.30E+010.15E+000.62E+020.22E+010.67E+000.12E+020.40E+010.39E-010.27E+020.14E+010.49E+000.23E+01

CM11 CM12 CM13 CS11

0.13E+010.13E+010.13E+01

FLU

0.89E+010.11 E+000.11 E+00

FO11 FR11 FR12 GUI

0.17E+010.77E+020.24E+010.78E+000.26E+020.18E+010.97E-010.12E+01O.I9E+020.22E+010.60E+020.91E+010.97E+000.62E+03

48

Page 50: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 6, part I: Average deviation factors of calculated from experimental data for energies between 1.0 and 50.0 MeV. For each reaction three entries are given: <F>, Fm j n and F m a x .

contributionreactionZR-0(P,XN)NB-90

ZR-0(P,XN)NB-95

ZR-0(P,N)NB-96

AU-197(P,3P3N)IR-I92

AU-197(P,2P5N)PT-191

AU-197(P,P3N)AU-194

AU-I97(P,P2N)AU-195

AU-197(P,PN)AU-196

AU-197(P,5N)HG-193

AU-197(P,4N)HG-194

AU-197(P,3N)HG-195

AU-197(P,N)HG-197

BE11

0.27E+010.12E+010.39E+0I0.14E+010.85E+000.17E+01

0.67E+010.62E+010.74E+010.12E+010.71E+000.12E+0I0.30E+010.26E+000.80E+010.11E+020.28E+010.25E+020.29E+010.43E+000.11E+020.34E+010.19E+000.12E+010.57E+010.17E+000.17E+00

BLU

0.13E+010.88E+0O0.24E+0I0.26E+010.91E+000.46E+010.18E+010.32E+000.13E+010.57E+020.57E+020.57E+020.97E+010.58E+010.15E+020.91E+010.79E+000.57E+030.13E+010.72E+000.I7E+0!0.25E+010.20E+010.61E+010.11E+02O.IIE-010.46E+010.14E+0I0.53E+000.I3E+010.36E+010.57E-O10.86E+000.24E+010.20E+000.27E+01

BL12 BLU BL21

0.43E+010.28E+010.59E+0!0.22E+010.14E+010.34E+010.14E+0!0.77E+000.20E+010.27E+010.21E+010.50E+010.15E+020.52E-020.35E+010.22E+010.17E+000.24E+010.35E+010.61E-010.12E+010.25E+010.23E+00O.35E+O1

BL23 CM11 CM12 CM13 csn

0.61 E+020.61E+020.61 E+02

FLU

0.72E+010.72E+010.72E+01

FO11 FR11 FRI2 GLII

49

Page 51: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 6, part II: Average deviation factors of calculated from experimental data for energies between 1.0 and 50.0 MeV.For each reaction three entries are given: <F>, Fm jn and F m a x .

contributionreactionO-0(P,5PXN)BE-7

O-0(P,5PXN)BE-10

O-0(P,3P3N)C-l I

O-0(P,3PXN)C-14

AL-27(P,13PXN)H-3

AL-27(P,12PXN)HE-3

AL-27(P,12PXN)HE-4

AL-27(P,4PXN)NE-20

AL-27(P,4PXN)NE-21

AL-27(P,4PXN)NE-22

AL-27(P,3P3N)NA-22

AL-27(P,3PN)NA-24

AL-27(P,PN)AL-26

GL12

0.15E+020.14E+010.68E+030.44E+020.59E+010.29E+030.84E+010.92E-020.I1E+020.28E+010.60E+000.86E+020.34E+020.35E+010.57E+030.16E+01

IS11

0.73E+030.70E+020.81E+040.16E+010.16E+010.16E+01

0.18E+020.16E+020.21E+02

KA11

0.87E+010.12E+000.12E+000.51E+010.48E-0I0.52E+000.23E+010.27E+000.69E+00

0.27E+010.82E-020.2IE+010.19E+010.13E+000.18E+01

KO11 LA11 MA11

0.25E+010.64E-010.38E+010.31E+020.32E-010.32E-010.62E+010.97E-01O.55E+000.17E+020.26E-010.16E+000.33E+010.30E+000.30E+000.34E+010.49E+000.I9E+O20.89E+010.40E+010.18E+020.11E+030.70E+020.15E+030.18E+020.46E+010.45E+020.53E+020.31E+020.13E+03O.59E+O10.98E+000.81E+020.24E+010.19E+000.27E+010.18E+0I

Mill MI21 SHU

0.33E+010.44E+000.12E+030.38E+020.21E+010.91E+030.14E+0!

SH21 SH31

0.41E+010.22E+010.11E+020.32E+020.45E+010.10E+030.19E+01

son

0.18E+010.40E+000.35E+01

0.45E+010.17E+000.48E+000.44E+010.65E+000.22E+020.35E+010.29E+000.29E+000.32E+010.58E+000.11E+02

0.29E+020.31E+010.94E+030.13E+020.70E+010.46E+020.58E+O1

TA11

0.77E+010.89E+000.95E+020.47E+020.10E-010.52E-010.16E+010.63E+000.19E+010.38E+010.40E-010.29E+010.33E+010.30E+000.30E+000.58E+020.10E+020.39E+030.92E+010.58E+010.41E+02

0.27E+010.51E-010.32E+010.20E+020.13E-010.26E+000.29E+01

YOU

50

Page 52: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 6, part II: Average deviation factors of calculated from experimental data for energies between 1.0 and 50.0 MeV.For each reaction three entries are given: <F>, Fmin and F m a x .

contributionreaction

FE-0(P,26PXN)H-3

FE-0(P,4PXN)V-48

FE-0(P,3PXN)CR-48

FE-O(P,3PXN)CR-51

FE-0(P,2PXN)MN-52

FE-0(P,2PXN)MN-S4

FE-0(P,PXN)FE-52

FE-0(P,XN)CO-55

FE-0(P,XN)CO-56

FE-0(P,XN)CO-57

FE-0(P,XN)CO-58

CO-59(P,P3N)CO-56

GL12

0.56E+000.20E+01

0.78E+010.39E+010.17E+020.18E+020.18E+020.18E+020.26E+010.15E+010.12E+020.17E+010.40E+000.11E+010.34E+010.23E+000.34E+020.16E+010.59E+000.21E+010.32E+010.24E+000.11E+010.24E+010.32E+000.68E+000.19E+0I0.40E+000.95E+000.20E+010.28E+000.10E+010.23E+010.31E+000.10E+01

IS11

0.29E+020.29E+020.29E+02

0.14E+020.I3E+000.38E+02

0.77E+010.32E-020.25E+010.18E+010.11E+010.2IE+01O.55E+O10.17E-010.59E+030.22E+010.24E+000.91E+01

KA11

0.17E+010.17E+010.17E+01

[0.34E+020.67E+010.17E+030.52E+0I0.39E+000.42E+030.22E+010.14E+000.41E+010.21E+0I0.25E+000.1IE+010.42E+0!0.27E-010.12E+030.21E+010.14E+000.71E+00

0.39E+010.15E+000.12E+01

KO11

0.18E+010.31E+000.23E+010.63E+010.16E+000.16E+000.18E+010.56E+000.78E+010.23E+010.10E+000.69E+010.55E+010.24E+00O.15E+O30.33E+010.22E+000.47E+000.19E+010.17E+000.76E+010.12E+010.75E+000.13E+010.23E+010.68E+000.39E+01

O.55E+O10.27E+000.19E+03

LA11 MAI1

0.54E+000.24E+010.22E+010.46E+000.46E+000.20E+020.61E+010.64E+02

0.60E+010.28E+010.50E+020.48E+010.36E-010.17E+040.25E+010.67E+000.22E+020.17E+010.97E+000.21E+010.21E+010.41E-010.31E+010.24E+010.31E+000.12E+010.22E+010.33E+O00.11E+010.22E+010.28E+000.13E+010.19E+010.42E+000.46E+01

Mill M121 SHU

0.59E+000.12E+010.27E+010.37E+000.37E+000.26E+0I0.10E+010.96E+01

0.32E+010.85E+000.53E+020.22E+010.17E+000.34E+020.47E+01O.75E+0O0.30E+03

0.21E+010.30E+000.66E+000.18E+010.19E+000.13E+01

0.47E+010.27E+000.10E+03

SH21 SH31

0.13E+010.38E+010.22E+010.46E+000.46E+000.20E+030.85E+020.29E+03

0.26E+010.90E+000.60E+010.16E+020.71E+010.65E+020.42E+010.21E+010.70E+02

0.19E+010.34E+000.15E+010.31E+010.22E+000.32E+01

0.13E+02O.23E+010.57E+02

SOU

0.31E+000.54E+020.28E+010.36E+000.36E+000.20E+030.50E+020.42E+03

0.16E+020.88E+0I0.76E+020.23E+010.74E+000.60E+010.22E+020.21E+010.67E+020.27E+010.26E+000.23E+010.21E+020.20E-030.11E+000.31E+010.17E+000.52E+00

0.14E+010.58E+000.17E+01

TAU

0.38E+000.73E+010.16E+010.63E+000.63E+000.30E+0I0.27E+000.65E+010.77E+010.13E+000.13E+000.34E+010.I5E+000.10E+020.32E+010.46E-010.41E+020.30E+010.44E-010.48E+010.52E+010.11E+000.34E+000.48E+010.62E-030.I2E+020.23E+010.31E+000.20E+01

0.12E+020.35E-020.14E+01

YOU

51

Page 53: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 6, part II: Average deviation factors of calculated from experimental data for energies between 1.0 and 50.0 MeV.For each reaction three entries are given: <F>, F m j n and F m a x .

contributionreactionCO-59(P,P2N)CO-57

CO-59(P,PN)CO-58

CO-59(P,4N)NI-56

CO-59(P,3N)NI-57

ZR-0(P,4PXN)RB-84

ZR-0(P,3PXN)SR-85

ZR-0(P,2PXN)Y-86

ZR-0(P,2PXN)Y-87

ZR-0(P,2PXN)Y-88

ZR-0(P,PXN)ZR-88

ZR-0(P,PXN)ZR-89

ZR-0(P,PXN)ZR-95

ZR-0(P,XN)NB-90

GL12

0.24E+010.53E+000.47E+020.14E+010.82E+000.25E+010.40E+010.74E-010.21E+020.59E+010.98E-010.67E+000.12E+020.12E+020.12E+02

0.47E+010.27E+010.10E+020.43E+010.95E+000.36E+020.19E+010.33E+000.21 E+010.13E+010.68E+00 j0.26E+010.16E+010.59E+000.17E+020.21 E+010.12E+010.23E+020.12E+01O.55E+O0

ISU

0.18E+010.79E+000.32E+010.58E+010.17E+000.17E+00

0.21E+020.81E-010.90E+030.61E+010.25E-010.14E+020.36E+020.41E-020.14E+030.21E+020.13E-020.96E+040.I3E+010.92E+000.15E+010.18E+010.27E+00

KA11

0.28E+010.60E+000.23E+020.20E+010.57E-010.35E+010.32E+020.12E-010.15E+000.78E+010.23E-010.34E+000.43E+010.23E+000.23E+000.59E+010.48E+010.76E+010.79E+010.27E+010.16E+020.91 E+010.24E+000.52E+020.70E+010.89E-010.67E+020.19E+010.74E+000.74E+010.17E+010.60E+000.70E+010.16E+010.79E+000.22E+010.16E+010.32E+00

KO11

0.38E+010.23E+000.31E+030.42E+010.80E+000.72E+030.10E+020.14E-010.11E+010.23E+010.12E+000.14E+010.16E+010.16E+010.16E+010.67E+010.66E+000.19E+030.25E+010.17E+010.60E+010.30E+010.56E+000.12E+020.1SE+010.47E+000.17E+010.36E+010.36E+000.48E+030.28E+010.69E+000.16E+030.50E+010.20E+010.20E+030.13E+010.66E+00

LA11 MA11

0.61 E+010.67E+000.19E+030.27E+010.60E+000.I7E+020.72E+010.72E+010.72E+010.81E+010.17E+010.85E+02

0.59E+010.13E+010.16E+020.65E+010.25E+010.25E+020.79E+010.11E+010.44E+02O.35E+O10.27E+000.12E+020.37E+010.17E+000.38E+020.15E+010.89E+000.67E+010.22E+01O.75E+OO0.69E+020.12E+010.61E+00

Mil l MI21 SH11

0.13E+010.52E+000.15E+010.23E+010.96E+000.34E+020.24E+020.79E-020.73E+0O0.37E+010.74E-010.45E+00

0.54E+010.46E+000.12E+030.20E+010.10E+010.86E+010.37E+010.12E+010.49E+020.48E+010.30E+000.50E+020.23E+010.61E+000.23E+020.17E+010.58E+0O0.10E+02

0.24E+010.50E+00

SH21

0.13E+010.13E+010.13E+01

SH31

0.53E+01O.33E+OO0.32E+030.65E+010.18E+010.49E+030.99E+020.92E-030.18E+010.96E+010.41E-020.66E+00

O.35E+O10.18E+000.44E+020.86E+010.14E+010.51E+020.28E+010.22E+000.68E+010.25E+010.45E+000.80E+01O.56E+O10.21E-010.29E+030.17E+010.29E+000.22E+01

0.21E+0I0.52E+00

SOU

0.84E+010.78E+000.15E+030.67E+010.87E+000.41E+030.14E+020.26E-010.57E+000.11E+020.56E-010.72E+00

0.71E+010.20E+010.15E+020.86E+010.30E+010.14E+020.13E+020.73E+000.13E+030.11E+020.51E+010.11E+030.24E+010.18E+000.25E+020.13E+010.32E+000.14E+010.27E+010.78E+000.58E+020.14E+010.54E+00

TA11

0.31E+010.13E+000.32E+020.59E+010.84E+000.92E+030.10E+030.33E-030.89E-010.45E+010.30E-01O.75E+OO0.48E+020.21E-010.21E-010.20E+010.27E+000.25E+010.46E+010.22E+000.52E+020.90E+010.72E-010.16E+030.44E+010.97E-010.21 E+010.34E+010.30E-010.25E+010.44E+010.11E+000.12E+020.17E+01O.53E+000.39E+010.54E+010.12E+00

von

52

Page 54: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 6, part II: Average deviation factors of calculated from experimental data for energies between 1.0 and 50.0 MeV.For each reaction three entries are given: <F>, Fm jn and F m a x .

contributionreaction

ZR-0(P,XN)NB-95

ZR-0(P,N)NB-96

AU-197(P,76PXXN)BE-7

AU-197(P,40P63N)ZR-95

AU-I97(P,39P64N)NB-95

AU-197(P,36P59N)RU-103

AU-197(P,4P9N)OS-185

AU-197(P,3P3N)IR-192

AU-197(P,2P5N)PT-191

AU-197(P,P3N)AU-194

AU-I97(P,P2N)AU-195

AU-197(P,PN)AU-196

AU-197(P,5N)HG-193

GL12

0J3E+010.24E+010.62E+000.34E+01

0.72E+010.64E+010.80E+01O.38E+O10.76E+00O.53E+020.I6E+0I0.36E+000.10E+010.23E+010.16E+010.9IE+01

IS! 1

0.22E+010.21E+010.20E+000.22E+010.57E+010.28E-010.14E+01

0.42E+020.97E+000.24E+030.17E+02

KA11

0.11E+010.45E+010.77E+000.81E+010.15E+010.44E+000.15E+01

0.48E+010.98E-010.53E+000.I6E+010.37E+000.95E+000.22E+010.71E-010.15E+010.11E+02

KO11

0.17E+010.52E+010.75E+000.77E+0I0.16E+010.50E+000.22E+01

0.31E+020.14E+020.82E+020.18E+010.48E+000.66E+000.10E+020.52E+010.22E+020.15E+010.48E+000.13E+010.26E+010.15E+010.98E+010.69E+01

LA11 MA11

0.14E+010.26E+010.97E+000.35E+OI0.24E+010.24E+000.72E+00

0.17E+010.IIE+0I0.22E+010.35E+010.10E+000.68E+000.13E+01O.75E+O00.20E+010.15E+010.19E+000.14E+010.12E+02

Mill MI21

0.20E+010.19E+010.22E+010.67E+01O.35E+010.11E+020.92E+010.92E+010.92E+010.95E+010.52E+010.16E+020.73E+010.14E+000.14E+000.26E+010.26E+000.25E+010.13E+020.S2E-010.11E+000.28E+010.75E-010.11E+010.20E+010.33E+000.39E+010.15E+010.60E+000.32E+010.15E+02

SHU

0.44E+010.12E+030.58E+020.15E+03

0.16E+020.70E+010.41E+020.11E+010.97E+000.11E+010.85E+010.17E+010.43E+020.15E+010.11E+010.24E+010.40E+010.24E+010.23E+020.69E+01

S1I21

0.38E+01

SH31

0.35E+01

0.64E+010.56E-010.10E+010.24E+010.30E+000.77E+000.17E+010.37E+000.10E+010.14E+010.78E+000.22E+010:i9E+010.77E+000.22E+010.17E+02

SOU

0.15E+010.20E+010.82E+000.13E+020.34E+010.13E+000.84E+00

0.11E+030.1IE+030.11E+030.37E+020.28E+010.38E+030.14E+010.98E+000.20E+010.17E+010.13E+010.43E+010.17E+02

TA11

0.24E+000.19E+010.13E+000.11E+010.57E+010.10E+000.33E+00

0.34E+010.20E+010.51E+01

O.33E+O10.45E+000.63E+010.10E+020.66E-010.16E+000.30E+010.14E+010.55E+010.18E+010.42E+000.22E+010.56E+0)0.24E+010.26E+020.16E+02

von

53

Page 55: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 6, part II: Average deviation factors of calculated from experimental data for energies between 1.0 and 50.0 MeV.For each reaction three entries are given: <F>, Fm j n and F m a x .

contributionreaction

AU-197(P,4N)HG-194

AU-197(P,3N)HG-195

AU-197(P,N)HG-197

GL12

0.22E+010.19E+000.83E+000.60E+010.31E-010.73E+00O.55E+O10.10E+000.47E+00

IS11

0.17E+020.17E+02

0.19E+010.35E+000.16E+010.13E+020.73E-020.93E+00

KA11

0.16E-010.85E+010.15E+010.46E+000.18E+010.44E+010.36E-010.16E+010.27E+010.26E+00O.HE+01

KO11

0.28E-010.38E+010.21E+010.43E+000.43E+010.61E+010.63E-010.86E+00O.85E+O10.46E-010.77E+00

LA11 MA11

0.11E-010.75E+010.24E+010.19E+000.34E+010.31E+010.93E-010.75E+000.64E+010.80E-010.53E+00

Mill MI21

0.79E-020.52E+010.31E+010.75E+000.86E+010.42E+010.88E-010.UE+010.62E+010.36E-010.11E+01

SHU

0.31E-010.48E+010.16E+010.39E+000.90E+000.31E+010.87E-010.18E+010.21E+010.18E+000.18E+01

SH21

0.38E+010.38E+01

SH31

0.55E-020.10E+020.25E+010.13E+00O.33E+O10.32E+010.62E-010.16E+010.26E+010.21E+000.22E+01

SOU

0.51E-020.72E+010.30E+010.11E+000.32E+010.32E+010.61E-0!0.10E+010.52E+010.13E+000.17E+02

TA11

0.64E-020.81E+010.20E+010.61E+000.32E+010.32E+010.15E+000.14E+010.43E+010.14E+000.42E+00

von

54

Page 56: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 7, part I: Average deviation factors of calculated from experimental data for energies between 51.0 and 200.0 MeV. For each reaction three entries are given: <F>, F m j n and Fm a x -

contributionreactionO-0(P,5PXN)BE-7

O-0(P,5PXN)BE-10

O-0(P,3P3N)C-l 1

O-0(P,3PXN)C-14

AL-27(P,12PXN)HE-3

AL-27(P,5PXN)F-18

AL-27(P,4PXN)NE-20

AL-27(P,4PXN)NE-21

AL-27(P,4PXN)NE-22

AL-27(P,3P3N)NA-22

AL-27(P,3PN)NA-24

AL-27(P,PN)AL-26

FE-0(P,26PXN)H-3

BE 11 BL11

0.32E+010.27E+010.40E+01

0.16E+010.15E+010.18E+010.32E+010.14E+010.51E+01

0.27E+010.94E+000.78E+010.21E+010.70E+000.46E+010.14E+010.76E+000.17E+010.16E+010.92E+000.24E+010.15E+010.47E+000.10E+010.20E+010.88E+000.43E+010.22E+010.13E+010.32E+01

BL12

0.60E+010.21E+010.35E+020.25E+010.22E+000.92E+000.15E+010.89E+000.20E+010.22E+010.16E+000.24E+01

BL13 BL21 BL23 CM11

0.30E+010.25E+000.48E+00

0.13E+010.59E+000.14E+010.15E+010.66E+000.23E+010.12E+010.93E+000.16E+01

CM12 CM13

0.16E+010.80E+000.39E+010.20E+010.71E+000.S0E+010.15E+010.46E+00O.85E+OO0.14E+010.45E+000.20E+01

CS11

0.33E+020.11E+020.60E+020.38E+010.44E-01O.IIE+010.16E+010.12E+010.19E+010.15E+010.41E+000.11E+01

0.16E+010.96E+000.19E+010.38E+010.20E+010.12E+020.12E+010.71E+000.10E+01

0.13E+010.72E+000.17E+010.22E+010.30E+000.63E+000.14E+01O.53E+000.16E+010.34E+010.12E+01

FL11

0.43E+0I0.29E+010.59E+01

0.26E+010.82E+000.49E+0I0.19E+010.10E+010.25E+01

O.53E+O1O.32E+O1

FO11

0.17E+010.53E+000.17E+010.84E+010.68E+000.17E+020.36E+010.19E+000.25E+010.22E+010.46E+000.32E+0!0.69E+010.65E+000.25E+02

FR11

0.16E+010.11E+010.19E+010.15E+010.60E+000.12E+010.16E+010.55E+000.86E+000.14E+010.14E+010.14E+010.19E+010.40E+000.77E+000.12E+010.69E+000.15E+01

FR12

0.19E+010.15E+010.20E+010.13E+010.67E+000.11E+010.15E+010.58E+000.90E+000.21E+010.17E+010.25E+010.21E+010.39E+000.58E+000.15E+010.50E+000.99E+00

GLU

0.16E+010.12E+010.21E+010.19E+010.39E+000.12E+010.14E+01O.45E+0O0.16E+010.20E+010.28E+00O.25E+01

0.12E+010.86E+000.15E+010.37E+0IO.68E+0O0.17E+020.17E+010.50E+000.72E+000.35E+010.19E+00G.48E+000.14E+010.50E+000.11E+010.26E+010.26E+000.12E+010.13E+0I0.99E+000.16E+01

55

Page 57: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 7, part I: Average deviation factors of calculated from experimental data for energies between 51.0 and 200.0 MeV. For each reaction three entries are given: <F>, Fm jn and F m a x .

contributionreaction

FE-0(P,25PXN)HE-3

FE-0(P,25PXN)HE-4

FE-0(P,10PXN)CL-36

FE-0(P,8PXN)K-42

FE-0(P,8PXN)K-43

FE-0(P,6PXN)SC-46

FE-0(P,6PXN)SC-47

FE-0(P,6PXN)SC-48

FE-0(P,5PXN)TI-44

FE-0(P,4PXN)V-48

FE-0(P,3PXN)CR-48

FE-0(P,3PXN)CR-51

FE-0(P,2PXN)MN-52

BE11

0.18E+01

BL11

0.71E+010.36E+010.12E+020.46E+010.30E+010.91E+010.95E+010.11E+010.31E+030.57E+010.84E+000.79E+020.27E+010.53E+000.39E+020.20E+0I0.20E+010.20E+010.26E+0!0.33E+000.60E+010.46E+010.12E+000.96E+010.14E+010.59E+000.21E+010.25E+01

BL12 BL13 BL21 BL23 CM11 CM12

0.16E+010.65E+000.65E+00

0.39E+010.19E+000.29E+020.32E+010.98E-010.17E+02

0.20E+010.42E+000.29E+01

0.17E+010.81E+000.22E+010.20E+01

CM13 CS11

0.73E+0I

0.13E+010.80E+000.80E+00

0.19E+010.62E+000.22E+01

0.57E+010.80E-020.89E+010.23E+010.92E-010.29E+010.18E+010.56E+000.25E+01

0.19E+010.44E+000.88E+010.17E+020.43E+010.37E+020.13E+010.79E+000.19E+010.16E+01

FLU

0.95E+010.62E+010.62E+010.62E+010.34E+010.34E+010.34E+010.46E+020.39E+020.55E+02

0.94E+010.18E+010.85E+02

0.40E+010.44E+000.18E+020.33E+010.44E+000.16E+020.17E+010.47E+000.43E+010.34E+01

FO11

0.24E+02O.36E-010.50E-010.60E+010.85E-010.54E+000.42E+010.63E-010.49E+0I0.48E+010.97E-010.55E+000.76E+010.71E-010.88E+010.79E+010.62E-010.41E+02

0.44E+010.13E+000.17E+OI0.50E+010.12E+000.I1E+010.10E+020.12E+010.41E+030.29E+02

FRU

0.92E+010.79E-01O.16E+000.22E+020.23E-010.I1E+000.27E+010.22E+000.47E+000.96E+010.37E-010.18E+000.64E+020.50E-020.30E-01

0.35E+02O.53E+O10.16E+03

0.40E+010.21E+010.80E+010.64E+01

FR12

0.48E+010.12E+000.46E+000.10E+030.72E-020.12E-010.43E+010.10E+000.40E+000.15E+020.32E-010.11E+000.53E+020.15E-010.36E-01

0.48E+020.42E+010.19E+03

0.42E+010.22E+010.51E+010.64E+01

GUI

0.20E+010.91E-010.50E+010.18E+010.56E+000.10E+020.14E+010.69E+000.35E+010.22E+010.22E+010.22E+010.I7E+010.40E+000.16E+010.15E+0I0.51 E+000.35E+010.13E+010.67E+000.16E+010.16E+01

56

Page 58: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 7, part I: Average deviation factors of calculated from experimental data for energies between 51.0 and 200.0 MeV. For each reaction three entries are given: <F>, F m j n and F m a x .

contributionreaction

FE-0(P,2PXN)MN-54

FE-0(P,PXN)FE-52

FE-O(P,PXN)FE-55

FE-0(P,XN)CO-55

FE-0(P,XN)CO-56

FE-0(P,XN)CO-57

FE-0(P,XN)CO-58

CO-59(P,P3N)CO-56

CO-59(P,P2N)CO-57

CO-59(P,PN)CO-58

CO-59(P,4N)NI-56

CO-59(P,3N)NI-57

BE11

0.37E+00O.75E+OO0.23E+010.49E+00O.36E+010.62E+010.13E+000.21E+000.12E+010.81E+000.81E+000.17E+010.10E+010.22E+010.15E+010.82E+000.23E+01^

0.21E+010.76E+000.38E+010.19E+010.32E+000.11E+010.16E+010.41E+000.17E+010.22E+010.22E+000.19E+010.22E+010.I5E+000.13E+01

B i l l

0.21E+000.86E+000.19E+010.81E+000.29E+010.26E+010.28E+000.55E+000.45E+010.45E+010.45E+010.18E+010.39E+000.81 E+000.14E+010.58E+000.98E+000.17E+010.95E+000.28E+010.16E+010.91 E+000.42E+010.20E+0!0.27E+000.89E+000.15E+010.63E+000.19E+010.30E+010.17E+010.41 E+010.1IE+02O.58E-O10.22E+000.47E+010.11 E+000.32E+00

BL12 BL13

0.15E+010.72E+000.22E+010.17E+01O.73E+OO0.23E+010.27E+010.14E+010.39E+010.12E+010.74E+000.17E+010.15E+010.48E+000.12E+01

BL21 BL23

0.13E+010.64E+000.11E+010.12E+010.73E+000.13E+010.12E+010.91 E+000.14E+010.12E+010.76E+000.12E+010.17E+010.39E+000.99E+00

CM11 CM12

0.71 E+000.28E+010.12E+010.58E+000.11E+01

0.12E+010.I2E+0I0.12E+010.11E+010.80E+000.13E+010.15E+010.52E+000.90E+00

CM13 CS1I

0.50E+000.23E+010.15E+010.38E+000.15E+010.90E+010.73E+010.11E+02O.38E+O10.38E+010.38E+010.15E+010.42E+000.15E+010.20E+010.21 E+000.16E+01

0.28E+010.11 E+010.58E+010.15E+010.52E+000.22E+010.15E+010.69E+000.21 E+010.20E+010.13E+010.28E+010.19E+010.34E+000.26E+01

FLU

0.14E+000.74E+000.16E+010.12E+010.21E+010.18E+010.46E+000.77E+000.11E+010.11 E+010.11E+010.23E+01O.33E+OO0.59E+000.32E+010.22E+000.45E+00

0.27E+010.26E+000.61 E+000.12E+010.64E+000.13E+010.13E+010.76E+000.15E+010.61E+010.10E+000.28E+000.47E+010.14E+000.39E+00

FO11

0.14E+010.19E+030.25E+040.39E+030.22E+050.83E+020.59E+020.14E+03

FR1I

0.16E+010.24E+020.18E+010.41 E+000.87E+00

0.17E+010.17E+010.17E+010.31E+010.22E+010.44E+010.17E+010.54E+000.30E+01

FR12

0.19E+0I0.92E+010.15E+01O.53E+OO0.85E+00

0.12E+010.12E+010.12E+010.14E+010.11E+010.18E+010.37E+010.19E+000.67E+00

GUI

0.40E+000.11E+010.13E+01O.55E+OO0.13E+010.15E+010.12E+010.17E+0)0.29E+010.29E+010.29E+010.13E+010.58E+000.11 E+010.19E+010.41E+000.67E+000.13E+010.55E+000.11 E+010.17E+010.43E+000.19E+010.17E+010.92E+000.24E+010.17E+010.89E+000.23E+010.18E+010.13E+010.22E+010.I9E+010.11E+010.66E+010.I8E+010.10E+010.24E+01

57

Page 59: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 7, part I: Average deviation factors of calculated from experimental data for energies between 51.0 and 200.0 MeV. For each reaction three entries are given: <F>, Fm j n and F m a x .

contributionreactionZR-0(P,7PXN)SE-75

ZR-0(P,6PXN)BR-77

ZR-0(P,5PXN)KR-78

ZR-0(P,5PXN)KR-79

ZR-0(P,5PXN)KR-80

ZR-0(P,5PXN)KR-81

ZR-0(P,5PXN)KR-82

ZR-0(P,5PXN)KR-83

ZR-0(P,5PXN)KR-84

ZR-0(P,5PXN)KR-85

ZR-0(P,5PXN)KR-86

ZR-0(P,4PXN)RB-83

ZR-0(P,4PXN)RB-84

BE11 B i l l

0.16E+020.16E+010.16E+030.20E+010.11E+010.29E+010.18E+010.53E+000.57E+000.20E+010.69E+000.39E+010.47E+0I0.62E+000.13E+020.40E+020.62E+000.85E+030.64E+010.57E+000.21E+020.13E+020.65E+000.14E+030.71E+010.10E+010.40E+020.31E+010.22E+010.47E+010.85E+010.45E+010.14E+020.60E+010.17E+010.50E+020.26E+010.74E+00

BLI2 BL13 BL21 BL23 CM11 CM12 CM13 CS11 FLU

0.11E+020.14E+010.56E+020.28E+010.86E+000.58E+010.22E+010.43E+000.49E+000.29E+010.36E+000.65E+010.50E+010.49E+000.14E+020.33E+010.65E+000.77E+010.12E+010.79E+000.UE+010.20E+010.12E+010.30E+010.25E+010.24E+010.26E+0!0.57E+010.34E+010.85E+010.42E+010.33E+010.51E+010.62E+010.30E+010.32E+02O.55E+O10.13E+01

FO11

0.27E+010.22E+010.34E+010.62E+010.I0E+000.30E+000.40E+010.16E+000.70E+000.39E+010.24E+000.28E+000.28E+010.32E+000.40E+000.3IE+010.32E+000.33E+000.17E+010.49E+000.12E+010.18E+010.18E+010.18E+010.11E+010.11E+010.11E+010.14E+010.14E+010.14E+010.22E+010.16E+010.28E+010.14E+010.98E+00

FR11

0.14E+020.14E+020.14E+02

0.12E+010.11E+010.12E+010.25 E+010.16E+010.34E+010.17E+010.13E+010.20E+010.13E+010.67E+000.97E+000.83E+010.86E-010.18E+000.64E+020.89E-020.30E-010.25E+010.40E+000.40E+000.19E+0I0.50E+000.29E+010.87E+010.85E-01

FR12

0.17E+020.10E+020.23E+020.64E+010.64E+010.64E+OI

0.27E+010.14E+010.38E+010.76E+010.35E+010.13E+020.19E+010.15E+010.22E+010.13E+010.74E+000.13E+010.80E+010.95E-010.17E+000.79E+020.82E-020.20E-010.15E+030.66E-020.66E-020.16E+01O.63E+OO0.22E+010.76E+010.94E-01

GUI

58

Page 60: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 7, part I: Average deviation factors of calculated from experimental data for energies between 51.0 and 200.0 MeV. For each reaction three entries are given: <F>, F m m and F m a x .

contributionreaction

ZR-0(P,4PXN)RB-86

ZR-0(P,3PXN)SR-82

ZR-0(P,3PXN)SR-83

ZR-0(P,3PXN)SR-85

ZR-0(P,2PXN)Y-86

ZR-0(P,2PXN)Y-87

ZR-0(P,2PXN)Y-88

ZR-0(P,PXN)ZR-86

ZR-0(P,PXN)ZR-88

ZR-0(P,PXN)ZR-89

ZR-0(P,PXN)ZR-95

ZR-0(P,XN)NB-90

ZR-0(P,XN)NB-95

BE11

0.14E+010.10E+010.17E+01

0.66E+010.47E+010.90E+010.77E+01

BL11

0.74E+010.19E+010.15E+010.21E+010.16E+010.47E+000.14E+010.25E+010.54E+000.16E+020.25E+010.46E+000.52E+010.19E+010.65E+000.45E+010.12E+010.81E+000.14E+010.17E+010.42E+000.13E+010.21E+010.24E+000.45E+010.12E+010.76E+000.13E+010.15E+010.UE+010.21E+010.35E+0I0.24E+010.48E+010.15E+010.93E+000.I7E+010.99E+01

BL12 BL13 BL21 BL23 CM11 CM12 CM13 CS11 FLU

0.15E+020.48E+010.42E+010.56E+010.16E+010.50E+000.82E+000.18E+010.29E+000.32E+010.37E+010.32E+000.I5E+020.16E+010.48E+000.23E+010.I3E+0I0.95E+000.15E+010.12E+010.98E+000.14E+010.27E+010.66E-01O.78E+O00.12E+010.99E+000.15E+010.12E+010.99E+000.14E+010.13E+010.10E+010.16E+010.14E+01O.58E+O00.11 E+010.50E+0I

FOU

0.15E+010.31E+010.21E+010.44E+010.47E+010.16E+000.37E+000.20E+010.34E+000.73E+000.25E+010.37E+000.46E+000.25E+010.18E+010.37E+010.28E+OI0.19E+010.32E+010.24E+010.16E+010.43E+010.29E+010.22E+00O.56E+000.17E+010.13E+010.22E+010.34E+0I0.20E+010.51E+01

0.25E+010.16E+010.39E+01

FR11

0.I4E+000.15E+020.51E-010.76E-01

0.25E+010.18E+010.31E+010.8IE+010.47E+010.12E+020.44E+0I0.28E+010.61E+010.18E+010.5IE+000.62E+00

0.57E+01O.35E+O10.81 E+010.15E+010.13E+0I0.17E+01

0.23 E+010.16E+010.32E+01

FR12

0.17E+000.25E+020.35E-010.45E-01

0.36E+010.34E+010.37E+010.11E+020.81 E+010.14E+020.58E+010.42E+010.74E+010.20E+010.44E+000.56E+00

0.90E+010.83E+010.94E+010.12E+0I0.89E+000.13E+01

0.16E+010.47E+000.11 E+01

GUI

59

Page 61: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 7, part 1: Average deviation factors of calculated from experimental data for energies between 51.0 and 200.0 MeV. For each reaction three entries are given: <F>, F m j n and F m a x .

1contributionreaction

AU-197(P,76PXXN)BE-7

AU-197(P,69PXXN)N A-24

AU-197(P,46P77N)SE-75

AU-197(P,45P71N)BR-82

AU-197(P,43P69N)RB-86

AU-197(P,42P71N)SR-85

AU-197(P,41P69N)Y-88

AU-197(P,40P63N)ZR-95

AU-197(P,39P64N)NB-95

AU-197(P,36P59N)RU-103

AU-197(P,8P15N)HF-175

AU-197(P,5P12N)RE-181

BE11

0.39E+010.16E+02

BLU

0.41E+010.28E+02

0.86E+010.86E+010.86E+010.15E+010.67E+000.67E+00

BL12 BL13 BL21 BL23 CM11 CM12 CM13 CS11

0.10E+030.23E-020.18E-010.65E+020.15E-010.15E-01

0.94E+010.94E+010.94E+01

FLU

0.28E+010.89E+01

0.52E+010.19E+000.19E+000.17E+010.42E+000.13E+01

0.41E+010.41E+010.41E+010.16E+010.28E+000.15E+010.20E+010.24E+000.12E+010.31E+010.24E+010.37E+010.21E+010.14E+010.43E+010.28E+010.21E+010.37E+010.41E+010.17E+000.41E+000.26E+010.39E+000.39E+00

FO11

0.17E+010.17E+010.17E+01

FR11

0.22E+010.40E+000.54E+000.22E+010.22E+010.22E+01

0.18E+010.47E+000.65E+00

FR12

0.27E+010.38E+000.38E+00

GUI

60

Page 62: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 7, part 1: Average deviation factors of calculated from experimental data for energies between 51.0 and 200.0 MeV. For each reaction three entries are given: <F>, Fm jn and F m a x .

contributionreactionAU-197(P,5P10N)RE-183

AU-I97(P,4P12N)OS-182

AU-197(P,4P9N)OS-185

AU-197(P,3P10N)IR-18S

AU-197(P,3P9N)1R-186

AU-197(P,3P8N)IR-187

AU-197(P,3P7N)IR-188

AU-197(P,3P6N)IR-189

AU-197(P,3P5N)IR-190

AU-197(P,3P3N)IR-192

AU-197(P,2P8N)PT-188

AU-197(P,2P7N)PT-189

AU-197(P,2P5N)PT-I91

BE11 Bl 11

0.25E+010.27E+000.80E+010.26E+01O.37E+000.86E+010.81E+010.99E-010.22E+030.22E+010.39E+000.50E+000.25E+020.67E+010.24E+030.18E+010.42E+000.94E+000.13E+020.13E+020.13E+020.22E+0I0.28E+000.23E+010.18E+020.13E+020.32E+020.99E+020.44E+020.24E+030.26E+010.10E+000.58E+010.25E+010.74E+000.23E+020.13E+010.54E+00

BL12 BL13 BL21

0.76E+020.14E+020.26E+03

0.56E+010.36E+000.15E+020.58E+O10.50E+01O.75E+O10.25E+020.13E+020.38E+020.15E+010.65E+000.15E+010.62E+010.62E+010.62E+010.24E+010.31E+000.61E+010.94E+010.38E+010.27E+020.20E+020.26E+010.22E+030.21E+010.19E+000.48E+0I0.37E+010.81E+000.60E+020.13E+010.56E+00

BL23 CM11 CJV112 CM13 CS11

0.52E+010.64E-010.11E+020.I3E+020.10E+020.15E+020.38E+0I0.35E+000.80E+010.14E+020.93E+010.19E+020.28E+0I0.35E+000.35E+000.92E+010.31E+0I0.38E+020.86E+01O.58E-O10.20E+000.22E+020.27E-010.6SE-0I0.28E+010.32E+000.37E+01

0.44E+010.24E+01

FLU

0.50E+0I0.22E-010.76E+000.43E+010.96E-010.56E+000.29E+010.92E-010.26E+010.16E+010.59E+000.71E+000.42E+010.17E+010.59E+010.15E+010.68E+000.15E+010.18E+010.18E+010.18E+010.27E+010.12E+000.11E+010.47E+010.15E+010.24E+020.61E+010.14E+010.68E+020.19E+010.20E+000.13E+010.26E+010.54E+000.71E+010.13E+010.70E+00

FO11

0.25E+010.13E+000.26E+01

0.54E+010.14E+010.I2E+020.43E+010.14E+000.51E+00

0.53E+010.50E-010.48E+000.83E+010.34E+010.14E+020.18E+010.46E+00

FR11

0.86E+010.16E-010.15E+010.38E+010.67E-010.16E+010.43E+010.23E-010.11E+010.11E+010.91E+000.12E+010.17E+010.37E+000.18E+010.13E+010.82E+000.14E+010.14E+020.71E-0)0.71E-010.14E+010.81E+000.16E+010.24E+010.13E+000.22E+01

0.13E+010.47E+000.15E+010.28E+010.16E+010.44E+010.13E+010.81E+00

FR12

0.I4E+020.10E-010.32E+00

0.49E+020.24E+020.90E+020.11E+020.92E-010.92E-010.15E+010.13E+010.16E+010.75E+010.84E-010.38E+000.45E+010.15E+000.31E+00

0.13E+010.85E+00

GUI

61

Page 63: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 7, part I: Average deviation factors of calculated from experimental data for energies between 51.0 and 200.0 MeV. For each reaction three entries are given: <F>, F m j n and F m a x .

contributionreaction

AU-197(P,P4N)AU-193

AU-197(P,P3N)AU-194

AU-197(P,P2N)AU-195

AU-197(P,PN)AU-196

AU-197(P,5N)HG-193

AU-197(P,4N)HG-194

AU-197(P,3N)HG-195

1

BE11

0.24E+010.42E+000.42E+000.18E+010.38E+000.31E+010.22E+010.32E+000.11E+010.18E+010.31E+000.22E+010.48E+010.20E+010.12E+020.16E+010.54E+000.85E+000.16E+010.64E+000.27E+01

BL11

0.11E+010.19E+010.19E+010.19E+010.I5E+010.75E+000.I9E+010.17E+010.15E+010.19E+010.36E+010.28E+010.46E+0I0.38E+010.17E+010.81E+010.12E+010.11E+010.12E+010.14E+01O.58E+OO0.I6E+O1

BL12 BL13 BL21

0.13E+010.12E+010.12E+010.12E+010.12E+010.77E+000.14E+010.11E+010.85E+000.13E+010.19E+010.10E+010.24E+0I0.39E+0I0.12E+010.88E+010.14E+010.68E+000.78E+000.17E+010.42E+000.13E+0I

BL23 CMI1 CM12 CM13 CS11

0.11E+020.32E+010.32E+010.32E+010.21E+010.13E+010.28E+010.22E+010.14E+010.31E+010.18E+0I0.95E+000.27E+010.I5E+020.12E+010.47E+020.30E+010.20E+010.40E+010.43E+010.10E+010.12E+02

FLU

0.17E+010.24E+0I0.24E+010.24E+010.18E+010.13E+010.21E+010.15E+010.I3E+010.18E+010.15E+010.93E+000.17E+01O.45E+O10.16E+010.11E+020.I3E+010.10E+0I0.14E+010.17E+010.43E+000.15E+01

FOI1

0.27E+01

FR11

0.19E+010.13E+010.13E+010.13E+010.14E+0I0.10E+010.17E+010.14E+010.1IE+010.19E+010.22E+010.15E+010.34E+010.40E+010.I8E+0I0.88E+010.11E+010.89E+000.89E+000.16E+010.52E+000.13E+01

FR12

0.18E+010.11E+010.11E+010.11E+010.17E+010.12E+010.25E+010.15E+010.85E+000.23E+010.13E+010.74E+000.16E+01

0.21E+010.21E+010.21E+010.18E+0I0.54E+000.22E+01

G U I

62

Page 64: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 7, part II: Average deviation factors of calculated from experimental data for energies between 51.0 and 200.0 MeV. For each reaction three entries are given: <F>, F m j n and F m a x .

contributionreactionO-0(P,5PXN)BE-7

O-0(P,5PXN)BE-10

O-0(P,3P3N)C-ll

O-0(P,3PXN)C-14

AL-27(P,12PXN)HE-3

AL-27(P,10PllN)BE-7

AL-27(P,10P8N)BE-10

AL-27(P,5PXN)F-18

AL-27(P,4PXN)NE-20

AL-27(P,4PXN)NE-21

AL-27(P,4PXN)NE-22

AL-27(P,3P3N)NA-22

AL-27(P,3PN)NA-24

GL12

0.38E+010.84E+000.19E+020.13E+010.65E+000.95E+000.34E+010.18E+000.48E+000.15E+010.46E+000.97E+000.19E+01

IS11

0.59E+020.14E+020.26E+030.34E+020.12E+020.29E+030.44E+010.27E+010.77E+010.20E+010.84E+000.34E+010.71E+010.70E+010.72E+010.54E+030.30E+020.13E+040.46E+020.18E+020.11E+03

0.45E+010.15E+010.96E+010.21E+01

KA11

0.31E+010.25E+000.43E+00

0.31E+010.11E+010.70E+01

0.13E+010.10E+010.17E+010.18E+01

KO11 LA11

0.22E+010.45E+000.45E+00

MA11

0.37E+010.31E+010.50E+010.12E+020.24E-010.13E+000.15E+010.97E+000.18E+010.10E+020.49E-0I0.15E+000.13E+010.89E+000.1SE+01

0.91E+010.46E+010.24E+020.88E+010.13E+010.88E+020.29E+010.UE+010.77E+010.36E+0I0.24E+010.59E+010.14E+010.6SE+000.22E+010.21E+01

Mill

0.38E+020.38E+020.38E+02

0.17E+010.17E+010.17E+010.37E+010.37E+010.37E+010.46E+010.46E+010.46E+01

MI21

0.11E+010.10E+010.12E+01

0.13E+010.11E+010.16E+010.20E+010.40E+000.76E+00

0.11E+010.84E+000.11E+010.12E+010.96E+000.14E+0I

0.13E+010.12E+010.13E+010.1IE+010.95E+000.11E+010.12E+010.11E+010.13E+010.13E+010.12E+010.13E+010.11E+01

SHU

0.17E+010.37E+000.90E+000.19E+01

SH21

0.11E+030.60E+020.29E+030.26E+010.47E+000.67E+01

0.40E+010.23E+010.54E+010.20E+01

SH31

0.89E+010.22E+010.18E+02

0.29E+010.18E+010.40E+010.36E+01

son

0.17E+010.10E+010.24E+010.24E+010.43E+000.51E+010.19E+010.42E+000.72E+000.13E+010.64E+000.15E+010.14E+010.88E+000.15E+010.33E+02O.58E+O10.17E+030.64E+010.11E+010.22E+02

0.20E+010.63E+000.31E+010.49E+01

TA11

0.39E+010.28E+010.68E+010.79E+010.22E-010.39E+000.30E+010.22E+010.36E+010.65E+010.I2E+010.17E+020.14E+010.10E+010.16E+01O.35E+O10.42E+000.34E+020.32E+010.17E+000.93E+00

0.17E+010.11E+010.22E+010.16E+01

YOU

0.28E+010.26E+010.33E+01

0.21E+010.19E+010.25E+010.12E+010.85E+000.18E+010.23E+010.17E+010.29E+010.43E+020.40E+020.47E+020.51E+01O.35E+O10.66E+0I

0.14E+010.70E+000.90E+000.12E+010.11E+010.14E+010.I3E+010.12E+010.15E+010.I4E+0I0.70E+000.75E+000.15E+01

63

Page 65: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 7, part II: Average deviation factors of calculated from experimental data for energies between 51.0 and 200.0 MeV. For each reaction three entries are given: <F>, F m j n and Fmax-

contributionreaction

AL-27(P,PN)AL-26

FE-0(P,26PXN)H-3

FE-0(P,25PXN)HE-3

FE-0(P,25PXN)HE-4

FE-0(P,23PXN)BE-7

FE-0(P,23PXN)BE-10

FE-0(P,16PXN)NA-24

FE-0(P,10PXN)CL-36

FE-0(P,8PXN)K-42

FE-0(P,8PXN)K-43

FE-0(P,6PXN)SC-46

FE-0(P,6PXN)SC-47

GL12

0.97E+000.43E+010.13E+010.95E+000.16E+01

0.63E+010.11E+010.81E+020.67E+010.10E+010.13E+03

IS11

0.13E+010.27E+01

0.18E+020.45E+010.41E+020.25 E+020.16E+020.37E+020.11 E+020.11 E+020.11 E+02

0.32E+030.55E+010.35E+04

KA11

0.13E+010.25E+01

0.15E+010.59E+000.21E+010.19E+010.16E+010.21E+010.12E+010.12E+010.12E+01

0.40E+010.30E+000.49E+02

KOII

0.30E+020.25E+020.35E+020.27E+010.17E+010.37E+010.51E+010.22E+000.37E+020.54E+010.18E+000.68E+020.21E+0I0.38E+000.53E+01

LA11

0.26E+010.38E+000.38E+00

0.25E+010.40E+000.40E+00

0.14E+010.69E+000.69E+00

MA11

0.33E+000.66E+000.15E+010.53E+000.11E+010.24E+010.32E+000.10E+010.16E+010.56E+000.74E+000.25E+010.25E+010.25E+01

0.18E+020.15E+020.21 E+020.24E+020.26E+010.81E+020.53E+010.37E+010.74E+010.41E+010.34E+000.26E+020.85E+010.48E+000.94E+02

Mill

0.21E+010.48E+000.48E+00

0.19E+010.19E+010.19E+010.46E+010.30E+010.57E+01

MI21

0.82E+000.98E+000.14E+010.12E+010.17E+01

0.15E+010.12E+010.16E+010.30E+010.22E+000.57E+000.12E+010.12E+010.12E+010.13E+010.11E+010.15E+010.17E+010.16E+010.18E+010.11E+010.94E+000.13E+010.18E+010.16E+010.21E+010.11E+010.92E+000.14E+01

SH11

0.12E+010.39E+010.14E+010.11E+010.18E+010.32E+010.30E+000.32E+00

0.31E+010.31E+010.31E+01

SH21

0.10E+010.50E+010.16E+010.45E+000.10E+01

0.12E+020.99E+010.14E+02

0.34E+010.11E+000.22E+02

SH31

0.20E+010.67E+010.14E+010.58E+000.17E+010.25E+010.32E+000.99E+000.19E+010.46E+000.62E+000.19E+010.54E+000.54E+00

0.12E+020.10E+020.14E+02

0.44E+010.19E+010.11 E+02

SOU

0.18E+010.16E+020.23E+010.33E+000.69E+000.26E+010.29E+000.96E+000.18E+010.47E+000.70E+000.36E+010.36E+010.36E+01

0.43E+010.36E+000.60E+01

0.30E+020.61E+010.23E+03

TA11

0.40E+000.15E+010.19E+010.40E+000.81E+000.26E+010.27E+000.98E+000.17E+010.46E+000.87E+000.22E+010.22E+010.22E+01

0.13E+010.68E+000.95E+00

0.55E+010.51E-020.96E+00

YOU

0.13E+010.17E+010.13E+010.67E+000.94E+000.14E+010.74E+000.22E+010.13E+010.11E+010.14E+010.13E+010.76E+000.76E+00

0.37E+010.31E+010.43E+010.25E+010.96E+000.36E+010.16E+010.55E+000.22E+010.13E+010.74E+000.20E+010.18E+010.44E+000.11E+01

64

Page 66: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 7, part II: Average deviation factors of calculated from experimental data for energies between 51.0 and 200.0 MeV. For each reaction three entries are given: <F>, F m j n and F m a x .

contributionreactionFE-0(P,6PXN)SC-48

FE-0(P,5PXN)TI-44

FE-0(P,4PXN)V-»8

FE-0(P,3PXN)CIM8

FE-0(P,3PXN)CR-51

FE-0(P,2PXN)MN-52

FE-0(P,2PXN)MN-54

FE-0(P,PXN)FE-52

FE-0(P,PXN)FE-55

FE-0(P,XN)CO-55

FE-0(P,XN)CO-56

FE-0(P,XN)CO-57

FE-0(P,XN)CO-58

GL12

0.20E+010.77E+000.17E+020.22E+010.22E+010.22E+010.23E+010.31E+000.52E+010.35E+010.14E+000.20E+020.15E+010.54E+000.20E+010.26E+010.21E+000.99E+000.18E+0!0.96E+000.24E+010.20E+010.41E+000.64E+000.26E+010.26E+010.26E+010.25E+01O.33E+OO0.44E+000.28E+010.28E+000.45E+000.15E+010.47E+000.94E+000.17E+010.43E+00

IS11

0.27E+020.63E+000.11E+040.34E+010.13E+010.68E+020.48E+010.77E+000.27E+02

0.13E+010.78E+000.18E+010.14E+010.64E+000.14E+0I0.14E+020.14E+020.I4E+O20.29E+010.19E+000.62E+000.43 E+010.14E+000.21E+02

KA11

0.29E+010.51E+000.14E+020.20E+010.40E+000.52E+010.20E+010.77E+000.44E+01O.35E+O10.15E+000.14E+010.15E+010.43E+000.25E+010.14E+010.55E+000.98E+000.21E+010.21 E+010.21 E+010.19E+010.34E+000.81E+000.27E+0I0.22E+000.64E+01

KO11

0.19E+010.35E+000.51E+010.13E+010.13E+010.13E+010.19E+010.32E+000.32E+010.60E+010.98E-010.42E+000.15E+010.62E+000.21 E+010.19E+010.22E+000.13E+010.19E+010.10E+010.28E+010.18E+010.38E+000.84E+000.21 E+010.21E+010.21 E+010.16E+010.45E+000.16E+010.16E+010.41E+000.89E+000.16E+010.85E+000.29E+01

LA11

0.25E+010.40E+000.40E+00

0.17E+010.58E+000.58E+000.50E+010.20E+000.20E+00O.UE+010.11E+010.11E+01

0.28E+010.36E+000.36E+00

MA11

0.31 E+010.29E+000.16E+020.27E+020.27E+020.27E+020.42E+010.76E+000.15E+020.10E+020.21 E+010.35E+020.17E+010.93E+000.34E+010.21E+010.35E+000.10E+010.12E+010.67E+000.10E+010.13E+010.98E+000.15E+010.13E+010.13E+010.13E+010.23E+010.38E+000.53E+O00.32E+010.23E+000.44E+000.21 E+010.36E+000.71E+000.18E+010.43E+00

Mil l

0.18E+010.49E+000.64E+000.19E+010.44E+000.68E+000.13E+010.12E+010.14E+010.32E+010.28E+000.38E+000.13E+010.12E+010.15E+01

0.30E+010.30E+000.38E+000.39E+010.20E+000.32E+000.16E+010.46E+000.76E+000.22E+010.36E+00

MI21

0.21 E+010.37E+000.64E+00

0.12E+010.99E+000.16E+010.17E+010.46E+000.84E+000.13E+010.72E+000.98E+000.30E+010.29E+000.43E+000.25E+010.31E+000.70E+000.34E+010.24E+000.36E+000.34E+010.30E+000.30E+000.24E+020.38E-010.46E-010.72E+020.96E-020.28E-01

SHH

0.23E+010.58E+000.49E+010.17E+020.56E+000.97E+020.18E+010.83E+000.27E+010.21 E+010.28E+000.24E+010.13E+010.62E+000.15E+01

0.22E+010.39E+000.59E+000.26E+010.31E+000.52E+00

SH21

0.29E+020.34E+010.62E+030.60E+010.21 E+010.32E+020.19E+010.98E+000.33E+010.34E+010.13E+010.12E+020.15E+010.11E+010.21E+010.19E+010.14E+010.25E+010.12E+010.86E+000.86E+000.16E+010.48E+000.89E+000.42E+010.17E+000.35E+00

SH31

0.15E+020.15E+010.11E+030.64E+010.89E-010.48E+010.22E+010.10E+010.48E+010.47E+010.19E+010.29E+020.26E+010.16E+010.37E+010.90E+010.93E-010.15E+000.11E+010.11E+010.11E+010.30E+010.24E+000.47E+000.42E+010.17E+000.35E+00

SOU

0.18E+020.60E+000.65E+030.45E+010.13E+000.29E+020.27E+010.78E+000.61 E+010.31 E+010.21E+000.14E+010.31 E+010.16E+010.68E+010.82E+010.87E-010.17E+000.11E+010.11E+010.11E+010.96E+010.85E-010.14E+000.22E+010.33E+000.76E+00

TA11

0.17E+010.33E+000.22E+010.61 E+010.70E-010.29E+000.12E+010.66E+000.15E+010.26E+010.26E+000.52E+000.16E+010.12E+010.21 E+010.24E+010.35E+000.57E+000.11E+010.11E+010.11E+010.24E+010.31E+000.58E+000.34E+010.22E+000.43E+00

YOU

0.41 E+010.18E+00O.38E+OO

0.16E+010.57E+000.81E+000.33E+010.24E+000.39E+000.11E+010.84E+000.11E+010.24E+010.36E+000.51E+000.11E+010.98E+000.13E+010.30E+010.28E+000.44E+000.14E+010.14E+0I0.14E+010.37E+010.23E+000.30E+000.51 E+010.16E+000.23E+000.22E+010.32E+000.60E+000.24E+010.29E+00

65

Page 67: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 7, part II: Average deviation factors of calculated from experimental data for energies between 51.0 and 200.0 MeV. For each reaction three entries are given: <F>, F m j n and F m a x .

contributionreaction

CO-59(P,P3N)CO-56

CO-59(P,P2N)CO-57

CO-59(P,PN)CO-58

CO-59(P,4N)NI-56

CO-59(P,3N)NI-57

ZR-0(P,7PXN)SE-75

ZR-0(P,6PXN)BR-77

ZR-0(P,5PXN)KR-78

ZR-0(P,5PXN)KR-79

ZR-0(P,5PXN)KR-80

ZR-0(P,5PXN)KR-81

ZR-0(P,5PXN)KR-82

ZR-O(P,5PXN)KR-83

GL12

0.19E+010.22E+010.28E+00O.73E+OO0.13E+010.66E+000.16E+010.21E+010.16E+010.26E+010.90E+010.73E-010.21E+000.41E+010.15E+00O.35E+OO0.78E+010.19E+010.24E+020.64E+010.49E+010.94E+010.21E+010.52E+000.27E+010.18E+010.77E+000.31E+010.35E+010.75E+000.85E+010.11E+020.77E+000.39E+020.48E+010.67E+000.19E+020.93E+01

IS11

0.30E+010.19E+000.72E+000.90E+020.46E+020.15E+030.14E+010.49E+000.13E+010.44E+010.11E+000.43E+000.53E+0!0.90E-010.44E+000.31E+020.53E+000.30E+030.60E+020.10E+020.22E+030.35E+01O.85E+OO0.57E+010.26E+010.32E+000.39E+010.23E+010.50E+000.25E+010.53E+010.45E+000.14E+020.41E+010.31E+000.84E+010.60E+01

KA11

0.25E+010.27E+000.54E+000.12E+010.68E+000.15E+010.14E+010.11E+010.17E+010.42E+010.11E+000.57E+000.44E+010.13E+000.47E+000.23E+010.27E+000.17E+010.24E+010.33E+000.60E+000.14E+010.63E+000.98E+000.27E+010.27E+000.17E+010.22E+010.37E+000.58E+000.20E+010.46E+000.22E+010.21E+010.32E+000.91E+000.17E+0I

KO11

0.15E+010.60E+000.30E+010.15E+010.71E+000.22E+010.16E+010.91E+000.24E+010.24E+010.20E+000.12E+0!0.I4E+010.47E+000.18E+0I0.56E+020.38E+010.28E+030.47E+010.15E+010.13E+02O.35E+O10.25E+000.33E+000.36E+0I0.66E+000.99E+010.43E+010.57E+000.12E+020.14E+020.43E+000.96E+02O.35E+O10.41E+000.53E+O10.38E+O1

LA11

0.24E+010.41E+000.41E+00

0.16E+010.64E+000.64E+000.14E+010.71E+000.71E+000.14E+010.72E+000.72E+000.13E+01

MA11

0.16E+010.I9E+010.38E+000.10E+010.12E+010.66E+000.12E+010.11E+010.83E+000.12E+010.53E+010.92E+000.20E+020.15E+010.47E+000.12E+010.18E+020.11E+020.28E+020.12E+020.63E+010.24E+020.26E+010.12E+010.38E+010.69E+010.31E+010.15E+020.89E+010.97E+000.42E+020.60E+010.11E+010.22E+020.12E+010.11E+010.12E+0I0.32E+01

Mill

0.14E+01

0.66E+010.59E-010.16E+020.38E+010.10E+010.77E+010.22E+010.35E+000.14E+010.27E+010.16E+000.15E+010.16E+010.58E+000.14E+010.18E+010.48E+000.73E+000.17E+010.46E+000.95E+000.19E+01

MI21

0.24E+01O.38E+OO0.52E+000.37E+010.24E+000.33E+000.39E+010.20E+000.31E+000.85E+010.12E+000.12E+000.13E+020.68E-010.10E+000.12E+010.72E+000.HE+010.15E+010.I2E+010.16E+010.12E+010.11E+010.12E+010.12E+010.93E+000.14E+010.17E+010.16E+010.18E+010.17E+010.16E+010.18E+010.12E+01O.UE+010.13E+010.14E+0I

SHU

0.18E+010.36E+000.81E+000.12E+010.65E+000.13E+0I0.19E+010.16E+010.21E+010.70E+010.10E+000.20E+000.29E+010.23E+000.54E+00

0.43E+010.43E+010.43E+010.23E+020.89E+000.85E+020.43E+010.42E+010.44E+010.11E+02

SH21

0.25E+010.13E+010.72E+010.12E+010.66E+000.11E+010.12E+010.67E+000.12E+010.20E+010.41E+000.33E+010.18E+010.41E+000.89E+000.30E+010.15E+010.58E+010.28E+010.18E+010.46E+010.13E+010.11E+010.14E+010.20E+010.12E+010.29E+010.26E+010.88E+000.50E+010.53E+0I0.10E+010.20E+020.52E+010.88E+000.23E+020.22E+01

SH31

0.36E+010.25E+010.51E+010.13E+010.79E+000.17E+010.18E+010.89E+000.24E+010.49E+020.13E-010.32E-010.68E+010.97E-0I0.25E+000.43E+010.13E+010.14E+020.16E+010.98E+000.23E+010.18E+01O.55E+OO0.55E+000.16E+010.79E+000.22E+010.18E+010.75E+000.26E+010.31E+010.94E+000.71E+010.24E+010.80E+000.39E+010.14E+01

son

0.27E+010.28E+000.76E+000.12E+010.68E+000.12E+010.12E+010.84E+000.14E+010.36E+020.19E-010.45E-010.15E+020.43E-010.10E+00

0.23E+020.79E+010.70E+020.23E+010.13E+010.31E+010.83E+010.32E+010.21E+020.16E+010.13E+010.19E+010.15E+010.13E+010.16E+010.17E+010.13E+010.22E+010.12E+01

TA11

0.20E+010.36E+000.93E+000.12E+010.64E+000.14E+010.13E+010.78E+000.16E+010.84E+010.79E-010.26E+000.40E+010.16E+000.41E+000.97E+010.70E-010.19E+000.66E+010.13E+000.20E+000.63E+020.13E-020.15E+000.75E+010.94E-010.17E+000.11E+020.22E-010.20E+000.47E+010.14E+000.39E+000.49E+010.13E+000.28E+000.37E+01

YOU

0.I0E+010.20E+010.43E+000.64E+000.13E+010.67E+000.12E+010.13E+010.10E+010.15E+010.44E+010.23E+000.23E+000.42E+010.18E+00O.35E+OO0.20E+010.38E+000.24E+010.I4E+010.60E+000.13E+010.14E+010.62E+000.90E+000.15E+010.51E+000.1IE+010.13E+010.68E+000.94E+000.12E+010.92E+000.12E+010.12E+010.87E+000.12E+010.12E+01

66

Page 68: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 7, part II: Average deviation factors of calculated from experimental data for energies between 51.0 and 200.0 MeV. For each reaction three entries are given: <F>, and Fm a x .

contributionreaction

ZR-0(P,5PXN)KR-84

ZR-0(P,5PXN)KR-85

ZR-0(P,5PXN)K.R-86

ZR-0(P,4PXN)RB-83

ZR-0(P,4PXN)RB-84

ZR-0(P,4PXN)RB-86

ZR-0(P,3PXN)SR-82

ZR-0(P,3PXN)SR-83

ZR-0(P,3PXN)SR-85

ZR-0(P,2PXN)Y-86

ZR-0(P,2PXN)Y-87

ZR-0(P,2PXN)Y-88

GL12

0.67E+000.74E+020.48E+010.13E+010.15E+020.37E+010.23E+010.59E+010.66E+010.32E+010.11E+020.98E+010.21E+010.80E+020.34E+010.I3E+0I0.13E+02

0.24E+01O.58E+OO0.I0E+02

0.21E+010.10E+010.57E+010.12E+010.89E+000.14E+0I0.16E+010.41E+000.12E+01

ISU

0.69E+000.34E+020.15E+020.13E+010.15E+030.36E+010.19E+000.51 E+000.16E+010.64E+000.64E+000.37E+010.75E-010.59E+000.42E+010.10E+0I0.33E+020.13E+010.69E+000.13E+010.39E+010.59E+000.23E+020.24E+010.82E-010.17E+010.41E+010.79E+000.18E+020.15E+010.41E+000.17E+010.12E+010.67E+000.12E+010.46E+010.14E+000.31E+00

KA11

0.49E+000.18E+010.13E+020.95E+010.20E+020.31E+010.26E+000.41E+000.36E+010.17E+000.62E+000.29E+010.14E+000.76E+000.98E+010.8IE-020.55E+0O0.67E+010.12E+000.17E+000.14E+010.60E+000.16E+010.25E+010.11E+000.28E+010.32E+010.12E+010.62E+010.17E+010.41E+000.21E+010.13E+010.88E+000.I5E+010.23E+010.28E+000.76E+00

KO11

0.60E+000.10E+020.28E+010.12E+010.48E+010.36E+010.18E+000.22E+010.65E+010.11E+000.23E+000.37E+010.15E+010.69E+010.26E+010.15E+000.46E+010.30E+010.25E+010.35E+010.19E+010.42E+000.29E+0I0.27E+010.22E+000.43E+010.18E+010.87E+000.36E+010.20E+010.51E+000.28E+010.12E+010.79E+000.15E+010.15E+010.12E+010.20E+01

LA11

0.78E+000.78E+000.16E+010.64E+000.64E+000.19E+010.52E+000.52E+000.17E+010.59E+000.59E+00

MA11

0.11E+010.75E+010.22E+010.42E+000.49E+000.61E+01O.I6E+000.17E+000.58E+010.15E+000.21E+00O.35E+O10.88E+000.19E+020.19E+010.36E+000.35E+010.18E+010.49E+000.78E+000.10E+020.39E+010.36E+020.43E+010.14E+010.31E+020.27E+010.91E+000.59E+010.14E+010.54E+000.26E+010.16E+010.I2E+010.24E+010.20E+010.40E+000.68E+00

Mil l

0.12E+010.24E+010.27E+010.27E+010.28E+010.28E+01O.78E+OO0.4JE+010.16E+010.92E+000.19E+010.14E+010.13E+010.16E+010.22E+010.I5E+010.26E+010.13E+010.92E+000.14E+010.22E+010.44E+000.47E+000.13E+010.12E+010.14E+010.25E+010.22E+010.27E+010.24E+010.18E+010.29E+010.16E+010.12E+010.20E+010.13E+010.12E+010.13E+01

MI21

0.13E+010.16E+010.41E+010.34E+010.49E+010.17E+010.99E+000.21E+010.20E+010.44E+000.18E+010.54E+010.48E+010.61E+010.37E+010.36E+010.38E+010.30E+010.25E+01O.35E+O10.11E+010.85E+000.11E+010.11E+010.10E+010.12E+010.12E+010.79E+000.99E+000.22E+010.19E+010.25E+010.19E+010.51E+000.56E+000.23E+010.21E+010.25E+01

SHU

0.14E+010.29E+020.16E+020.22E+010.47E+02

0.10E+020.13E+010.67E+020.24E+010.47E+000.69E+01

0.20E+010.49E+000.49E+000.30E+010.40E+000.15E+020.15E+010.67E+000.22E+010.18E+010.56E+00O.35E+010.12E+010.71E+000.13E+010.16E+010.44E+000.12E+01

SH21

0.84E+000.32E+010.17E+010.47E+000.19E+010.16E+010.53E+000.10E+010.28E+010.64E+000.40E+010.17E+010.46E+000.24E+010.23E+010.90E-010.11E+010.16E+010.13E+010.19E+010.27E+010.17E+010.41E+010.25E+010.83E+000.96E+010.17E+010.63E+000.29E+010.20E+010.88E+000.36E+010.12E+010.94E+000.16E+010.16E+010.41E+000.10E+01

SH31

0.10E+010.18E+010.23E+010.95E+000.47E+010.29E+010.27E+000.55E+000.35E+010.22E+000.40E+000.31E+010.13E+010.15E+020.19E+010.20E+000.28E+010.12E+010.93E+000.14E+010.13E+010.64E+000.10E+010.19E+010.32E+000.60E+010.22E+010.39E+000.44E+010.11E+020.33E+010.25E+020.14E+010.84E+000.18E+010.17E+010.89E+000.22E+01

son

0.12E+010.12E+010.27E+010.23E+010.31E+010.15E+010.60E+000.84E+000.21E+010.38E+000.68E+000.39E+020.68E+010.35E+030.23E+020.28E+0I0.16E+030.40E+010.34E+010.59E+010.30E+010.14E+010.56E+010.39E+010.97E+000.38E+020.29E+010.94E+000.70E+010.40E+010.22E+01O.UE+020.14E+010.11E+0I0.20E+010.24E+010.14E+010.48E+01

TA11

0.21E+000.40E+00O.53E+010.11E+000.42E+000.43E+020.36E-020.16E+000.10E+020.47E-010.30E+00O.34E+O10.15E+000.48E+000.12E+020.99E-020.29E+000.31E+010.25 E+000.46E+000.41E+010.18E+000.38E+000.56E+010.56E-010.48E+000.52E+010.82E-010.35E+000.31E+010.14E+000.62E+000.29E+010.24E+000.46E+000.25E+010.28E+000.52E+00

YOU

0.10E+010.13E+010.22E+010.40E+000.54E+000.56E+010.14E+000.23E+000.45E+010.15E+000.38E+000.12E+010.81E+000.15E+010.26E+010.32E+000.47E+000.26E+010.31 E+000.44E+000.12E+010.10E+010.13E+010.12E+010.99E+000.15E+010.11E+010.90E+000.12E+010.18E+010.17E+010.20E+010.14E+010.13E+010.15E+010.12E+010.74E+000.88E+00

67

Page 69: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 7, part II: Average deviation factors of calculated from experimental data for energies between 51.0 and 200.0 MeV. For each reaction three entries are given: <F>, F m j n and F m a x .

contributionreactionZR-0(P,PXN)ZR-86

ZR-0(P,PXN)ZR-88

ZR-0(P,PXN)ZR-89

ZR-0(P,PXN)ZR-95

ZR-0(P,XN)NB-90

ZR-0(P,XN)NB-95

AU-197(P,76PXXN)BE-7

AU-197(P,69PXXN)NA-24

AU-197(P,46P77N)SE-75

AU-197(P,45P71N)BR-82

AU-I97(P,43P69N)RB-86

AU-197(P,42P71N)SR-85

AU-197(P,41P69N)Y-88

GL12

0.14E+010.50E+000.18E+010.13E+010.77E+000.15E+010.13E+010.93E+000.16E+010.21E+010.16E+010.24E+010.11E+010.90E+000.13E+010.71E+010.25E+010.18E+02

IS11

0.19E+010.12E+000.14E+010.12E+010.75E+000.13E+010.12E+010.66E+000.13E+010.13E+010.60E+000.11E+010.14E+010.52E+000.14E+010.13E+010.70E+000.15E+0I

0.55E+010.55E+010.55E+01

KA11

0.22E+010.39E+000.29E+010.20E+010.14E+010.24E+010.13E+010.97E+000.16E+010.28E+010.20E+010.42E+010.12E+010.62E+000.14E+010.10E+020.57E+010.43 E+02

0.29E+010.23E+010.34E+01

0.92E+010.92E+010.92E+010.57E+010.26E+010.11 E+020.58E+010.37E+O1

KOII

0.24E+010.15E+000.44E+010.12E+010.67E+000.12E+010.12E+010.90E+000.16E+010.17E+010.12E+010.29E+010.14E+010.91E+000.20E+010.86E+010.37E+010.30E+02

LA11 MA11

0.10E+020.48E+010.29E+020.17E+010.14E+010.21E+010.13E+010.11E+010.16E+010.11E+010.91E+000.12E+010.13E+010.68E+000.14E+010.57E+010.29E+010.11 E+02

Mill

0.13E+010.83E+000.16E+010.15E+010.10E+010.19E+010.13E+010.95E+000.15E+010.11E+010.97E+000.13E+010.14E+010.54E+000.13E+010.85E+010.67E+010.11 E+02

MI21

0.44E+010.20E+000.28E+000.40E+010.25E+000.26E+000.51E+010.18E+000.21E+000.15E+010.65E+000.19E+010.29E+02O.33E-O10.37E-010.84E+010.66E-010.24E+000.28E+010.93E-010.13E+010.25E+010.40E+000.40E+000.71E+010.92E-010.38E+000.85E+010.38E+010.24E+020.91E+010.91 E+010.91E+010.33E+010.12E+000.12E+010.32E+010.66E-01

SHU

0.32E+010.18E+000.15E+020.13E+010.64E+000.15E+010.16E+010.13E+010.21 E+01

0.12E+010.71E+000.13E+01

0.25E+010.12E+000.10E+01

SH21

0.32E+010.96E+000.11 E+020.12E+010.68E+000.11E+010.13E+010.67E+000.11E+01

0.13E+010.57E+000.14E+01

0.16E+010.16E+010.16E+01

0.48E+010.15E+01

SH31

0.19E+010.22E+000.28E+010.13E+010.97E+000.15E+010.15E+010.10E+010.19E+01

0.17E+010.99E+000.24E+01

SOU

0.23E+010.19E+000.12E+010.12E+010.95E+000.14E+010.12E+010.10E+010.15E+010.16E+010.13E+010.19E+010.12E+010.74E+000.13E+010.54E+010.25E+010.10E+02

0.23E+010.30E+000.86E+00

0.11E+010.11E+010.11E+010.28E+010.20E+000.34E+010.28E+010.17E+00

TA11

0.97E+010.12E-010.22E+000.30E+010.27E+000.42E+000.31 E+010.26E+000.39E+000.24E+01O.33E+0O0.57E+000.54E+010.14E+000.27E+000.16E+010.69E+000.24E+01

0.78E+010.13E+000.13E+000.18E+010.43E+000.71E+00

0.13E+020.13E+020.13E+020.17E+010.23E+000.17E+010.21 E+010.20E+00

YOU

0.13E+010.11E+010.15E+010.14E+010.12E+010.15E+010.14E+010.13E+010.14E+010.13E+010.12E+010.14E+010.15E+010.60E+000.78E+000.67E+010.59E+010.77E+01

0.38E+010.20E+000.34E+000.22E+010.21 E+010.24E+010.54E+010.54E+010.54E+010.21 E+010.21E+000.83E+000.45E+010.75E-01

68

Page 70: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 7, part II: Average deviation factors of calculated from experimental data for energies between 51.0 and 200.0 MeV. For each reaction three entries are given: <F>, F m j n and F m a x .

contributionreaction

AU-197(P,40P63N)ZR-95

AU-197(P,39P64N)NB-95

AU- 197(P,36P59N)RU-103

AU-197(P,8P15N)HF-175

AU-197(P,5P12N)RE-181

AU-197(P,5P10N)RE-183

AU-197(P,4P12N)OS-182

AU-197(P,4P9N)OS-185

AU-197(P,3P10N)IR-185

AU-197(P,3P9N)IR-186

AU-197(P,3P8N)IR-187

AU-197(P,3P7N)IR-188

AU-197(P,3P6N)IR-189

GL12

0.28E+020.90E+010.66E+020.25E+010.40E+000.40E+000.23E+010.52E+000.1IE+020.29E+010.94E+000.16E+02O.53E+O10.51E+000.44E+020.17E+010.52E+000.67E+000.33E+010.18E+000.15E+010.14E+010.69E+000.13E+010.11E+020.11E+020.11E+020.24E+01

IS11

0.44E+010.27E+010.59E+010.72E+010.31E+010.12E+020.12E+020.80E+010.14E+02

0.22E+010.46E+000.46E+000.66E+010.39E-O10.78E+01

0.45E+010.37E-0I0.73E+010.69E+010.53E+010.79E+010.22E+010.43E+000.32E+010.34E+010.24E+010.44E+010.20E+010.50E+000.50E+000.17E+01

KA11

0.74E+010.13E+020.67E+0I0.21E+020.66E+010.26E+010.17E+020.48E+010.25E+010.14E+020.58E+010.11 E+000.32E+000.29E+010.34E+000.34E+000.I1E+020.76E-020.26E+000.81E+010.43E-010.28E+000.48E+010.26E-010.10E+010.UE+010.90E+000.11E+010.23E+010.64E+000.33E+010.15E+010.91 E+000.18E+010.11E+010.90E+000.90E+000.25E+01

KO11

0.50E+020.45E+010.11E+030.89E+010.28E+010.22E+020.60E+010.96E-0I0.62E+020.26E+010.30E+000.44E+000.73E+010.26E+010.16E+020.29E+020.15E+020.50E+020.40E+010.40E+010.40E+010.15E+0I

LA11

0.13E+010.78E+000.78E+00

0.12E+010.12E+010.12E+01

MA11

0.21E+010.49E+000.49E+000.3IE+010.17E+010.60E+010.68E+010.17E+010.22E+020.66E+010.36E-010.11E+030.17E+010.11E+010.20E+010.41E+010.24E+010.71E+010.12E+010.92E+000.13E+010.23E+010.43E+000.43E+000.2IE+0I

Mill MI21

0.28E+010.56E+010.25E+010.18E+020.25E+010.80E+000.59E+010.83E+010.31E+010.22E+020.16E+020.52E-010.81E-010.20E+010.20E+010.20E+01O.15E+O30.15E+020.14E+040.37E+010.12E+010.14E+02O.85E+O10.13E-010.29E+010.14E+010.11E+010.15E+010.28E+010.12E+000.14E+010.20E+010.20E+010.20E+010.50E+010.50E+010.50E+010.26E+01

SH11

0.25E+010.25E+000.98E+00

0.13E+01

SH21

0.68E+010.42E+010.13E+010.21E+020.16E+010.55E+000.32E+010.19E+010.93E+000.40E+010.24E+010.32E+000.63E+000.13E+010.77E+000.77E+000.27E+010.78E-010.26E+010.20E+010.29E+000.29E+010.25E+010.15E+000.21E+010.12E+010.71E+000.10E+010.77E+010.32E+010.12E+020.14E+010.68E+000.12E+010.14E+010.14E+010.I4E+010.15E+01

SH31

0.12E+010.86E+000.86E+000.35E+010.39E-010.20E+010.23E+010.17E+000.18E+010.24E+010.14E+000.28E+010.16E+010.54E+000.70E+000.62E+010.28E+010.97E+010.15E+010.60E+000.12E+010.11E+010.11E+010.11E+010.2IE+01

son

0.15E+010.24E+010.91 E+000.61E+010.21E+010.34E+000.19E+010.17E+010.73E+000.32E+01

0.18E+010.47E+000.62E+000.29E+030.11E+030.66E+030.15E+010.55E+000.11E+010.21E+010.21E+010.21E+010.I2E+0I

TA11

0.13E+010.48E+010.24E+010.80E+010.66E+010.43E+010.12E+020.48E+010.34E+010.11E+020.28E+010.24E+000.68E+000.25E+010.41 E+000.41 E+000.76E+010.15E-010.36E+000.49E+010.76E-010.50E+000.12E+020.12E-010.63E+000.15E+010.61E+000.74E+000.17E+010.48E+000.21E+010.15E+010.71E+000.16E+010.13E+010.75E+000.75E+000.36E+01

YOU

0.45E+000.16E+010.13E+010.25E+010.28E+010.20E+010.35E+010.21E+010.18E+010.29E+010.19E+020.38E-010.79E-010.24E+010.42E+000.42E+000.61E+010.18E-010.44E+000.41E+010.87E-010.64E+000.32E+010.47E-010.82E+000.12E+01-0.79E+000.99E+000.16E+010.44E+000.17E+010.15E+010.75E+000.17E+010.14E+010.72E+000.72E+000.12E+01

69

Page 71: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 7, part II: Average deviation factors of calculated from experimental data for energies between 51.0 and 200.0 MeV. For each reaction three entries are given: <F>, F m j n and F m a x .

contributionreaction

AU-197(P,3P5N)IR-190

AU-197(P,3P3N)IR-192

AU-197(P,2P8N)PT-188

AU-197(P,2P7N)PT-189

AU-197(P,2P5N)PT-191

AU-197(P,P4N)AU-193

AU-197(P,P3N)AU-194

AU-197(P,P2N)AU-195

AU-197(P,PN)AU-196

AU-I97(P,5N)HG-I93 j

AU-197(P,4N)HG-194

AU-197(P,3N)HG-195

GL12

0.49E+000.72E+010.25E+020.18E+020.40E+020.13E+030.48E+020.41E+030.24E+010.47E+000.70E+010.27E+010.80E+000.23E+020.12E+010.64E+000.11E+01

0.16E+010.86E+000.20E+010.I6E+010.14E+010.17E+010.23E+010.19E+010.26E+01

0.14E+010.13E+010.15E+010.15E+010.45E+000.11E+01

IS11

0.14E+010.19E+010.25E+010.31E+000.32E+010.19E+010.28E+000.20E+010.31E+010.72E+000.38E+01

0.73E+010.65E+000.79E+020.29E+010.29E+010.29E+010.12E+010.81E+000.16E+010.13E+010.57E+000.14E+010.12E+010.82E+000.15E+010.43 E+010.20E+000.12E+020.19E+010.47E+000.60E+000.24E+010.27E+000.18E+01

KAI1

0.14E+000.95E+000.21E+010.63E+000.55E+010.16E+010.43E+000.15E+010.16E+010.29E+000.13E+010.23E+010.68E+000.60E+010.12E+010.57E+000.14E+010.25E+010.25E+010.25E+010.16E+010.62E+000.21 E+010.17E+010.16E+010.19E+010.21 E+010.15E+010.26E+010.58E+010.20E+010.14E+020.19E+010.17E+010.22E+010.15E+010.81E+000.25E+01

KO11

0.58E+000.18E+010.89E+010.48E+010.18E+020.43E+010.17E+010.64E+010.29E+010.17E+000.18E+010.30E+0I0.11E+010.17E+020.13E+010.70E+000.15E+010.32E+010.32E+010.32E+010.14E+010.74E+000.30E+010.20E+010.11 E+010.37E+010.15E+010.73E+000.27E+010.34E+010.12E+010.57E+010.16E+010.89E+000.19E+010.20E+010.29E+000.13E+01

LAH

0.11E+010.95E+000.95E+00

0.15E+010.15E+010.15E+010.11 E+010.11E+010.11E+01

0.12E+010.I2E+010.12E+01

MA11

0.22E+000.30E+010.43E+010.17E+000.59E+000.44E+010.15E+000.96E+000.15E+010.56E+000.27E+010.31 E+010.10E+010.15E+020.13E+010.68E+000.16E+010.28E+010.28E+010.28E+010.14E+010.75E+000.18E+010.16E+010.12E+010.18E+010.14E+010.11E+010.18E+010.45E+010.11E+010.90E+010.15E+010.13E+010.16E+010.16E+010.47E+000.13E+01

Mill MI21

0.99E-010.13E+010.26E+010.24E+000.66E+000.14E+010.76E+000.23E+010.22E+010.23E+000.16E+010.24E+010.46E+000.34E+010.14E+010.50E+000.18E+01

0.14E+010.50E+000.12E+010.15E+010.48E+000.11E+010.12E+010.82E+000.16E+010.36E+010.10E+010.94E+010.13E+010.13E+010.13E+OI0.17E+010.39E+000.15E+0I

SH11

0.70E+000.11E+010.34E+010.30E+010.37E+010.68E+020.64E+020.70E+020.29E+010.20E+000.49E+000.53E+010.23E+010.12E+020.12E+010.82E+000.12E+01

0.15E+010.10E+010.20E+010.13E+010.12E+010.14E+010.22E+010.18E+010.26E+0I0.59E+010.24E+010.12E+020.11E+010.91E+000.91 E+000.16E+010.68E+000.24E+01

SH21

0.40E+000.10E+010.32E+010.90E+000.92E+010.39E+010.79E+000.22E+020.14E+010.36E+000.16E+010.23E+010.15E+010.71 E+010.12E+010.72E+000.13E+010.19E+010.19E+010.19E+010.14E+010.12E+010.20E+010.12E+010.10E+010.13E+010.13E+010.9SE+000.16E+010.30E+010.10E+010.58E+010.12E+010.79E+000.94E+000.22E+010.32E+000.84E+00

SH31

0.20E+000.88E+000.15E+010.61 E+000.14E+010.15E+010.49E+000.81 E+000.18E+010.22E+000.11E+010.23E+010.87E+000.86E+010.12E+010.75E+000.15E+010.18E+010.18E+010.18E+010.14E+010.10E+010.17E+010.13E+010.11E+010.16E+010.17E+010.90E+000.21 E+010.50E+010.17E+010.12E+020.12E+010.10E+010.13E+010.15E+010.56E+000.19E+01

SOU

0.86E+000.86E+000.12E+020.13E+010.68E+020.21E+010.14E+010.40E+010.27E+010.13E+000.12E+020.21 E+010.34E+000.38E+010.21E+020.85E+000.18E+040.21E+010.21 E+010.21 E+010.14E+010.10E+010.17E+010.14E+010.13E+010.17E+010.16E+010.11E+010.19E+010.44E+010.15E+010.98E+010.13E+010.10E+010.14E+010.16E+010.47E+000.15E+01

TA11

0.91E-010.12E+010.40E+010.14E+000.60E+000.41 E+010.14E+000.48E+000.28E+010.93E-010.13E+010.25E+010.44E+000.32E+010.14E+010.78E+000.20E+010.25E+010.25E+010.25E+010.22E+010.15E+010.39E+010.16E+010.14E+010.19E+010.18E+010.10E+010.23E+010.45E+010.16E+010.11E+020.12E+010.96E+000.13E+010.17E+010.42E+000.15E+01

YOU

0.74E+000.11E+010.14E+010.57E+000.90E+000.13E+010.10E+010.18E+010.15E+0I0.26E+000.13E+010.23E+010.18E+010.29E+010.11E+010.95E+000.12E+010.23E+010.23E+010.23E+0I0.17E+010.14E+010.20E+010.14E+010.13E+010.I6E+010.14E+010.11E+010.17E+010.27E+010.16E+010.46E+010.10E+010.10E+010.10E+010.18E+0I0.42E+000.94E+00

70

Page 72: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part 1: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, Fm j n and F m a x .

contributionreactionO-0(P,5PXN)BE-7

O-0(P,5PXN)BE-10

O-0(P,3PXN)C-14

AL-27(P,13PXN)H-3

AL-27(P,12PXN)HE-3

AL-27(P,12PXN)HE-4

AL-27(P,10PllN)BE-7

AL-27(P,10P8N)BE-I0

AL-27(P,4PXN)NE-20

AL-27(P,4PXN)NE-2I

AL-27(P,4PXN)NE-22

AL-27(P,3P3N)NA-22

AL-27(P,3PN)NA-24

BE11 BL11 BL12 BL13 BL21 BL23 CM11 CM12 CM13

0.I1E+010.UE+010.11E+010.32E+010.32E+010.32E+01

CS1I

0.62E+0I0.45E+010.10E+020.15E+010.49E+000.12E+010.13E+010.72E+000.84E+000.22E+010.12E+010.34E+01

0.12E+010.78E+000.12E+010.30E+030.70E+020.11E+040.19E+020.12E+020.48E+020.29E+010.22E+010.34E+010.12E+010.82E+000.14E+01

0.13E+010.65E+000.13E+010.14E+010.55E+00

FLU

0.25E+010.23E+010.26E+010.26E+0I0.18E+010.33E+010.15E+010.12E+010.17E+010.16E+030.24E+020.17E+040.10E+030.31E+020.38E+03

0.11E+010.78E+000.11E+010.18E+010.1SE+01

FO11 FR11

0.13E+010.63E+000.13E+010.13E+010.69E+000.11E+010.16E+010.53E+000.12E+010.15E+010.10E+010.22E+010.15E+010.49E+00

FR12

0.12E+010.94E+000.13E+010.12E+010.68E+000.11E+010.14E+010.67E+000.17E+010.25E+010.20E+010.40E+010.18E+010.40E+00

G U I

0.27E+010.12E+010.52E+010.47E+010.14E+010.13E+020.72E+010.72E+010.72E+01

0.18E+010.14E+010.23E+010.18E+010.14E+010.23E+010.15E+010.10E+010.19E+010.15E+010.89E+000.23E+010.18E+010.11E+01

71

Page 73: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part I: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, Fm jn and F m a x .

contributionreaction

AL-27(P,PN)AL-26

FE-0(P,26PXN)H-3

FE-0(P,25PXN)HE-3

FE-0(P,25PXN)HE-4

FE-0(P,23PXN)BE-7

FE-0(P,23PXN)BE-10

FE-0(P,17PXN)NE-20

FE-0(P,17PXN)NE-21

FE-0(P,17PXN)NE-22

FE-0(P,16PXN)NA-22

FE-0(P,16PXN)NA-24

FE-0(P,15PXN)MG-28

FE-0(P,14PXN)AL-26

BE11 BL11 BL12 BL13 BL21 BL23 CM11 CM12 CM13 CS11

0.13E+010.11E+010.81E+000.11E+010.17E+010.95E+000.33E+01

0.17E+010.86E+000.28E+01

0.39E+020.33E+020.46E+020.58E+010.23E+010.93E+010.37E+010.75E+000.39E+020.29E+010.14E+010.57E+010.44E+0I0.72E+000.26E+020.21E+010.25E+000.40E+010.10E+020.24E+010.76E+020.32E+01

FLU

0.21E+01

0.18E+010.12E+010.21E+010.26E+010.15E+010.64E+010.31E+010.22E+010.59E+010.12E+030.85E+020.16E+030.66E+030.66E+030.66E+030.16E+010.13E+010.18E+010.70E+010.11E+010.42E+020.I7E+020.55E+010.52E+020.20E+020.40E+000.98E+020.14E+020.27E+010.51E+020.33E+020.26E+020.42E+020.47E+01

FO11 FR11

O.85E+OO0.11E+010.87E+000.11E+01

0.29E+020.29E+020.29E+02

0.26E+010.56E+000.72E+010.12E+010.81E+000.12E+01

FR12

0.73E+000.20E+010.47E+000.56E+00

0.83E+010.72E+000.15E+02

0.24E+010.31E+00O.63E+00

GL11

O.37E+010.25E+010.16E+010.36E+01

72

Page 74: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part I: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, Fm j n and F m a x .

contributionreaction

FE-0(P,10PXN)CL-36

FE-0(P,9PXN)AR-36

FE-0(P,9PXN)AR-38

FE-0(P,8PXN)K-42

FE-0(P,8PXN)K-43

FE-0(P,6PXN)SC-46

FE-0(P,6PXN)SC-47

FE-0(P,6PXN)SC-48

FE-0(P,5PXN)TI-44

FE-0(P,4PXN)V-48

FE-0(P,3PXN)CR-48

FE-0(P,3PXN)CR-51

BE11 BL11 BL12 BL13 BL21 BL23 CM11 CM12 CM13 CS11

0.97E+000.91E+010.19E+010.36E+000.35E+010.12E+020.66E-010.12E+000.14E+010.53E+000.13E+010.14E+010.95E+000.17E+010.25E+010.13E+010.45E+010.14E+010.56E+000.17E+010.15E+010.10E+010.24E+010.18E+010.15E+010.22E+01

0.13E+010.87E+000.20E+010.14E+020.58E+010.46E+020.15E+010.10E+010.20E+01

FLU

0.21E+000.12E+020.26E+010.39E+000.65E+010.23E+010.37E+000.52E+000.14E+010.53E+000.13E+01

0.27E+010.23E+01O.33E+O1

0.14E+010.58E+000.11E+010.13E+010.57E+000.12E+0I0.12E+010.95E+000.16E+01

FO11

0.67E+010.37E-010.48E+000.46E+010.19E+000.26E+000.72E+010.94E-010.22E+000.78E+010.13E+000.13E+000.37E+010.40E+000.11E+020.36E+010.15E+000.30E+020.62E+010.30E+000.34E+02

0.41E+010.19E+00O.35E+010.68E+010.18E+010.50E+040.21E+010.87E+000.45E+010.29E+030.86E+020.51E+03

FR11

0.34E+020.16E+020.11E+03

0.14E+0I0.70E+000.19E+010.29E+010.34E+000.34E+000.13E+020.54E-010.95E-010.16E+010.39E+000.99E+000.60E+010.11E+000.24E+00

0.45E+020.78E+010.33E+03

0.44E+010.22E+010.74E+01

FR12

0.28E+020.84E+010.10E+03

0.13E+010.11E+010.15E+010.29E+010.34E+000.34E+00O.I1E+020.74E-010.11E+000.22E+010.31E+000.15E+010.52E+010.15E+000.27E+00

0.10E+020.52E+010.75E+02

0.34E+010.22E+010.84E+01

GL11

0.16E+01O.54E+000.30E+010.21E+010.10E+010.57E+01

0.23E+010.33E+000.15E+010.15E+010.49E+000.21E+010.16E+010.77E+000.25E+010.20E+0I0.15E+010.32E+01

73

Page 75: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part I: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, Fm j n and F m a x .

contributionreactionFE-0(P,2PXN)MN-52

FE-0(P,2PXN)MN-54

FE-O(P,PXN)FE-55

FE-0(P,XN)CO-55

FE-0(P,XN)CO-56

FE-0(P,XN)CO-57

FE-0(P,XN)CO-58

CO-59(P,P3N)CO-56

CO-59(P,P2N)CO-57

CO-59(P,PN)CO-58

CO-59(P,4N)NI-56

CO-59(P,3N)NI-57

ZR-0(P,30PXN)NA-22

BE11 BL11 BL12 BL13 BL21 BL23

0.13E+010.68E+000.84E+000.12E+010.84E+000.91E+000.11E+010.91E+000.98E+00

0.17E+010.52E+000.64E+00

CM11 CM12 CM13 CS11

0.13E+010.81E+000.17E+010.13E+010.97E+000.15E+0I0.12E+020.10E+020.14E+020.25E+010.23E+000.34E+010.23E+010.53E+000.65E+01

0.29E+010.21E+010.36E+010.14E+010.10E+010.16E+010.17E+010.64E+000.23E+010.25E+010.29E+000.60E+000.19E+010.24E+000.25E+01

FLU

0.28E+010.31E+000.49E+000.14E+010.12E+010.16E+010.12E+010.73E+000.94E+000.33E+010.24E+000.35E+000.42E+010.19E+000.69E+00

0.26E+010.33E+000.49E+000.12E+010.74E+000.10E+010.13E+01O.58E+OO0.96E+000.47E+010.16E+000.29E+000.52E+010.15E+000.26E+000.13E+020.12E+02

Fon FRH

0.74E+010.21E+010.21E+020.16E+010.54E+000.88E+000.14E+010.12E+010.17E+010.27E+010.11E+010.41E+010.16E+0I0.39E+000.16E+01

FR12

0.29E+010.19E+010.59E+010.16E+010.55E+000.90E+000.13E+010.67E+000.89E+000.14E+010.62E+000.11E+01O.35E+O10.13E+000.98E+00

GUI

0.12E+010.94E+000.I6E+010.20E+010.14E+010.34E+010.43E+010.36E+010.51E+010.19E+010.50E+000.56E+000.27E+010.32E+000.70E+000.19E+010.10E+010.27E+010.17E+010.11E+010.22E+010.24E+010.22E+010.30E+010.25E+010.22E+010.36E+010.28E+010.21E+010.48E+010.39E+010.33E+010.48E+010.18E+010.12E+010.25E+01

74

Page 76: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part I: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, Fm jn and F m a x .

contributionreaction

ZR-0(P,20PXN)SC-46

ZR-0(P,18PXN)V-48

ZR-0(P,17PXN)CR-51

ZR-0(P,16PXN)MN-54

ZR-0(P,15PXN)FE-59

ZR-0(P,14PXN)CO-56

ZR-0(P,I4PXN)CO-57

ZR-0(P,14PXN)CO-58

ZR-0(P,14PXN)CO-60

ZR-0(P,llPXN)ZN-65

ZR-0(P,10PXN)GA-67

ZR-0(P,9PXN)GE-68

ZR-0(P,9PXN)GE-69

BE11 B i l l BL12 BL13 BL21 BL23 CM11 CM12 CM13 CS11 FLU

0.14E+020.33E+010.98E+000.21E+020.60E+010.15E+000.26E+020.23E+010.33E+000.94E+000.19E+010.72E+000.52E+01

0.59E+010.97E-010.44E+00

0.26E+010.84E+000.10E+020.78E+010.62E+010.13E+020.16E+010.37E+000.22E+010.14E+010.49E+000.14E+01

0.17E+01

FO11

0.11E+020.34E-010.52E+000.51E+010.10E+000.62E+000.89E+010.54E-0I0.38E+000.30E+010.33E+000.33E+000.97E+010.77E-010.14E+000.10E+020.98E-010.10E+000.58E+010.68E-010.23E+010.47E+010.15E+000.66E+010.38E+010.18E+000.45E+000.46E+01

FR11

0.12E+020.67E-010.11E+00

0.31E+010.17E+010.43E+01

FR12

0.93E+010.70E-010.15E+00

0.79E+010.30E+010.18E+02

0.68E+020.65E+020.70E+02

G U I

75

Page 77: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part I: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, Fm j n and F m a x .

contributionreaction

ZR-0(P,8PXN)AS-71

ZR-0(P,8PXN)AS-73

ZR-0(P,8PXN)AS-74

ZR-0(P,7PXN)SE-72

ZR-0(P,7PXN)SE-75

ZR-0(P,6PXN)BR-76

ZR-0(P,6PXN)BR-77

ZR-0(P,5PXN)KR-78

ZR-0(P,5PXN)KR-79

ZR-0(P,5PXN)KR-80

ZR-0(P,5PXN)KR-81

ZR-0(P,5PXN)KR-82

BE11 BL11 BL12 BL13 BL21 BL23 CM11 CM12 CM 13 CS11 FLU

0.37E+000.86E+000.12E+010.67E+000.12E+01

0.40E+010.26E+010.50E+01

0.13E+010.73E+000.15E+01

0.14E+010.48E+000.11E+010.13E+010.13E+010.13E+010.13E+010.57E+000.12E+010.17E+010.17E+010.17E+010.18E+010.I8E+010.18E+010.20E+010.20E+010.20E+01

FO11

0.23E+000.16E+020.13E+020.19E+000.16E+03O.UE+020.18E+010.29E+020.36E+010.51E+000.88E+010.52E+010.36E+000.18E+020.97E+010.23E+000.50E+020.21E+010.21E+010.21E+010.46E+010.13E+000.14E+01

0.50E+010.17E+000.83E+01

FR11

0.47E+020.35E+020.59E+020.24E+020.15E+020.37E+020.18E+010.41E+000.25E+01

0.18E+020.41E+010.54E+020.63E+020.59E+020.68E+020.13E+020.57E+010.31E+020.28E+030.28E+030.28E+030.14E+020.73E+010.34E+020.22E+010.22E+010.22E+010.16E+010.16E+010.16E+010.13E+010.I3E+010.I3E+01

FR12

0.93E+020.68E+020.14E+030.14E+020.14E+020.14E+020.20E+010.97E+000.52E+01

0.29E+020.62E+010.15E+030.38E+020.29E+020.49E+020.38E+020.11E+020.97E+020.15E+020.15E+020.15E+020.32E+020.12E+020.11E+030.13E+010.13E+010.13E+010.20E+010.20E+010.20E+010.15E+010.15E+010.15E+01

GL11

76

Page 78: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

LL

mo

10+38£0I0+3E90IO+33IO00+3IW10+381010+3£KOlo+aero10+353010+3650IO+3£IOI0+38£0(0+3650I0+3W0lo+aceo£0+3910I0+3£30Z0+3PE030+3£t>010+315030+303000+309000+363010+393000+31 SO00+353010+383000+3K000+3KO10+3630[0-30S010-30S0

30+303000+31^000+31^0I0+3fr3010+311010+311010+3110

30+3S3030+3S3000+308000+36C010+3130IO+3£3O[0+3310I0+3SI0I0+3/.8010+3S30I0+3SS0I0+3i30lO+SHO10+3610£0+3010I0+38£030+3610£0+333030+3EI030+30^000+3SS0OO+Sl̂ 'OIO+SWO00+3i£000+3810I0+38E000+3£i000+3£i'0lO+3t-lO[0-366010-3660

30+301000+333000+3330IO+3SfO10+331010+3310(0+3310

IIMd

£0+303030+311030+3(90£0+3i£010+3Z.9 030+3950

30+301010+383 010+30SO[0+36^000+385010+3830I0+3££000+3830I0+3i3030+3310I0+3S^OI0+39i010+3K000+338010+3030

IIOJ

00+3W010+391010+3E3010+3010[0+3S1010+303010+331010+3910I0+35E0[0+3S1010+3330[0+363010+3310

lo+aiioI0+3Z.1010+3110io+3t-roI0+3£I000+38iO10+3110I0+38iO10+3690I0+3fri010+30E0IO+3£3O10+393000+3Z.8000+3i80[0+311010+381010+3810[0+3810[0+30£0I0+30E0I0+30C0I0+3E3010+3E3010+3E30

1111 USD 31W3 ma 3Hfl i n g uaa

98-HZ(NXd'd)0-aZ

88-A(NXd3'd)0-HZ

Z.8-A(MXd3'd)0">IZ

98-A(NXd3'd)0->lZ

S8">lS(NXd£'d)0->lZ

£8->IS(NXd£'d)0-^Z

38-MS(NXd£'d)0->JZ

98-a>l(NXdt''d)0->IZ

t>8-aa(NXdt''d)o->iZ

98-H^(NXdS'd)0-yZ

S8-"a>i(NXdS'd)0->12

fr8-ra(NXdS'd)0-tfZ

£8-a^(NXdS'd)o-azUOj|0B3J

uoi)nqu)uo3

•XBlUj pug UIWj • < j > : u 3 A i g 3 J B S3IJJU3 33jq) UOtpBSi q3E3 JOJ 'A 3 !^ O'OOOS PUB 0' 10Z U33M)3q S3|8J3U3 JOJ BJBp |BJU3UilJ3dX3 UIOJJ p3JB[n3|B3 JO SJ0J3BJ UOIJBIASp 3§BJ3AV :[ ]JBd 'g

Page 79: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part I: Average deviation factors of calculated from experimental datafor energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, F m j n and F m a x .

contributionreaction

ZR-0(P,PXN)ZR-88

ZR-0(P,PXN)ZR-89

ZR-0(P,PXN)ZR-95

ZR-0(P,XN)NB-90

ZR-0(P,XN)NB-95

AU-197(P,76PXXN)BE-7

AU-197(P,69PXXN)NA-22

AU-197(P,69PXXN)NA-24

AU-197(P,59P93N)SC-46

AU-197(P,55P89N)MN-54

AU-197(P,54P85N)FE-59

AU-197(P,53P87N)CO-58

AU-197(P,53P85N)CO-60

BE11 BLU BL12 BL13 BL21 BL23 CM11 CM12 CM13 CSH

0.10E+020.17E+010.28E+020.61E+010.23E-010.18E+010.8IE+010.72E-020.69E+010.60E+010.15E+000.54E+020.41E+010.53E-010.18E+010.76E+010.61 E+000.30E+020.75E+01O.53E+010.10E+020.51E+01

FLU

0.96E+000.12E+010.88E+000.16E+010.12E+010.60E+000.13E+010.17E+010.29E+000.99E+000.13E+010.82E+000.17E+010.65E+010.17E+010.11E+020.19E+030.10E+03O.3OE+030.20E+010.37E+000.13E+010.32E+010.88E-010.14E+020.37E+010.18E+000.71E+000.45E+010.15E+000.52E+000.18E+010.38E+000.14E+010.33E+010.23E+000.61E+000.20E+01

FOII

O.18E+O30.57E+020.45E+03

FR11

0.26E+020.22E+010.12E+010.43E+010.12E+010.86E+000.14E+01

0.23E+010.20E+010.26E+01

FR12

0.93E+010.29E+010.10E+010.63E+010.16E+010.42E+000.77E+00

0.46E+010.29E+010.66E+01

0.20E+010.32E+000.81 E+00

GUI

78

Page 80: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part I: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, Fm j n and

contributionreaction

AU-197(P,50P83N)ZN-65

AU-197(P,47P77N)AS-74

AU-197(P,46P77N)SE-75

AU-197(P,45P71N)BR-82

AU-197(P,43P71N)RB-84

AU-197(P,43P69N)RB-86

AU-197(P,42P71N)SR-85

AU-197(P,41P70N)Y-87

AU-197(P,41P69N)Y-88

AU-197(P,40P70N)ZR-88

AU-197(P,40P69N)ZR-89

AU-197(P,40P63N)ZR-95

BE11 BLU BL12 BL13 BL21 BL23 CM11 CM12 CM13 CS11

0.55E+000.45E+020.27E+010.16E+010.36E+010.37E+010.22E+010.12E+020.22E+010.14E+010.30E+01

0.15E+020.87E+010.23E+020.30E+020.23E+020.40E+020.49E+010.36E+010.67E+010.36E+010.20E+01O.57E+O10.20E+010.45E+000.29E+010.32E+010.16E+010.57E+01

FLU

0.32E+000.11E+010.26E+010.23E+000.99E+000.17E+010.37E+000.15E+010.22E+0]0.29E+000.12E+01

0.19E+010.47E+000.26E+010.45E+010.40E+010.57E+010.15E+010.54E+000.18E+010.16E+01O.55E+OO0.20E+010.34E+010.12E+000.88E+000.16E+010.38E+000.15E+010.17E+01O.38E+OO0.18E+010.60E+010.46E+010.11E+02

FO11 FRU

0.20E+010.11E+010.35E+01

0.22E+010.22E+010.22E+01

0.19E+010.40E+000.19E+01

FR12

0.20E+0I0.97E+000.42E+01

0.44E+010.31E+010.59E+01

0.17E+010.38E+000.95E+00

G U I

79

Page 81: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part I: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, Fm jn and F m a x .

contributionreactionAU-197(P,39P64N)NB-95

AU-197(P,37P65N)TC-96

AU-197(P,36P59N)RU-103

AU-197(P,35P61N)RH-102

AU-197(P,33P60N)AG-105

AU-197(P,30P55N)SN-113

AU-197(P,28P49N)TE-121

AU-197(P,26P45N)XE-127

AU-197(P,24P43N)BA-131

AU-197(P,22P37N)CE-139

AU-197(P,17P36N)EU-145

AU-197(P,17P34N)EU-147

AU-197(P,I7P33N)EU-148

BE11 BL11 BL12 BL13 BL21 BL23 CM11 CM12 CM13 CS11

0.31E+010.11E+010.74E+010.85E+010.51E+010.14E+020.35E+010.42E+000.62E+010.11E+020.11E+010.52E+020.34E+010.12E+010.11E+020.22E+010.90E+000.40E+010.21E+020.93E+010.42E+020.90E+020.82E+010.20E+030.14E+020.12E+0I0.37E+020.33E+010.14E+010.47E+010.54E+020.34E+020.77E+020.22E+010.10E+01

FLU

0.34E+010.26E+010.45E+010.18E+010.25E+000.12E+010.40E+010.29E+010.53E+010.16E+010.40E+000.14E+010.18E+010.46E+000.16E+010.29E+010.14E+000.17E+010.19E+010.30E+000.15E+010.41E+010.12E+000.49E+000.30E+010.17E+000.82E+000.46E+010.62E-010.96E+000.43E+010.86E-010.15E+010.33E+010.17E+000.18E+010.77E+010.65E-01

FOU FRU FR12

0.43E+010.30E+010.61E+01

0.13E+010.11E+010.17E+01

GL11

80

Page 82: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part I: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, F m l n and F m a x .

contributionreaction

AU-197(P,17P32N)EU-149

AU-197(P,16P36N)GD-146

AU- I97(P, 16P35N)GD-147

AU-197(P,16P33N)GD-149

AU-197(P,16P31N)GD-151

AU-197(P, 16P29N)GD-153

AU-197(P,15P34N)TB-]49

AU-197(P,15P32N)TB-151

AU-197(P,I5P30N)TB-153

AU-197(P,11P22N)TM-165

AU-197(P,11P2ON)TM-167

AU-197(P,11P19N)TM-168

AU-197(P, 10P22N)YB-166

BE11 BUI BL12 BL13 BL21 BL23 CM11 CM12 CM13 CS11

0.31E+01

0.10E+020.11E+010.20E+02

0.76E+01O.55E+O10.99E+010.16E+020.79E+010.50E+020.58E+020.21E+010.18E+030.24E+010.16E+000.30E+010.22E+020.13E+020.39E+02

0.77E+020.23E+020.19E+030.92E+020.73E+020.11E+030.47E+0I0.21E+000.21E+000.25E+02

FLU

0.42E+000.21E+010.47E+000.26E+010.35E+O10.13E+000.22E+010.19E+010.50E+000.25E+010.31E+010.18E+000.30E+010.20E+010.35E+000.20E+010.35E+010.89E-01 j0.14E+010.20E+020.80E-020.30E+000.69E+010.38E+000.13E+030.31E+010.14E+000.14E+010.22E+010.11E+010.24E+010.51E+010.28E+000.15E+030.92E+010.39E+010.12E+020.27E+01

FO11 FRU

0.22E+020.32E-010.73E-01

FR12

0.12E+010.96E+000.13E+01

0.17E+010.17E+010.17E+010.37E+010.2IE+000.15E+020.I4E+020.32E-010.18E+000.3SE+01

GUI

.....

81

Page 83: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part I: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, Fmin and F m a x .

contributionreaction

AU-197(P,10P19N)YB-169

AU-197(P,9P20N)LU-169

AU-197(P,9P19N)LU-I70

AU-197(P,9P18N)LU-171

AU-197(P,9P16N)LU-173

AU-197(P,8P18N)HF-172

AU-197(P,8P17N)HF-173

AU-197(P,8P15N)HF-175

AU-197(P,7P9N)TA-182

AU-197(P,6P!4N)W-178

AU-197(P,5P12N)RE-181

AU-197(P,5PUN)RE-182

BE11 B i l l BL12 BL13 BL21 BL23 CM11 CM12 CM13 CS11

0.10E+010.90E+020.18E+020.12E+010.62E+020.17E+020.23E+010.36E+020.40E+020.12E+02O.18E+030.36E+020.16E+010.24E+030.26E+020.22E+010.62E+020.22E+020.42E+000.48E+020.21E+020.50E+010.59E+020.61E+020.16E+020.18E+03

FLU

0.14E+000.22E+010.23E+010.21E+000.25E+010.28E+010.16E+000.33E+010.25E+010.22E+000.20E+010.32E+010.86E-010.41E+0I0.34E+010.14E+000.49E+010.35E+010.45E-010.20E+010.25E+010.14E+000.29E+010.24E+010.12E+000.23E+01

0.16E+010.58E+000.26E+0I0.34E+010.13E+000.15E+01

FO11

0.21E+010.19E+010.22E+010.44E+010.41E+010.48E+01

0.47E+010.18E+000.39E+01

0.43E+010.14E+010.94E+01

FR11

0.28E+020.67E+010.77E+02

0.49E+010.56E+000.97E+010.36E+010.63E-010.44E+010.78E+010.84E+000.16E+02

0.82E+010.81E+000.22E+020.22E+010.30E+000.80E+00

0.27E+020.17E-0I0.10E+00

FR12

0.21E+010.62E+010.21E+010.11E+010.60E+010.22E+020.63E+010.52E+020.33E+010.81E+000.86E+010.45E+010.18E-010.27E+010.35E+010.53E-010.37E+010.52E+010.16E-010.61E+010.29E+010.15E+000.21 E+010.37E+010.57E-01O.UE+020.97E+010.79E-010.14E+000.59E+010.29E+010.I4E+020.78E+01O.58E+OO0.23E+030.22E+020.24E-010.11E+00

GL11

82

Page 84: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part I: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, F m j n and

contributionreactionAU-197(P,5PI0N)RE-I83

AU-197(P,4P12N)OS-182

AU-197(P,4P9N)OS-185

AU-197(P,4P3N)OS-191

AU-197(P,3P10N)IR-185

AU-197(P,3P9N)IR-186

AU-197(P,3P8N)IR-187

AU-197(P,3P7N)IR-188

AU-197(P,3P6N)IR-I89

AU-197(P,3P5N)IR-190

AU-197(P,3P3N)IR-I92

AU-197(P,2P8N)PT-188

AU-]97(P,2P7N)PT-!89

BE1I BL11 BL12 BL13 BL21

0.15E+030.13E+030.18E+03

0.59E+010.59E+010.59E+01

0.52E+010.29E+010.80E+010.24E+020.23E+020.25E+02

0.11E+010.88E+000.10E+010.51E+01 _,0.40E+010.57E+010.36E+010.35E+010.36E+010.11E+010.94E+00O.HE+010.30E+010.30E+01

BL23 CM1I CM12 CM13 CS11

0.15E+020.42E+010.62E+020.49E+010.27E+010.77E+010.26E+010.14E+010.39E+010.25E+010.17E+000.85E+000.30E+010.67E+000.51E+010.21E+010.14E+010.33E+010.63E+010.41E+010.90E+010.21E+010.64E+00O.58E+O10.62E+010.45E+010.12E+020.30E+010.20E+000.65E+000.50E+010.68E-010.49E+000.32E+010.25E+010.50E+0I

FLU

0.16E+010.76E+000.21E+010.17E+010.47E+000.27E+010.18E+010.96E+000.27E+0I0.49E+020.11E+020.15E+030.17E+01O.33E+0O0.18E+010.42E+010.31E+010.55E+010.16E+01O.llE+Ot0.2IE+010.44E+010.23E+010.96E+010.18E+010.98E+000.36E+010.18E+010.61E+000.27E+010.15E+01O.UE+010.22E+010.15E+010.10E+010.24E+010.29E+010.27E+01

FO11

0.58E+010.13E+000.24E+000.24E+010.25E+000.64E+00

0.31E+010.12E+000.86E+000.82E+010.21E+010.23E+02

0.51E+010.74E+000.14E+02

FR11

0.12E+010.78E+000.14E+010.16E+02O.38E+O10.93E+020.14E+020.82E+00O.70E+020.23E+010.28E+000.61E+000.18E+020.31E+010.63E+020.21E+010.17E+010.25E+010.73E+010.98E+000.3JE+020.34E+010.16E+000.1IE+010.20E+0]0.13E+010.30E+010.42E+010.87E-010.10E+010.14E+010.56E+000.13E+010.15E+020.16E+010.92E+020.24E+020.51E+01

FR12

0.13E+010.80E+000.14E+010.25E+010.56E+000.54E+010.97E+010.26E+010.34E+020.40E+010.82E-010.11E+010.20E+010.77E+000.32E+010.27E+010.23E+010.32E+010.12E+010.90E+000.13E+010.26E+010.21E+000.41E+010.17E+010.12E+010.22E+01O.23E+010.20E+000.11E+010.18E+010.34E+000.12E+010.38E+010.90E+000.2SE+020.96E+010.21E+01

G U I

83

Page 85: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part I: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, Fm jn and F m a x .

contributionreaction

AU-197(P,2P5N)PT-191

AU-197(P,P4N)AU-193

AU-197(P,P3N)AU-194

AU-197(P,P2N)AU-195

AU-197(P,PN)AU-196

BE11 BL11 BL12 BL13 BL21

0.30E+010.13E+010.70E+000.82E+000.10E+010.97E+000.97E+000.14E+010.64E+000.90E+000.14E+010.72E+000.72E+000.13E+010.12E+010.15E+01

BL23 CM11 CM12 CM13 CSU

0.23E+010.14E+010.36E+010.21E+010.83E+000.29E+010.13E+010.75E+000.15E+010.18E+010.13E+010.23E+010.12E+010.77E+000.15E+01

FLU

0.30E+010.13E+010.99E+000.18E+010.23E+010.20E+010.28E+010.16E+010.10E+010.24E+010.17E+010.11E+010.22E+010.12E+010.69E+000.11E+01

FO11 FR11

0.49E+020.11E+01O.87E+0O0.11E+010.14E+010.76E+000.17E+010.13E+010.61E+000.17E+010.14E+010.76E+000.17E+010.17E+010.12E+010.28E+01

FR12

0.26E+020.11E+010.84E+000.13E+010.18E+010.84E+000.36E+010.23E+010.90E+000.10E+020.14E+010.97E+000.18E+010.14E+010.41E+000.10E+01

GL11

84

Page 86: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part II: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, F m i n and F m a x .

contributionreactionO-0(P,5PXN)BE-7

O-0(P,5PXN)BE-10

O-0(P,3PXN)C-14

AL-27(P,13PXN)H-3

AL-27(P,12PXN)HE-3

AL-27(P,12PXN)HE-4

AL-27(P,10Pl!N)BE-7

AL-27(P,10P8N)BE-10

AL-27(P,4PXN)NE-20

AL-27(P,4PXN)NE-21

AL-27(P,4PXN)NE-22

AL-27(P,3P3N)NA-22

AL-27(P,3PN)NA-24

GL12

0.22E+010.18E+010.29E+010.22E+010.18E+010.29E+010.15E+010.10E+010.19E+010.I4E+010.75E+000.19E+010.46E+01

IS11

0.33E+020.93E+010.98E+030.35E+020.40E+010.62E+030.I5E+010.60E+000.83E+000.20E+010.12E+010.25E+010.21E+010.12E+010.27E+010.20E+010.16E+010.23E+010.28E+030.64E+010.32E+040.12E+030.63E+010.21E+04

0.12E+010.94E+000.14E+010.16E+01

KA11

0.23E+010.32E+000.67E+000.22E+010.30E+000.65E+000.11E+010.80E+000.11E+010.39E+020.51E+010.13E+030.16E+010.50E+000.25E+0I

0.14E+010.UE+010.18E+010.15E+01

KOH LAll

0.28E+010.30E+000.41E+000.39E+010.16E+000.35E+000.19E+010.46E+00O.58E+0O0.16E+010.85E+000.20E+010.16E+010.84E+000.19E+010.13E+010.86E+000.16E+010.13E+010.41E+000.16E+010.20E+010.31E+000.16E+01

0.30E+010.30E+000.37E+000.13E+01

MA11

0.51E+010.34E+010.80E+010.42E+010.13E+000.50E+000.44E+010.19E+000.27E+000.18E+010.37E+000.11E+0I0.14E+010.67E+000.23E+010.21E+010.I5E+0I0.43E+010.21E+030.70E+020.48E+030.45E+020.23E+020.12E+030.14E+010.10E+010.17E+010.14E+010.98E+000.17E+010.34E+010.22E+010.50E+010.14E+01O.57E+OO0.90E+000.18E+01

Mil l

0.12E+020.94E+010.15E+020.98E+010.48E+010.21E+020.15E+010.56E+000.11E+010.16E+010.11E+010.23 E+010.14E+010.89E+000.20E+010.17E+010.I3E+0I0.19E+010.12E+030.14E+020.57E+030.49E+020.15E+020.24E+030.18E+010.13E+010.22E+010.28E+010.20E+010.34E+010.35E+010.21 E+010.59E+010.12E+0I0.97E+000.15E+010.18E+01

MI21

0.12E+010.94E+000.13E+010.19E+010.13E+01O.25E+O10.21E+010.41E+00O.58E+00

0.1SE+010.91E+000.19E+010.18E+010.11E+010.25E+010.13E+010.10E+010.15E+010.12E+010.78E+000.14E+010.15E+010.76E+000.24E+010.12E+010.96E+000.13E+010.11E+01

SHIT SI 121

0.44E+020.12E+020.10E+030.23E+010.28E+000.11E+01

0.21 E+010.17E+010.23E+010.11E+01

SH31

0.3IE+0I0.21E+010.51E+01

0.24E+010.20E+010.27E+010.29E+01

SOU

0.12E+010.65E+000.10E+010.32E+010.18E+000.46E+000.16E+01O.53E+000.81E+000.14E+010.67E+000.14E+010.17E+010.12E+010.23E+01

0.26E+010.67E+000.54E+010.18E+010.46E+000.24E+01

0.19E+010.48E+000.59E+000.16E+01

TA11

0.17E+020.88E+010.24E+020.47E+010.13E+010.89E+010.15E+010.78E+000.16E+010.15E+010.10E+010.21 E+010.21 E+010.16E+010.28E+010.18E+010.15E+0I0.22E+010.44E+010.15E+010.18E+020.46E+0I0.76E+000.15E+02

0.11E+01O.85E+OO0.10E+010.15E+01

YOU

0.26E+010.24E+010.30E+010.17E+010.10E+010.24E+010.16E+010.56E+000.80E+000.15E+010.84E+000.17E+010.15E+010.98E+000.21E+010.12E+010.73E+000.11E+010.13E+020.37E+010.55E+020.39E+010.19E+010.77E+010.12E+010.73E+00O.I3E+010.13E+010.91E+000.15E+010.16E+010.92E+000.23E+010.13E+0I0.63E+000.99E+000.13E+01

85

Page 87: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part II: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, F m j n and Fn

contributionreaction

AL-27(P,PN)AL-26

FE-0(P,26PXN)H-3

FE-0(P,25PXN)HE-3

FE-0(P,25PXN)HE-4

FE-0(P,23PXN)BE-7

FE-0(P,23PXN)BE-I0

FE-0(P,17PXN)NE-20

FE-0(P,17PXN)NE-21

FE-0(P,17PXN)NE-22

FE-0(P,16PXN)NA-22

FE-0(P,16PXN)NA-24

FE-0(P,15PXN)MG-28

GL12

0.31E+010.97E+0I0.26E+010.16E+01O.38E+O1

IS11

0.12E+010.23E+01

0.26E+010.28E+000.32E+010.28E+010.41E+000.66E+01O.53E+O10.74E+000.49E+020.43E+020.36E+010.65E+030.10E+020.69E+010.16E+020.18E+010.14E+010.19E+010.27E+010.15E+010.48E+010.24E+010.94E+000.46E+010.20E+010.46E+000.31E+010.14E+02O.37E+010.53E+020.49E+010.UE+010.21E+02

KA11

0.I2E+010.26E+01

O.35E+010.19E+000.22E+010.30E+010.50E+000.12E+020.24E+010.60E+000.60E+010.37E+020.37E+020.37E+020.71E+010.59E+010.83E+010.20E+010.50E+000.50E+000.13E+010.71E+000.99E+000.28E+010.28E+010.28E+010.28E+01O.36E+0O0.36E+000.25E+010.41E+000.41E+000.20E+010.51E+000.51E+00

KO11 LA11

0.67E+000.97E+000.27E+010.30E+000.42E+000.13E+010.76E+000.19E+010.26E+010.13E+010.64E+010.20E+010.11E+010.42E+010.23E+010.36E+000.50E+010.26E+010.19E+000.78E+000.22E+01O.35E+OO0.15E+010.22E+010.21E+000.19E+010.25E+010.70E+000.42E+010.26E+010.15E+000.11E+010.22E+010.61E+000.41E+010.15E+020.75E+010.33E+02

JVIA1I

0.46E+000.11E+010.19E+010.47E+000.57E+000.40E+010.I7E+000.68E+000.20E+010.26E+000.13E+010.21E+010.81E+000.42E+010.21E+030.14E+030.30E+030.11E+030.61E+020.22E+030.15E+010.68E+000.68E+000.50E+010.62E+000.35E+020.29E+010.21E+010.42E+010.30E+010.26E+000.49E+000.65E+010.41E+000.19E+020.14E+020.11E+020.25E+02

Mil l

0.15E+010.21E+010.20E+010.42E+000.70E+00

O.58E+O10.39E+000.17E+02

MI21

0.74E+000.14E+010.16E+010.13E+010.19E+01

0.19E+010.12E+010.27E+010.13E+010.61E+000.12E+010.14E+010.60E+000.99E+000.14E+010.44E+000.13E+010.15E+010.59E+000.18E+010.25E+010.65E+000.78E+010.15E+010.70E+000.21E+010.13E+010.71E+000.10E+01

SHU SH21

0.96E+000.13E+010.21E+010.41E+000.54E+00

0.63E+030.28E+030.15E+040.58E+010.20E+010.16E+020.28E+010.28E+010.28E+010.12E+020.76E+000.46E+020.93E+010.64E+000.55E+020.87E+010.27E+010.37E+020.61E+010.12E+010.35E+020.31E+010.42E+000.71E+01

SH31

0.17E+010.36E+010.16E+010.59E+000.63E+000.13E+010.68E+000.87E+000.13E+010.71E+000.14E+010.12E+010.77E+000.14E+01

0.18E+020.11E+020.35E+020.71E+010.32E+010.13E+02

0.20E+020.85E+010.30E+020.28E+010.22E+010.34E+01

SOU

0.97E+000.19E+010.22E+010.36E+000.58E+000.18E+010.40E+000.94E+000.14E+010.71E+000.21E+010.39E+010.15E+010.91E+010.16E+020.82E+000.98E+020.27E+010.56E+000.42E+010.18E+010.42E+000.10E+0I0.18E+010.22E+000.14E+010.25E+010.11E+010.34E+010.41E+010.12E+000.57E+000.22E+010.57E+000.36E+010.71E+010.57E+010.88E+01

TA11

0.12E+010.21E+010.22E+010.43E+000.48E+000.18E+010.41E+000.12E+010.16E+0!0.56E+000.28E+010.29E+010.13E+010.S4E+010.13E+030.63E+020.22E+030.59E+020.50E+020.70E+020.28E+010.71E+000.40E+010.21E+010.77E+000.37E+010.13E+020.27E+010.55E+020.24E+010.31E+000.11E+010.23E+020.20E+010.80E+020.13E+020.95E+010.22E+02

YOU

0.11E+010.16E+010.13E+010.77E+000.15E+010.25E+010.27E+000.75E+000.18E+010.30E+000.19E+010.14E+01O.55E+OO0.17E+010.12E+020.61 E+010.24E+020.79E+010.46E+010.14E+020.16E+010.54E+000.75E+000.18E+010.70E+000.47E+010.19E+010.63E+000.31 E+010.24E+01O.35E+OO0.56E+000.28E+010.90E+000.54E+010.16E+010.48E+000.92E+00

86

Page 88: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part II: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, F m j n and F m a x .

contributionreactionFE-0(P,14PXN)AL-26

FE-0(P,10PXN)CL-36

FE-0(P,9PXN)AR-36

FE-0(P,9PXN)AR-38

FE-0(P,8PXN)K-42

FE-0(P,8PXN)K-43

FE-0(P,6PXN)SC-46

FE-0(P,6PXN)SCM7

FE-0(P,6PXN)SC-48

FE-0(P,5PXN)TI-44

FE-0(P,4PXN)V-48

FE-0(P,3PXN)CR-48

FE-0(P,3PXN)CR-51

GL12

0.21E+010.14E+01O.63E+O10.26E+010.I4E+0I0.75E+01

0.77E+0IO.85E-O10.35E+000.18E+010.34E+000.16E+010.31E+010.20E+000.70E+000.16E+010.12E+01

IS11

0.26E+0I0.21E+000.27E+010.89E+010.39E+000.96E+020.10E+020.84E-010.15E+000.16E+01O.54E+000.21E+01

0.47E+020.18E+010.56E+03

0.14E+010.76E+000.23E+010.25E+020.64E+000.45E+030.13E+010.88E+00

KA11

0.47E+0I0.19E+000.24E+000.58E+010.51E-010.14E+020.37E+010.73E+000.55E+010.42E+010.60E+000.15E+02

0.15E+010.49E+000.10E+01

0.17E+010.59E+000.21E+010.25E+010.59E+000.48E+010.28E+010.84E+00

KO11 LA11

0.28E+010.20E+000.12E+010.15E+010.49E+000.24E+010.17E+010.47E+000.10E+010.13E+010.54E+000.13E+01

0.12E+010.79E+000.15E+01

0.19E+010.46E+000.60E+00

0.17E+010.51E+00

MA11

0.29E+010.29E+000.47E+000.38E+O10.32E+000.51E+020.31E+010.22E+010.45E+010.14E+01O.55E+OO0.15E+010.15E+010.12E+010.19E+010.26E+010.95E+000.72E+010.16E+010.44E+000.10E+010.13E+010.71E+000.18E+010.12E+010.11E+010.13E+010.44E+010.24E+010.98E+010.12E+010.90E+000.17E+010.34E+010.17E+010.44E+010.14E+010.10E+01

Mil l

0.37E+0I0.19E+000.39E+010.20E+010.35E+000.29E+010.24E+010.34E+00O.53E+000.13E+010.65E+000.15E+010.26E+010.21E+010.32E+01O.36E+O10.16E+010.47E+01

0.13E+010.67E+000.15E+010.13E+010.65E+000.12E+010.13E+010.62E+000.13E+010.16E+010.13E+01

MI21

0.19E+010.65E+000.56E+010.17E+010.41E+000.24E+010.19E+010.38E+000.89E+000.15E+010.48E+000.12E+010.20E+010.16E+010.28E+010.20E+010.14E+010.26E+010.20E+010.14E+010.27E+010.17E+010.14E+010.20E+010.14E+010.14E+010.14E+010.I8E+010.26E+000.10E+010.13E+010.79E+000.14E+010.18E+010.33E+000.87E+000.11E+010.81E+00

SHU SH21

0.68E+010.24E+010.12E+020.28E+010.61 E+000.80E+0I0.16E+010.79E+000.21E+010.14E+010.54E+000.13E+01

0.13E+010.91 E+000.15E+01

0.43E+010.38E+010.48E+010.23E+010.12E+010.32E+010.12E+010.10E+01

SH31

0.36E+020.10E+020.84E+020.14E+020.38E+010.48E+020.18E+010.47E+000.65E+000.13E+010.81 E+000.16E+01

0.27E+010.22E+010.31E+01

0.20E+010.18E+010.21E+010.75E+010.90E-010.17E+000.12E+010.11E+01

son

0.42E+010.18E+000.36E+00O.53E+O10.12E+010.28E+020.45E+010.15E+000.36E+000.22E+010.15E+010.30E+01

0.67E+010.27E+010.11E+02

0.13E+010.60E+000.87E+000.54E+010.11 E+000.22E+00O.HE+010.83E+00

TA11

O.35E+O10.23E+000.56E+010.19E+010.43E+000.26E+010.20E+010.42E+00O.S7E+000.13E+010.68E+000.16E+01

0.17E+010.11E+010.28E+01

0.13E+010.67E+000.11E+0I0.22E+010.30E+000.11E+010.13E+010.11E+01

YOU

0.31E+010.27E+000.44E+010.15E+010.49E+000.I9E+010.38E+010.21E+000.33E+000.16E+010.42E+000.11E+010.16E+010.14E+010.17E+010.13E+01O.58E+OO0.13E+0I0.13E+010.10E+010.18E+010.12E+010.66E+000.11E+010.18E+010.53E+000.64E+000.20E+010.36E+000.73E+000.12E+010.71E+000.I4E+0I0.22E+010.29E+000.69E+000.13E+010.10E+01

87

Page 89: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part II: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, F m j n and F m a x .

contributionreaction

FE-0(P,2PXN)MN-52

FE-0(P,2PXN)MN-54

FE-O(P,PXN)FE-55

FE-0(P,XN)CO-55

FE-0(P,XN)CO-56

FE-0(P,XN)CO-57

FE-0(P,XN)CO-58

CO-59(P,P3N)CO-56

CO-59(P,P2N)CO-57

CO-59(P,PN)CO-58

CO-59(P,4N)NI-56

CO-59(P,3N)NI-57

ZR-0(P,37PXN)BE-7

GL12

0.25E+010.16E+010.52E+000.89E+000.33E+010.24E+010.56E+010.39E+010.32E+010.47E+010.27E+01O.35E+O00.40E+000.39E+010.22E+000.48E+000.17E+010.93 E+000.24E+010.18E+010.12E+010.23E+010.13E+010.68E+000.95E+000.17E+010.15E+010.25E+010.33E+010.25E+010.56E+010.30E+010.29E+000.43E+000.35E+010.20E+000.38E+00

ISU

0.22E+01

0.13E+010.84E+000.25E+0I0.38E+030.66E+020.43E+040.54E+010.20E+000.19E+020.36E+010.15E+000.10E+02

0.81E+010.26E+000.43E+040.22E+030.69E+020.20E+050.82E+010.34E+000.45E+040.65E+010.14E+000.18E+000.61E+010.10E+000.37E+000.78E+0I

KA11

0.40E+010.18E+010.18E+000.15E+010.20E+010.76E+000.28E+010.36E+010.16E+010.61E+010.69E+010.60E-010.50E+010.38E+010.41E-010.44E+01

0.22E+010.36E+000.70E+000.12E+010.76E+000.13E+010.14E+01O.58E+0O0.19E+010.42E+010.17E+000.31 E+000.47E+010.12E+000.69E+00

KO11 LA11

0.84E+000.47E+010.18E+000.30E+000.13E+010.10E+010.17E+010.12E+010.71 E+000.1IE+01

0.47E+010.11 E+000.10E+01

0.41E+010.16E+000.41E+000.16E+010.48E+000.95E+000.15E+010.29E+000.11E+010.21E+010.32E+000.94E+000.64E+010.53E-010.34E+000.19E+01

MA11

0.22E+010.21E+010.40E+000.81 E+000.13E+010.92E+000.18E+010.12E+010.81 E+000.13E+010.22E+010.26E+000.12E+010.44E+010.15E+000.31E+010.14E+010.44E+000.15E+010.16E+010.85E+000.22E+010.20E+010.45E+000.70E+000.11E+010.89E+000.13E+010.14E+010.36E+000.11E+010.14E+010.56E+000.12E+010.16E+010.49E+000.16E+010.53E+03

Mill

0.22E+010.28E+010.31 E+000.50E+000.13E+010.12E+010.16E+01

0.39E+010.14E+000.40E+000.44E+010.18E+000.69E+000.14E+01O.58E+OO0.21E+010.16E+010.92E+000.26E+010.26E+010.33E+000.56E+000.13E+010.71 E+000.I2E+010.13E+010.51 E+000.99E+000.53E+010.17E+000.22E+000.52E+010.13E+000.30E+000.32E+02

MI21

0.11E+010.23E+010.36E+000.54E+000.14E+010.53E+000.18E+010.15E+010.54E+000.14E+010.26E+020.21E-010.61E-010.52E+020.14E-010.40E-01

0.19E+010.47E+000.58E+000.22E+01O.35E+OO0.75E+000.19E+010.35E+000.10E+010.92E+010.88E-010.13E+000.12E+020.44E-010.14E+000.29E+01

SHU SH21

0.15E+010.16E+010.14E+010.20E+010.12E+010.11E+010.14E+010.14E+010.65E+000.82E+000.19E+010.36E+000.18E+010.51E+0I0.14E+000.39E+01

0.17E+010.14E+010.22E+010.12E+010.74E+000.11E+010.16E+010.32E+000.98E+000.21E+010.45E+000.53E+000.19E+010.41 E+000.11E+01

SH31

0.12E+010.23E+010.21E+010.26E+010.16E+010.13E+010.19E+010.14E+010.66E+000.83E+000.46E+010.20E+000.23E+000.62E+010.14E+000.41 E+00

0.30E+010.26E+010.39E+010.11E+010.85E+000.10E+010.12E+010.79E+000.11E+010.34E+020.25E-010.36E-010.80E+010.99E-010.19E+00

son

0.13E+010.36E+010.24E+000.39E+000.17E+010.15E+010.19E+010.11E+010.10E+010.13E+010.81E+010.76E-010.23E+000.17E+010.39E+000.13E+01

0.28E+010.29E+000.59E+000.12E+010.82E+000.15E+0I0.13E+010.41 E+000.16E+010.27E+020.30E-010.46E-010.13E+020.52E-010.19E+000.15E+02

TA11

0.17E+010.25E+010.36E+000.52E+000.13E+010.12E+010.15E+010.12E+010.73E+000.13E+010.40E+010.15E+000.44E+000.45E+010.18E+000.67E+00

0.23E+010.37E+00O.55E+OO0.12E+010.73E+000.98E+000.14E+010.35E+000.10E+010.64E+010.I5E+000.16E+000.45E+010.15E+000.36E+00

YOU

0.17E+010.22E+010.39E+000.63E+000.13E+010.98E+000.16E+010.16E+010.13E+010.18E+010.56E+010.11 E+000.24E+000.62E+010.12E+000.44E+000.14E+010.53E+000.17E+010.12E+010.74E+000.13E+010.20E+010.44E+000.67E+000.12E+010.77E+000.11E+010.13E+010.60E+000.17E+010.61E+010.13E+000.20E+000.45E+010.16E+000.32E+00

88

Page 90: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part II: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, F m j n and F m a x .

contributionreaction

ZR-0(P,30PXN)NA-22

ZR-0(P,30PXN)NA-24

ZR-0(P,20PXN)SC-46

ZR-0(P,20PXN)SC-47

ZR-0(P,18PXN)V-48

ZR-0(P,17PXN)CR-51

ZR-0(P,16PXN)MN-52

ZR-0(P,16PXN)MN-54

ZR-0(P,15PXN)FE-59

ZR-0(P,14PXN)CO-56

ZR-0(P,14PXN)CO-57

ZR-0(P,14PXN)CO-58

GL12 IS11

0.11E+010.24E+030.38E+010.18E+000.16E+01

0.27E+010.13E+010.88E+01

0.27E+010.39E+000.96E+010.19E+010.50E+000.34E+0I

0.86E+010.55E+0O0.28E+03

0.29E+010.21E+000.13E+01

0.19E+010.70E+000.45E+01

KA11

0.36E+010.20E+000.41E+01

0.32E+010.21E+000.15E+010.21E+010.37E+000.I0E+0I

0.27E+010.24E+000.74E+00

0.52E+010.14E+000.24E+00

0.26E+010.24E+000.11E+01

KO11 LA11

0.61E+000.43E+010.11E+020.68E-010.16E+00

0.19E+010.66E+00O.33E+O1

0.17E+010.28E+000.14E+010.14E+01O.83E+OO0.I8E+01

0.27E+0I0.11E+010.43E+01

0.28E+010.19E+000.67E+00

0.18E+010.63E+000.28E+01

MA11

0.53E+030.53E+03

0.18E+010.55E+0O0.55E+000.30E+010.20E+000.14E+010.25E+010.42E+000.28E+010.22E+010.31E+000.13E+010.81E+010.46E+000.3IE+030.12E+020.26E+000.19E+030.33E+0I0.43E+000.15E+020.31E+010.14E+010.15E+020.54E+010.23E+000.44E+020.32E+010.47E+000.17E+020.37E+010.44E+000.21E+02

Mil l

0.28E+020.36E+020.46E+010.36E+000.87E+010.60E+010.19E+010.30E+020.32E+010.47E+000.24E+020.25E+010.48E+000.74E+010.44E+010.93E-010.13E+010.22E+010.31E+000.1IE+0I0.54E+010.68E-010.65E+010.24E+010.32E+000.84E+01O.75E+O10.33E+010.40E+020.38E+010.10E+000.14E+010.18E+010.55E+000.37E+010.35E+010.48E+000.34E+02

MI21

0.12E+01O.56E+010.46E+010.16E+000.36E+000.19E+010.43E+000.77E+000.16E+010.82E+000.24E+010.28E+010.14E+010.41E+010.13E+010.66E+000.16E+010.14E+010.98E+000.18E+010.13E+010.85E+000.16E+010.19E+010.12E+010.25E+010.31E+010.23E+010.45E+010.14E+010.11E+010.17E+010.15E+01O.I1E+010.18E+010.17E+010.95E+000.21E+01

SHU SH21

0.27E+010.69E+000.52E+01

0.11E+020.37E+0!0.39E+020.21E+010.65E+000.46E+0I

0.30E+010.10E+010.13E+02

0.33E+010.16E+010.11E+02

0.27E+010.10E+010.73E+01

SH31

0.77E+010.77E+010.77E+0I

0.81E+020.39E+020.12E+03

0.20E+010.11E+010.31E+01

0.15E+020.11E+020.21E+02

SOU

0.16E+010.17E+030.21E+010.14E+010.29E+01

0.11E+020.41E+010.31E+02

0.21E+010.55E+000.78E+010.23E+010.99E+000.71E+01

0.17E+020.11E+020.31E+02

0.23E+010.29E+000.28E+01

0.95E+010.34E+010.38E+02

TA11

0.12E+020.11E+020.13E+02

0.46E+010.15E+000.58E+01

0.I1E+020.53E-010.64E+000.66E+010.11E+000.48E+00J

0.42E+010.16E+000.19E+01

0.13E+020.42E-010.40E+00

0.35E+010.16E+000.74E+00

YOU

0.71E+010.68E+010.74E+010.64E+010.68E+000.14E+020.28E+010.24E+000.89E+00O.37E+O10.15E+000.52E+000.27E+010.23E+000.27E+010.18E+010.44E+000.1IE+0I0.27E+010.20E+000.77E+000.20E+010.28E+000.74E+000.40E+010.15E+000.45E+000.26E+010.20E+000.74E+000.14E+010.46E+000.96E+000.15E+010.44E+000.14E+01

89

Page 91: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part II: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, F m j n and F m a x .

contributionreactionZR-0(P,14PXN)CO-60

ZR-0(P,13PXN)NI-57

ZR-0(P,llPXN)ZN-65

ZR-0(P,10PXN)GA-67

ZR-0(P,9PXN)GE-68

ZR-0(P,9PXN)GE-69

ZR-0(P,8PXN)AS-71

ZR-0(P,8PXN)AS-73

ZR-0(P,8PXN)AS-74

ZR-0(P,7PXN)SE-72

ZR-0(P,7PXN)SE-75

ZR-0(P,6PXN)BR-76

ZR-0(P,6PXN)BR-77

GL12

0.49E+010.27E+010.90E+01

0.17E+010.46E+000.14E+010.26E+010.20E+010.32E+010.25E+010.16E+01

IS11

0.36E+010.14E+010.23E+02

0.40E+010.36E+000.98E+020.16E+010.54E+000.29E+01

0.67E+010.32E+010.11E+020.22E+010.90E+000.11E+02

0.27E+010.17E+010.51E+01

0.29E+0I0.19E+010.58E+01

0.15E+010.57E+00

KA11

O.38E+O10.19E+000.36E+00

0.17E+010.35E+000.13E+010.22E+010.20E+000.98E+00

0.20E+010.22E+000.85E+000.14E+010.59E+000.16E+01

0.23E+010.16E+000.90E+00

0.16E+010.53E+000.19E+01

0.16E+010.37E+00

KO11 LA11

0.24E+010.16E+010.39E+01

0.20E+010.61E+000.43E+010.17E+010.35E+000.11E+01

0.22E+010.16E+010.40E+010.20E+010.89E+000.85E+01

0.13E+010.57E+000.16E+01

0.I3E+010.58E+000.15E+0I

0.17E+010.45E+00

MAI1

0.25E+010.65E+000.10E+020.17E+010.12E+010.21E+010.46E+010.51E+000.78E+020.25E+0I0.52E+000.14E+020.40E+010.29E+010.65E+010.21E+010.80E+000.77E+010.43E+010.10E+010.99E+020.24E+0I0.20E+010.29E+010.18E+010.61E+000.74E+010.10E+020.37E+010.81E+020.19E+010.10E+010.60E+010.20E+010.16E+010.25E+010.14E+010.89E+00

Mil l

0.29E+010.15E+010.57E+010.89E+010.10E+000.13E+000.22E+010.31E+000.86E+010.19E+010.19E+000.15E+0I0.13E+010.51E+000.12E+010.19E+010.26E+000.95E+000.14E+010.42E+000.16E+01

0.27E+010.14E+010.38E+010.21E+010.16E+000.I0E+010.17E+010.43E+000.21E+010.19E+010.14E+010.25E+010.16E+010.35E+00

MI21

0.30E+010.25E+010.39E+010.14E+010.66E+000.84E+000.15E+010.86E+000.23E+010.13E+010.88E+000.21E+010.13E+010.72E+000.15E+010.15E+010.55E+000.16E+010.15E+010.62E+000.24E+0!0.58E+010.41E+010.10E+020.38E+010.24E+010.62E+010.17E+010.47E+000.12E+010.15E+010.75E+000.21E+0I0.22E+010.18E+010.30E+010.14E+010.67E+00

SHU SII21

0.15E+01O.85E+OO0.26E+01

0.17E+010.82E+000.25E+010.23E+010.15E+010.33E+01

0.17E+010.14E+010.30E+010.50E+010.34E+010.12E+02

0.12E+010.82E+000.13E+01

0.14E+010.1IE+010.16E+01

0.13E+010.96E+00

SII31

0.67E+020.44E+020.87E+02

0.23E+010.11E+010.30E+010.21E+010.14E+010.27E+01

0.13E+010.76E+000.15E+010.16E+010.14E+010.20E+01

0.32E+010.26E+010.42E+01

0.13E+010.96E+000.15E+01

0.12E+010.68E+00

son

0.14E+020.64E+010.45E+02

0.30E+010.83E+000.18E+020.30E+010.86E+000.18E+02

0.26E+010.51E+000.13E+020.29E+010.67E+000.15E+02

0.60E+010.23E+010.41E+02

0.18E+010.85E+000.47E+01

0.14E+010.63E+00

TA11

0.I7E+010.50E+000.19E+01

0.37E+010.11E+000.23E+010.41E+010.12E+000.49E+00

0.53E+010.14E+000.41E+000.38E+010.19E+00O.55E+OO

0.16E+010.35E+000.10E+01

0.34E+0!0.21E+000.38E+00

0.47E+010.15E+00

YOU

0.21 E+010.33E+000.97E+000.35E+010.25E+000.33E+000.20E+010.36E+000.25E+010.22E+010.52E+000.34E+010.25E+010.13E+010.31 E+010.22E+010.74E+000.28E+010.29E+010.17E+010.41 E+010.39E+010.32E+010.48E+010.16E+010.31E+000.11E+010.21 E+010.67E+000.29E+010.18E+010.64E+000.23 E+010.40E+010.29E+010.49E+010.16E+010.70E+00

90

Page 92: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part II: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, and F m a x .

contributionreaction

ZR-0(P,5PXN)KR-78

ZR-0(P,5PXN)KR-79

ZR-O(P,5PXN)KR-8O

ZR-0(P,5PXN)KR-81

ZR-0(P,5PXN)KR-82

ZR-0(P,5PXN)KR-83

ZR-0(P,5PXN)KR-84

ZR-0(P,5PXN)KR-8S

ZR-0(P,5PXN)KR-86

ZR-0(P,4PXN)RB-84

ZR-0(P,4PXN)RB-86

ZR-0(P,3PXN)SR-82

ZR-0(P,3PXN)SR-83

GL12

0.48E+01

0.19E+010.43E+000.14E+01

0.45E+010.16E+010.74E+01

0.14E+01

IS11

0.11E+010.15E+010.15E+010.15E+010.14E+010.62E+000.84E+000.11E+01

J).84E+000.97E+000.16E+010.57E+000.76E+000.14E+010.66E+000.78E+000.UE+010.97E+000.12E+010.16E+010.16E+010.16E+010.18E+010.48E+000.15E+010.24E+010.31E+000.I4E+010.26E+010.21E+010.32E+0I0.18E+010.16E+010.19E+010.13E+010.92E+000.16E+010.20E+01

KA11

0.I2E+0I0.34E+010.34E+010.34E+010.14E+010.56E+000.15E+010.16E+010.16E+010.16E+010.17E+010.17E+010.17E+010.20E+010.20E+010.20E+010.34E+010.34E+010.34E+010.13E+020.13E+020.13E+020.12E+010.86E+000.86E+000.I4E+010.70E+000.70E+000.20E+010.71E+000.27E+010.15E+010.67E+000.67E+000.34E+0J0.26E+010.40E+010.36E+01

KOII LAll

0.81E+000.17E+010.52E+000.70E+000.12E+010.64E+000.95E+000.12E+010.81E+000.11E+010.12E+01O.78E+OO0.11E+010.13E+010.74E+000.11E+010.12E+010.75E+000.UE+010.11E+010.87E+000.11E+010.10E+010.98E+000.10E+010.23E+010.12E+010.31E+010.13E+010.56E+000.11E+010.35E+010.33E+010.38E+010.11E+010.84E+000.11E+010.13E+01

MA11

0.25E+010.21E+010.21E+010.22E+010.14E+01O.IIE+010.17E+010.17E+010.16E+010.17E+010.17E+010.16E+010.18E+010.18E+010.17E+010.19E+010.18E+010.17E+010.19E+010.12E+010.12E+010.13E+010.20E+010.48E+000.53E+000.26E+010.38E+000.41E+000.15E+010.44E+000.14E+010.16E+010.15E+010.16E+010.33E+010.27E+010.44E+010.18E+01

Mill

O.I3E+010.12E+010.82E+000.11E+010.14E+010.50E+000.13E+010.14E+010.12E+010.16E+010.15E+010.13E+010.17E+010.17E+010.14E+010.19E+010.34E+010.30E+010.39E+010.36E+010.31E+010.40E+010.14E+010.71E+000.75E+000.20E+010.49E+000.51E+000.36E+010.24E+010.44E+010.31E+010.30E+01O.33E+010.13E+010.93E+000.17E+010.28E+01

MI21

0.16E+010.15E+010.58E+000.88E+000.13E+010.57E+000.14E+010.13E+010.92E+000.14E+010.11E+010.93E+000.10E+010.13E+010.77E+000.78E+000.10E+010.94E+000.10E+010.59E+010.57E+010.60E+010.57E+010.49E+010.66E+010.46E+010.3SE+010.58E+010.49E+010.42E+010.55E+010.17E+020.17E+020.17E+020.23E+010.30E+000.85E+000.18E+01

SHU SH21

0.14E+010.16E+010.14E+010.17E+010.12E+010.98E+000.13E+010.12E+010.10E+010.13E+010.13E+010.12E+010.14E+010.13E+010.11E+010.14E+010.13E+010.12E+010.14E+010.11E+010.11E+010.12E+010.11E+0!O.85E+000.94E+000.25E+010.23E+010.27E+010.13E+010.61E+000.14E+010.53E+01O.53E+O10.54E+010.17E+010.14E+010.19E+010.16E+01

SH31

0.11E+01

0.11E+010.83E+000.12E+01

0.16E+010.13E+010.21E+010.32E+010.31E+01O.33E+O10.12E+010.76E+000.91E+000.12E+01

son

0.20E+010.12E+010.81E+000.10E+010.12E+010.70E+000.12E+010.12E+010.11E+010.13E+010.12E+0I0.11E+010.13E+010.13E+010.12E+010.13E+010.13E+010.12E+010.14E+010.16E+010.15E+010.16E+010.25E+010.36E+000.44E+000.40E+010.24E+000.26E+000.19E+010.15E+010.26E+010.44E+010.41E+010.46E+010.11E+01O.85E+000.12E+010.12E+0I

TA11

0.30E+000.30E+010.30E+000.37E+000.40E+010.16E+000.31E+000.23E+010.39E+000.46E+000.22E+010.41E+000.49E+000.23E+010.40E+000.46E+000.22E+010.43E+000.50E+000.15E+010.62E+000.74E+000.26E+010.36E+000.41E+000.44E+010.18E+000.29E+000.17E+010.39E+000.81E+000.16E+010.16E+010.17E+010.40E+010.21E+000.29E+000.36E+01

YOU

0.21E+010.26E+010.24E+010.29E+010.18E+010.97E+000.22E+010.19E+010.18E+010.21E+010.22E+0I0.20E+010.24E+010.19E+010.17E+010.20E+010.20E+010.18E+010.21E+010.11E+010.10E+010.11E+010.27E+010.35E+000.39E+000.29E+0r0.32E+000.38E+000.13E+010.50E+000.12E+010.16E+010.16E+010.16E+010.21E+010.15E+010.25E+010.18E+01

91

Page 93: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part II: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, F m j n and F m a x .

contributionreaction

ZR-O(P,3PXN)SR-85

ZR-0(P,2PXN)Y-86

ZR-0(P,2PXN)Y-87

ZR-0(P,2PXN)Y-88

ZR-0(P,PXN)ZR-86

ZR-0(P,PXN)ZR-88

ZR-0(P,PXN)ZR-89

ZR-0(P,PXN)ZR-95

ZR-0(P,XN)NB-90

ZR-0(P,XN)NB-95

AU-197(P,76PXXN)BE-7

AU-197(P,69PXXN)NA-22

GL12

0.58E+000.16E+01

0.45E+010.28E+010.63E+010.22E+010.16E+010.27E+010.27E+010.14E+010.49E+010.13E+010.79E+000.13E+010.20E+010.I5E+010.26E+010.24E+010.I6E+010.34E+010.39E+010.20E+010.75E+010.13E+010.13E+010.13E+010.23E+020.19E+020.26E+02

IS11

0.17E+010.22E+010.14E+010.10E+010.26E+010.17E+010.97E+000.23E+010.13E+010.65E+000.16E+010.24E+010.25E+000.94E+000.17E+010.38E+000.91 E+000.13E+010.63E+000.15E+010.16E+010.30E+000.11E+010.25E+010.18E+000.10E+010.15E+01 j0.59E+000.17E+010.50E+010.53E-010.98E+000.43E+010.65E-010.49E+01

KA11

O.25E+O10.49E+010.39E+010.28E+010.63E+0!0.31E+010.22E+010.49E+010.22E+010.15E+010.29E+010.15E+010.67E+000.23E+010.25E+010.18E+010.33E+010.25E+010.19E+010.34E+010.16E+010.91 E+000.21E+010.34E+010.14E+010.55E+010.67E+010.10E+010.16E+020.11E+020.74E+010.15E+02

0.21E+020.21E+020.21E+02

KO11 LA11

0.65E+000.92E+000.13E+010.68E+000.19E+010.13E+010.71 E+000.16E+010.13E+010.66E+000.14E+010.13E+010.73E+000.20E+010.16E+010.41 E+000.18E+010.14E+010.48E+000.20E+010.15E+010.26E+000.14E+010.14E+010.40E+000.13E+010.19E+010.24E+000.11E+010.89E+010.17E+010.17E+020.26E+010.11E+010.49E+010.70E+010.10E+000.21 E+00

MA11

0.14E+010.24E+010.16E+010.10E+010.30E+010.17E+010.11E+010.24E+010.19E+010.12E+010.25E+010.15E+010.66E+000.22E+010.64E+010.40E+010.11E+020.19E+010.14E+010.27E+010.14E+010.45E+000.15E+010.15E+010.35E+000.12E+010.43E+010.88E+000.86E+010.11E+020.83E+010.14E+02

Mill

0.22E+010.37E+010.29E+010.22E+010.56E+010.25E+010.17E+010.39E+010.18E+010.13E+010.22E+010.16E+010.10E+010.25E+010.16E+010.47E+000.14E+010.13E+010.92E+000.19E+010.13E+010.49E+000.13E+010.16E+010.31E+000.10E+010.16E+010.55E+000.22E+010.66E+010.20E+010.11E+020.54E+03O.15E+030.14E+040.26E+010.83E+000.56E+01

MI21

0.38E+000.11E+010.14E+010.62E+000.12E+010.17E+010.11E+010.26E+010.16E+010.51 E+000.76E+000.54E+010.31E+010.77E+010.10E+020.67E-010.14E+000.31E+010.24E+000.40E+000.25E+010.27E+000.72E+000.22E+020.39E+010.56E+020.17E+020.50E-010.94E-010.23E+010.22E+000.96E+000.28E+010.12E+010.83E+010.74E+010.80E-010.32E+00

SH11 SH21

0.13E+010.20E+010.13E+010.89E+000.21E+010.29E+010.21E+010.48E+010.13E+010.97E+000.15E+010.13E+010.80E+000.18E+010.20E+010.10E+010.28E+010.12E+010.64E+000.13E+010.19E+010.21 E+000.79E+00

0.14E+020.UE+010.32E+02

SH31

0.72E+000.12E+010.14E+010.11E+010.23E+010.15E+020.93E+010.21E+020.14E+010.13E+010.16E+010.17E+010.14E+010.24E+010.20E+010.41 E+000.64E+000.12E+010.84E+000.14E+010.13E+010.60E+000.94E+00

0.12E+010.12E+010.13E+01

son

0.65E+000.10E+010.14E+010.99E+000.21E+010.23E+010.16E+010.36E+010.16E+010.11E+010.21E+010.15E+01O.HE+010.21E+010.23 E+010.25E+000.85E+000.16E+010.79E+000.21 E+010.16E+010.39E+000.19E+010.20E+010.84E+000.27E+010.26E+010.13E+010.47E+010.11E+020.47E+010.17E+020.37E+010.14E+000.62E+000.17E+020.40E-010.77E-01

TA11

0.22E+000.34E+000.27E+010.29E+000.70E+000.18E+010.42E+000.95E+000.24E+010.33E+000.52E+000.24E+010.32E+000.68E+000.72E+010.77E-010.22E+000.36E+010.17E+000.41 E+000.45E+010.86E-010.33E+000.54E+010.74E-010.28E+000.40E+010.15E+000.47E+000.21E+010.71 E+000.27E+010.14E+030.12E+030.27E+030.25E+010.15E+000.10E+01

YOU

0.13E+010.23E+010.18E+010.12E+010.30E+010.27E+010.18E+010.42E+010.18E+010.13E+010.22E+010.15E+010.74E+000.20E+010.15E+010.65E+000.18E+010.15E+010.88E+000.19E+010.17E+010.66E+000.24E+010.14E+010.43E+000.15E+010.14E+010.67E+000.18E+010.59E+010.21E+010.91E+01

0.39E+010.31 E+010.47E+01

92

Page 94: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part II: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, F m j n and F m a x .

contributionreactionAU-197(P,69PXXN)NA-24

AU-197(P,59P93N)SC-46

AU-197(P,55P89N)MN-54

AU-197(P,54P85N)FE-59

AU-197(P,53P87N)CO-58

AU-197(P,53P85N)CO-60

AU-197(P,50P83N)ZN-65

AU-i97(P,47P77N)AS-74

AU-197(P,46P77N)SE-75

AU-197(P,45P71N)BR-82

AU-197(P,43P71N)RB-84

AU-197(P,43P69N)RB-86

AU-I97(P,42P71N)SR-85

GL12 ISH

0.46E+010.25E+000.32E+020.23E+010.22E+000.79E+000.21E+010.32E+000.12E+010.22E+010.28E+000.71E+000.31E+010.30E+000.61E+010.23E+010.45E+000.47E+010.20E+OI0.48E+000.27E+010.16E+020.32E+000.64E+020.26E+010.97E+000.46E+01

0.76E+010.18E+010.15E+020.36E+020.12E+010.19E+030.33E+010.30E+00

KA11

0.61 E+010.22E+010.14E+020.24E+010.22E+000.11E+010.42E+010.13E+000.24E+010.36E+010.17E+000.76E+010.65E+010.12E+000.24E+000.43E+010.11E+000.32E+010.52E+010.93E-010.16E+010.53E+010.11E+000.21E+020.49E+010.94E-010.18E+01

0.20E+010.10E+010.44E+010.18E+010.41E+000.91E+000.24E+010.73E+00

KO11 LAU

0.22E+010.27E+000.39E+010.71E+010.48E-010.48E+000.11E+020.45E-010.24E+00O.55E+O10.11E+000.29E+000.76E+010.11E+000.16E+000.74E+010.72E-010.36E+000.48E+010.13E+000.42E+000.90E+010.86E-010.20E+000.88E+010.75E-010.29E+00

0.99E+010.50E-010.14E+000.23E+010.26E+000.79E+000.98E+010.70E-01

MA11

0.19E+020.19E+020.19E+02

Mill

0.28E+010.12E+010.77E+010.22E+010.49E+000.46E+010.49E+010.10E+000.23E+010.32E+010.19E+000.23E+010.33E+010.17E+000.59E+000.38E+010.13E+000.51E+010.36E+010.19E+000.44E+010.26E+010.39E+000.52E+010.19E+010.49E+000.31 E+010.37E+010.23E+000.46E+010.12E+020.18E+010.47E+020.30E+010.89E+000.79E+010.59E+010.31E+01

MI21

0.36E+010.35E-010.17E+010.59E+010.36E-010.46E+000.51 E+010.57E-010.49E+000.13E+010.63E+000.I3E+010.42E+010.17E+000.48E+000.17E+010.35E+000.14E+010.48E+010.13E+000.49E+000.15E+010.52E+000.18E+010.52E+010.13E+000.41E+000.34E+010.21 E+010.76E+010.18E+010.27E+000.15E+010.87E+010.34E+010.17E+020.22E+010.31E+00

SHU SH21

O.77E+O10.94E+000.16E+030.25E+010.69E+000.16E+020.28E+010.51E+000.28E+020.36E+010.89E+000.71 E+010.36E+0I0.62E+000.72E+02O.75E+O10.87E+000.36E+02O.35E+O10.70E+000.11E+02O.33E+O10.51E+000.86E+01

0.23E+010.32E+000.56E+010.50E+010.87E+00O.50E+020.19E+010.75E+00

SH31 SOU

0.18E+010.64E+000.54E+010.24E+010.18E+000.11E+010.38E+010.14E+000.68E+000.27E+010.19E+000.11E+010.19E+010.51E+000.53E+000.32E+010.17E+000.14E+010.56E+010.11E+000.33E+000.43E+010.16E+000.47E+000.87E+010.58E-010.27E+00

0.46E+010.51E-010.48E+000.22E+010.69E+000.51 E+010.79E+010.91 E-01

TA11

0.27E+010.39E-010.75E+010.30E+010.26E+000.93E+000.33E+010.16E+000.77E+000.30E+010.18E+000.I6E+010.25E+010.31E+000.74E+000.21E+010.30E+000.14E+010.23E+010.25E+000.97E+000.24E+010.27E+000.39E+010.18E+010.42E+000.11E+01

0.30E+010.17E+000.65E+010.22E+010.11E+010.31E+010.14E+010.75E+00

von

0.15E+020.35E+010.34E+020.18E+010.44E+000.30E+010.23E+010.19E+000.14E+010.18E+010.37E+000.84E+000.15E+010.12E+010.16E+010.13E+010.58E+000.12E+010.22E+010.49E+000.44E+010.18E+010.66E+000.22E+010.18E+010.42E+000.22E+010.19E+010.51E+000.23E+010.24E+010.19E+000.27E+010.25E+010.61 E+000.35E+010.17E+010.84E+00

93

Page 95: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part II: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, F m j n and F m a x .

contributionreaction

AU-197(P,41P70N)Y-87

AU-197(P,41P69N)Y-88

AU-197(P,40P70N)ZR-88

AU-197(P,40P69N)ZR-89

AU-197(P,40P63N)ZR-95

AU-197(P,39P64N)NB-95

AU-197(P,37P65N)TC-96

AU-197(P,36P59N)RU-103

AU-197(P,35P61N)RH-102

AU-197(P,33P60N)AG-105

AU-197(P,30P55N)SN-113

AU-197(P,28P49N)TE-121

AU-197(P,26P45N)XE-127

GL12 ISU

0.61E+010.54E+010.19E+010.12E+020.16E+010.66E+000.21E+010.44E+010.36E+010.50E+01O.58E+O10.40E+000.27E+020.99E+010.75E+000.41E+020.78E+010.62E+000.25 E+020.I1E+020.90E+000.26E+020.85E+010.52E+000.23E+020.18E+010.46E+000.17E+01

0.35E+010.63E+000.11 E+02

0.35E+01

KA11

0.54E+010.20E+010.54E+000.43E+01O.35E+O10.16E+000.22E+010.23E+010.57E+000.11 E+020.20E+010.32E+000.15E+010.71E+010.81E-010.27E+020.19E+010.24E+000.36E+010.18E+010.40E+000.24E+010.42E+010.54E-010.68E+010.24E+010.20E+000.12E+010.20E+010.96E+000.27E+010.29E+010.65E+000.64E+010.34E+010.26E+000.54E+010.31E+01

KOM LA11

0.17E+000.96E+010.45E-010.28E+000.12E+020.58E-010.15E+000.10E+020.50E-010.40E+000.11 E+020.32E-010.31E+000.20E+010.39E+000.64E+000.4SE+0I0.16E+000.36E+000.11 E+020.51E-010.20E+000.21E+010.32E+000.70E+000.10E+020.39E-010.32E+000.51E+010.89E-010.49E+000.10E+020.25E-010.14E+010.77E+010.50E-010.17E+010.26E+01

MA11

0.59E+010.59E+010.59E+010.10E+010.10E+010.10E+01

0.34E+010.34E+010.34E+01

0.10E+010.10E+010.10E+010.26E+020.26E+020.26E+020.22E+010.22E+010.22E+010.21E+010.36E+000.81E+000.11E+010.11E+010.11E+010.70E+010.49E+010.95E+010.11E+01

Mill

O.13E+020.51E+010.29E+010.13E+020.17E+010.47E+000.23E+010.71E+010.19E+010.33E+020.31E+010.11E+010.76E+010.22E+010.66E+000.60E+010.27E+010.82E+000.63E+010.34E+010.73E+000.11 E+020.43E+010.47E+000.27E+020.37E+010.37E+000.83E+010.27E+010.69E+000.73E+010.40E+010.82E+000.14E+020.46E+010.23E+000.89E+010.33E+01

MI21

0.75E+000.44E+010.11E+000.42E+000.14E+010.59E+000.10E+010.92E+010.59E-010.30E+000.59E+010.58E-010.31E+000.54E+010.22E+010.14E+020.16E+010.11E+010.29E+010.10E+020.59E-010.18E+000.24E+010.14E+010.36E+010.49E+010.15E+000.38E+000.60E+010.99E-010.30E+000.10E+020.49E+000.15E+030.21E+010.23E+000.16E+010.19E+01

SHU SH21

0.41E+010.25E+010.75E+000.16E+020.21E+010.33E+000.30E+010.47E+010.13E+010.32E+020.26E+010.94E+000.88E+010.23E+010.14E+010.78E+010.20E+010.80E+000.78E+010.16E+010.82E+000.25E+010.18E+010.10E+010.30E+010.16E+010.92E+000.24E+010.55E+010.99E+000.19E+020.28E+010.32E+000.65E+010.I2E+010.72E+000.14E+010.31E+01

SH31 SOU

0.18E+000.69E+010.76E-010.38E+000.18E+020.36E-010.94E-010.90E+010.74E-010.57E+000.75E+010.47E-010.37E+000.17E+010.11E+010.24E+010.21E+010.36E+000.95E+000.90E+010.43E-010.44E+000.12E+010.68E+000.13E+010.69E+010.63E-010.87E+000.37E+010.11E+000.55E+000.67E+010.47E-010.11E+010.95E+010.40E+000.61 E+020.19E+01

TA11

0.21E+010.15E+010.71E+000.28E+010.30E+010.18E+000.10E+010.14E+010.63E+000.20E+010.15E+010.34E+000.18E+010.26E+010.24E+000.38E+010.31E+010.48E+000.66E+010.16E+010.33E+000.16E+010.30E+010.17E+000.49E+0I0.19E+010.27E+000.17E+010.18E+010.12E+010.26E+010.23E+010.33 E+000.45E+010.25E+010.23E+000.30E+010.33E+01

YOU

0.22E+010.20E+010.46E+000.28E+010.16E+010.40E+000.90E+000.25E+010.44E+000.67E+010.20E+010.33E+000.24E+010.26E+010.64E-010.13E+010.28E+010.27E+000.40E+010.17E+010.56E+000.24E+010.29E+010.58E-010.19E+0I0.16E+010.36E+000.I7E+010.30E+010.16E+010.44E+010.24E+010.24E+000.6IE+010.23E+010.26E+000.29E+010.31E+01

94

Page 96: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part II: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, F m j n and Fmax-

contributionreaction

AU-197(P,24P43N)BA-131

AU-197(P,24P41N)B A-133

AU-197(P,22P37N)CE-139

AU-197(P, 19P36N)PM-143

AU-197(P,17P36N)EU-145

AU-197(P,17P34N)EU-147

AU-197(P,17P33N)EU-148

AU-197(P,17P32N)EU-149

AU-197(P,16P36N)GD-146

AU-197(P,16P35N)GD-147

AU-197(P, 16P33N)GD-149

AU-197(P,16P31N)GD-151

GL12 IS11

0.84E-010.21E+010.25E+010.21E+000.22E+01

0.38E+010.33E-010.15E+01

0.29E+010.10E+010.46E+010.30E+010.11E+000.40E+010.86E+010.54E-010.20E+000.30E+010.19E+010.5IE+010.73E+010.18E+000.95E+010.95E+010.50E+010.15E+020.41E+010.17E+000.53E+010.29E+010.42E+000.40E+01

KA11

O.I4E+000.24E+010.31E+010.45E+000.60E+01

0.49E+01O.56E-010.17E+01

0.66E+010.92E+000.19E+020.34E+010.62E+000.77E+010.96E+010.41E-010.30E+000.31E+010.79E+000.69E+010.33E+020.97E+010.11E+030.17E+020.79E+010.35E+020.47E+010.63E+000.11E+020.20E+010.38E+000.24E+01

KO11 LAH

0.23E+000.36E+010.35E+010.53E+000.57E+01

0.34E+010.27E+00O.52E+01

0.51E+010.14E+010.99E+010.61E+010.28E+010.94E+010.35E+010.16E+01O.58E+O10.81E+010.36E+010.13E+020.62E+010.21E+010.12E+020.85E+010.65E+010.14E+02O.55E+O10.14E+010.10E+020.78E+010.35E+010.21E+02

MA11

0.95E+000.95E+000.19E+010.38E+000.12E+010.21E+010.38E+000.65E+000.17E+010.54E+000.70E+000.20E+020.11E+020.85E+020.18E+010.44E+000.23E+010.18E+010.58E+000.30E+010.25E+010.25E+000.70E+000.18E+010.84E+000.33E+010.18E+010.65E+000.32E+010.18E+010.65E+000.32E+010.17E+010.90E+000.33E+010.17E+010.99E+000.24E+01

Mill

0.12E+000.28E+010.31E+010.38E+000.48E+01O.38E+OI0.15E+010.83E+010.51E+010.45E-010.25E+010.36E+010.93E-010.28E+010.53E+010.32E+000.11E+020.40E+010.15E+000.53E+010.11E+020.29E-010.22E+000.40E+010.74E+000.58E+010.10E+020.65E+000.24E+020.13E+020.26E+010.17E+020.62E+010.26E+000.12E+020.28E+010.25E+000.29E+01

MI21

0.59E+000.43E+010.24E+010.12E+010.45E+010.27E+010.12E+01O.55E+O10.25E+010.17E+000.47E+010.24E+010.13E+000.27E+010.24E+010.26E+000.40E+010.26E+020.62E+010.70E+020.17E+010.66E+000.27E+010.18E+030.63E+020.39E+030.28E+010.48E+000.64E+010.38E+010.21E+010.64E+010.27E+010.39E+000.58E+010.22E+010.86E+000.34E+01

SHU SH21

0.37E+000.97E+010.24E+010.56E+000.60E+01

0.20E+010.38E+000.25E+01

0.16E+010.66E+000.30E+010.17E+010.74E+000.33E+010.37E+010.15E+000.45E+000.23E+010.11E+010.59E+01O.32E+010.12E+010.91E+010.27E+010.95E+000.91E+010.20E+010.7SE+000.45E+010.19E+010.76E+000.37E+01

SH31

0.19E+010.14E+010.22E+010.74E+010.31E+010.14E+02

0.89E+010.67E+010.11E+02

0.61E+010.51E+010.83E+010.13E+020.13E+020.13E+02

SOU

0.60E+000.35E+010.72E+010.16E+010.14E+02

0.20E+010.86E+000.32E+01

0.22E+010.62E+000.41E+010.40E+010.55E+000.71E+010.19E+020.83E+010.38E+020.31E+020.51E+0I0.25E+030.53E+010.25E+010.85E+010.55E+010.27E+010.25E+020.12E+020.10E+010.42E+020.52E+020.17E+02O.25E+O3

TA11

0.13E+000.20E+010.25E+010.21E+000.25E+01

0.35E+010.75E-010.20E+01

0.31E+010.21E+000.59E+010.26E+010.26E+000.30E+010.12E+020.30E-010.22E+000.23E+010.51E+000.37E+010.41E+010.63E+000.14E+020.40E+010.14E+010.68E+010.29E+010.30E+000.42E+010.18E+010.45E+000.21 E+01

YOU

0.15E+000.19E+010.25E+010.26E+000.31 E+010.20E+010.43E+000.34E+010.46E+01O.55E-O10.17E+010.30E+010.17E+000.43 E+010.45E+010.4SE+000.11E+020.29E+010.36E+000.49E+010.14E+020.27E-010.18E+000.26E+010.59E+000.45E+010.77E+010.13E+010.27E+020.69E+010.21 E+010.13E+020.38E+010.52E+000.74E+0!0.20E+010.48E+000.26E+01

95

Page 97: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part II: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, F m j n and F m a x .

contributionreactionAU-197(P,16P29N)GD-153

AU-197(P, 15P34N)TB-149

AU-197(P,15P32N)TB-151

AU-197(P,15P30N)TB-153

AU-197(P,15P28N)TB-155

AU-197(P, 12P26N)ER-160

AU-197(P, 11 P22N)TM-165

AU-197(P,11P2ON)TM-167

AU-197(P,11P19N)TM-168

AU-197(P,10P22N)YB-166

AU-197(P,10P19N)YB-169

AU-197(P,9P20N)LU-169

AU-197(P,9P19N)LU-170

GL12 IS11

0.38E+010.40E-010.99E+000.36E+010.51E-010.45E+010.12E+020.81E+000.42E+020.24E+010.89E-010.14E+010.27E+010.22E+000.26E+01

0.25E+01^0.I9E+01_j0.29E+010.28E+010.13E+010.37E+010.36E+010.11E+000.14E+010.24E+010.11E+010.34E+0I0.23E+010.12E+010.32E+010.27E+010.18E+010.36E+010.18E+010.86E+00

KAU

0.36E+010.68E-010.15E+010.33E+010.14E+000.40E+010.32E+010.10E+010.66E+010.27E+010.16E+000.19E+01

0.30E+010.13E+010.46E+010.29E+010.37E+000.46E+01

0.29E+010.18E+000.34E+010.24E+010.15E+000.22E+010.29E+010.11E+000.24E+010.25E+010.22E+00

KO11 LA11

0.49E+010.37E+010.97E+010.37E+010.56E-010.64E+000.11E+020.26E+010.85E+020.48E+010.27E+010.10E+02

0.35E+010.27E+010.67E+010.53E+010.17E+010.26E+020.54E+0I0.14E+0I0.11E+020.45E+010.14E+010.28E+020.32E+010.18E+010.70E+010.41E+010.I3E+010.78E+010.39E+010.17E+01

MA11

0.13E+010.64E+000.13E+010.98E+010.74E-010.18E+000.18E+01O.55E+OO0.27E+010.15E+010.46E+000.13E+010.45E+020.36E+020.56E+020.15E+020.42E+010.15E+030.16E+010.96E+000.22E+010.22E+010.93E+000.69E+010.51E+010.43E+000.12E+020.23E+010.76E+000.75E+010.19E+010.60E+000.39E+010.24E+010.11E+010.50E+010.14E+010.57E+00

Mil l

0.42E+010.44E-010.14E+010.35E+010.87E-010.31E+010.36E+010.78E+000.58E+010.33E+010.87E-010.19E+010.38E+010.22E+000.45E+010.86E+010.99E+000.18E+020.34E+010.12E+010.44E+010.34E+010.1IE+010.62E+010.13E+010.73E+000.98E+000.30E+010.37E+000.58E+010.27E+010.95E+000.48E+010.30E+010.27E+000.54E+010.22E+010.20E+00

MI21

0.17E+030.56E+020.36E+03

0.19E+010.34E+000.28E+010.28E+010.19E+000.31E+010.18E+010.80E+000.22E+0I0.15E+010.11E+010.19E+010.15E+010.72E+000.25E+010.69E+010.S3E+000.14E+020.15E+010.40E+000.18E+010.61E+020.25E+020.11E+030.17E+010.33E+000.21E+01

SII11 sim

0.16E+010.65E+000.25E+010.51E+010.15E+000.45E+000.18E+010.50E+000.25E+010.17E+010.39E+000.15E+01

0.13E+010.10E+010.16E+010.17E+010.12E+010.21E+010.65E+0I0.77E+000.19E+020.22E+010.64E+000.78E+010.13E+010.70E+000.16E+010.16E+010.10E+010.28E+010.14E+010.60E+00

SH31

0.16E+020.15E+020.17E+02

0.78E+010.78E+010.78E+010.18E+020.14E+020.25E+02

0.18E+010.18E+010.18E+010.31E+010.18E+010.97E+01

0.20E+010.90E+000.43E+010.42E+010.22E+010.63E+010.30E+010.14E+010.40E+010.29E+010.23E+01

son

0.23E+020.14E+020.39E+020.49E+010.69E-010.38E+000.34E+020.11E+020.11E+030.38E+020.93E+010.80E+02

0.10E+020.60E+010.13E+02

0.21E+010.18E+010.24E+0I0.98E+010.78E+010.12E+020.15E+020.13E+020.17E+020.12E+020.60E+01

TA11

0.30E+010.10E+000.15E+010.63E+010.20E-010.77E+000.52E+010.54E+000.63E+020.26E+010.19E+000.16E+01

0.22E+0I0.I1E+010.29E+010.27E+010.58E+000.44E+010.21E+010.23E+000.80E+000.24E+010.17E+000.22E+010.22E+010.19E+000.22E+010.28E+010.15E+000.38E+010.22E+010.23E+00

von

0.31E+010.94E-010.16E+010.36E+010.68E-010.24E+010.38E+010.11E+010.66E+010.25E+010.25E+000.24E+010.32E+010.28E+000.46E+010.45E+01O.88E+OO0.64E+010.27E+0I0.12E+010.36E+010.25E+010.21E+000.27E+010.97E+010.55E-010.I6E+000.29E+010.19E+000.35E+010.24E+010.17E+000.26E+010.30E+010.18E+000.37E+010.22E+010.25E+00

96

Page 98: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part II: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, F m , n and ¥max-

contributionreaction

AU-197(P,9P18N)LU-171

AU-197(P,9P16N)LU-173

AU-197(P,8PI8N)HF-172

AU-197(P,8P17N)HF-173

AU-197(P,8P15N)HF-175

AU-197(P,7P9N)TA-182

AU-197(P,6P14N)W-178

AU-197(P,5PI2N)RE-I8I

AU-197(P,5P11N)RE-182

AU-197(P,5P10N)RE-183

AU-I97(P,4P12N)OS-182

AU-197(P,4P9N)OS-!85

AU-197(P,4P3N)OS-191

GL12

0.20E+010.42E+000.31E+010.74E+01O.28E+O10.13E+020.I7E+010.44E+000.26E+01

0.I6E+010.48E+000.20E+01

0.16E+010.62E+000.20E+010.19E+010.37E+000.19E+010.16E+010.74E+000.22E+01

IS11

0.23 E+010.42E+010.16E-010.60E+010.46E+010.60E-010.12E+020.41E+010.12E-010.62E+010.27E+010.41E+000.74E+0I0.27E+010.75E-010.46E+01

0.22E+0I0.74E+00O.37E+O! _,0.64E+010.45E-010.47E+000.15E+010.86E+000.20E+010.19E+0I0.64E+000.33E+010.16E+010.66E+000.27E+010.44E+01

KA11

0.26E+010.35E+010.64E-01O.33E+O10.33E+010.69E-010.40E+010.37E+010.44E-010.37E+010.27E+010.95E-010.24E+010.25E+010.11E+000.30E+01

0.20E+010.50E+000.42E+010.65E+010.33E-010.13E+0I0.15E+010.63E+000.21E+010.17E+010.41E+000.27E+010.22E+010.11E+010.45E+010.84E+01

KO11 LA11

0.87E+010.61E+010.33E+010.15E+020.21E+020.24E+010.60E+020.16E+010.89E+000.26E+010.34E+010.98E+000.62E+010.20E+010.31E+000.41 E+01

0.19E+010.92E+000.30E+010.69E+020.26E-020.48E-0I0.14E+010.43E+000.11E+010.16E+010.40E+000.14E+010.14E+010.49E+000.15E+010.18E+02

MA11

0.I2E+010.17E+010.67E+000.25E+010.24E+010.12E+010.33E+010.29E+010.53E+000.26E+020.36E+010.68E+000.17E+020.51E+010.94E+000.77E+020.39E+010.25E+010.53E+01O.57E+O10.50E+010.66E+010.18E+010.78E+000.33E+010.70E+010.36E-010.68E+000.14E+010.87E+000.19E+010.16E+010.72E+000.26E+010.16E+010.63E+000.29E+010.51E+01

Mill

0.31 E+010.23E+010.45E+000.40E+01O.37E+010.16E+010.70E+010.24E+0J0.18E+000.35E+010.18E+010.69E+000.28E+010.23E+010.13E+010.35E+01

0.15E+020.63E+010.49E+020.22E+010.82E+000.41 E+01O.38E+010.16E+000.68E+000.19E+010.11E+010.27E+010.21 E+010.69E+000.43E+010.22E+010.93E+000.32E+010.27E+02

MI21

0.20E+010.14E+000.18E+010.17E+030.29E+020.39E+030.23E+010.80E-010.14E+010.19E+010.30E+000.27E+010.17E+010.48E+000.34E+01

0.24E+010.20E+010.29E+010.27E+010.10E+010.65E+01

0.46E+020.73E+010.23E+030.24E+010.99E+000.34E+010.16E+010.36E+000.14E+01

SHU SH21

0.22E+010.19E+010.12E+010.24E+010.19E+010.93E+000.27E+010.15E+010.33E+000.12E+010.43E+010.49E+000.86E+020.29E+010.13E+010.17E+02

0.17E+010.11E+010.30E+010.34E+010.10E+000.88E+000.12E+010.79E+000.16E+010.13E+010.67E+000.18E+010.I4E+010.62E+000.21 E+010.16E+02

SH31

0.36E+010.76E+010.40E+010.11E+02

0.15E+010.37E+O00.12E+010.15E+010.15E+010.15E+010.15E+010.71E+000.22E+01

0.20E+010.14E+010.33E+010.35E+010.20E+000.49E+000.12E+010.73E+000.11E+010.15E+010.42E+000.95E+000.12E+010.62E+000.12E+010.15E+02

SOU

0.19E+020.22E+020.18E+020.26E+020.61 E+010.61 E+010.61E+010.35E+010.23E+01O.58E+010.81E+010.34E+010.18E+020.35E+010.22E+01O.58E+O1

0.39E+01J0.18E+010.11E+020.24E+010.87E+000.45E+010.11E+010.79E+000.12E+010.13E+010.63 E+000.16E+010.14E+010.61 E+000.19E+010.27E+02

TA11

0.22E+010.33E+010.80E-010.67E+010.32E+010.12E+000.44E+010.34E+010.45E-010.22E+010.24E+010.13E+000.26E+010.28E+010.21 E+000.43E+01

0.19E+010.61 E+000.32E+010.57E+010.43E-010.96E+000.16E+010.73E+000.21 E+010.17E+010.46E+000.28E+010.18E+010.91E+000.27E+010.11E+02

YOU

0.28E+01O.35E+010.57E-010.32E+010.34E+01O.68E-0I0.43E+010.37E+010.34E-010.29E+010.24E+010.11E+000.22E+010.25E+010.99E-010.26E+01

0.39E+010.28E+010.47E+010.20E+010.64E+000.38E+010.10E+020.18E-010.54E+000.17E+010.85E+000.24E+010.20E+010.60E+000.36E+010.20E+0)0.11E+010.32E+010.20E+02

97

Page 99: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part II: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, F m j n and F m a x .

contributionreaction

AU-197(P,3P10N)IR-185

AU-197(P,3P9N)IR-186

AU-197(P,3P8N)IR-187

AU-197(P,3P7N)IR-188

AU-197(P,3P6N)IR-189

AU-197(P,3P5N)IR-190

AU-197(P,3P3N)IR-192

AU-197(P,2P8N)PT-188

AU-197(P,2P7N)PT-189

AU-197(P,2P5N)PT-I91

AU-197(P,P4N)AU-193

AU-197(P,P3N)AU-194

GL12

0.16E+010.38E+000.17E+010.23E+010.25E+000.10E+010.17E+010.13E+010.21E+010.83E+020.42E+020.18E+030.15E+010.93E+000.20E+0I0.84E+020.45E+020.17E+030.40E+03O.18E+O30.77E+030.14E+010.88E+000.17E+010.34E+010.33E+0I0.36E+0I0.14E+010.12E+010.16E+01

0.20E+010.12E+010.37E+01

IS11

0.12E+010.89E+010.I9E+010.25E+000.23E+010.19E+010.15E+010.31E+010.24E+010.20E+010.29E+010.23E+010.13E+010.56E+010.17E+010.99E+000.28E+010.17E+010.34E+000.13E+010.18E+0I0.28E+000.14E+010.21E+010.13E+010.31E+01

0.14E+010.63E+000.20E+010.21E+010.81E+000.33E+010.17E+01O.55E+OO0.31E+01

KA11

0.20E+010.21E+020.18E+010.46E+000.24E+010.32E+010.22E+010.50E+010.21E+010.13E+010.30E+010.33E+010.16E+010.76E+010.23E+010.88E+000.53E+010.14E+010.51E+000.20E+010.15E+010.47E+000.18E+010.24E+010.11E+010.62E+010.34E+010.27E+010.48E+010.19E+010.94E+000.38E+010.30E+010.22E+010.41E+010.24E+010.15E+010.40E+01

KO11 LA11

0.24E+010.55E+020.22E+010.17E+000.10E+010.29E+010.23E+000.71E+000.13E+010.66E+000.I3E+010.24E+010.77E+000.58E+010.14E+010.71E+000.19E+010.14E+010.33E+000.13E+010.14E+0!0.65E+000.22E+010.13E+010.68E+000.16E+01

0.12E+01O.77E+O00.11E+010.16E+010.67E+000.23E+010.14E+010.66E+000.21E+01

MA11

0.11E+010.71E+010.15E+010.40E+000.15E+010.22E+010.14E+010.34E+010.17E+010.85E+000.26E+010.22E+010.11E+010.44E+010.20E+010.73E+000.44E+010.20E+010.31E+000.16E+010.18E+010.30E+000.13E+010.17E+010.87E+000.38E+010.29E+010.24E+010.41E+010.16E+010.84E+000.30E+010.25E+010.20E+010.29E+010.21E+010.11E+010.42E+01

Mil l

0.17E+010.12E+030.18E+010.42E+000.26E+010.32E+010.20E+010.49E+010.23 E+010.18E+010.32E+010.33E+010.17E+010.69E+010.26E+010.11E+010.43E+010.17E+010.65E+000.24E+010.13E+010.99E+000.15E+010.28E+010.11E+010.49E+010.32E+010.26E+010.37E+010.16E+010.98E+000.23E+010.23E+010.19E+010.29E+0I0.19E+010.99E+000.35E+01

MI21

0.32E+010.72E-010.21 E+010.35E+010.13E+000.49E+000.14E+010.64E+000.17E+010.80E+010.36E+010.20E+020.13E+010.83E+000.20E+010.15E+010.38E+000.14E+010.33E+010.13E+010.62E+010.12E+010.78E+000.15E+010.19E+010.90E+000.26E+010.13E+010.67E+000.14E+01

0.16E+010.48E+000.19E+01

SH11 SII21

0.93E+000.59E+020.17E+010.28E+000.14E+010.38E+010.25E+010.76E+010.14E+010.72E+000.18E+010.26E+010.13E+010.58E+010.16E+010.70E+000.33E+010.13E+010.41E+000.16E+010.I3E+010.65E+000.13E+010.14E+010.81E+000.26E+010.21 E+010.16E+010.30E+010.14E+010.71E+000.18E+010.18E+010.14E+010.22E+010.I6E+010.86E+000.25E+01

SI131

0.53E+010.37E+020.15E+010.50E+000.14E+010.39E+010.26E+010.63E+010.13E+010.75E+000.14E+010.27E+010.13E+010.49E+010.11E+010.79E+000.11 E+010.15E+010.29E+000.10E+010.17E+010.49E+000.82E+000.11E+010.82E+000.10E+010.23E+010.22E+010.24E+010.11E+010.79E+000.98E+000.17E+010.15E+010.20E+010.13E+010.89E+000.20E+01

son

0.96E+000.69E+020.19E+010.23E+000.13E+010.70E+010.21E+010.36E+020.14E+010.77E+000.18E+010.28E+010.12E+010.68E+010.17E+010.80E+00O.33E+O10.15E+010.34E+000.20E+010.15E+010.49E+000.15E+010.15E+010.82E+000.25E+010.23 E+010.I7E+010.31 E+010.14E+01O.83E+OO0.19E+010.24E+010.14E+010.36E+010.19E+010.93E+000.32E+01

TA11

0.20E+010.21E+020.17E+01O.35E+OO0.22E+010.28E+010.22E+010.37E+010.16E+010.11E+010.21 E+010.30E+010.16E+010.70E+010.19E+010.10E+010.36E+010.14E+010.52E+000.17E+010.14E+010.65E+000.17E+010.17E+010.11E+010.27E+010.29E+010.18E+010.33E+010.14E+010.11 E+010.20E+010.23 E+010.12E+010.27E+010.17E+010.10E+010.30E+01

von

0.17E+010.41E+020.18E+010.47E+000.24E+010.22E+010.17E+010.31E+010.18E+0I0.12E+010.24E+010.25E+010.13E+010.59E+010.19E+010.97E+000.36E+010.13E+010.49E+000.14E+010.14E+010.10E+010.20E+010.18E+010.11E+010.33E+010.27E+010.19E+010.31 E+010.14E+010.93E+000.I9E+010.21 E+010.12E+010.26E+010.16E+010.99E+000.24E+01

98

Page 100: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 8, part II: Average deviation factors of calculated from experimental data for energies between 201.0 and 5000.0 MeV. For each reaction three entries are given: <F>, F m m and F m a x .

contributionreactionAU-197(P,P2N)AU-195

AU-197(P,PN)AU-196

GL12

0.23E+010.14E+010.37E+010.30E+0!0.20E+010.50E+OI

ISlt

0.16E+0I0.73E+0O0.27E+010.13E+01O.68E+0O0.15E+01

KA11

0.18E+010.I3E+010.22E+010.22E+010.17E+010.30E+01

KO11 LA11

0.18E+010.I1E+010.27E+010.13E+010.10E+010.16E+01

MA11

0.21E+010.12E+010.37E+010.13E+010.86E+000.19E+01

Mil l

0.20E+010.12E+010.33E+010.13E+010.68E+000.18E+01

MI21

0.18E+010.65E+000.24E+010.12E+01O.85E+OO0.14E+01

SHU SH21

0.16E+01O.85E+OO0.24E+010.12E+010.75E+000.13E+01

SH31

0.13E+010.95E+000.17E+010.12E+010.68E+000.11E+01

SOU

0.19E+0I0.10E+010.27E+0I0.13E+010.10E+010.18E+01

TA11

0.18E+01O.UE+010.23E+010.12E+010.73E+000.18E+01

YOU

0.17E+010.11E+010.23E+010.12E+010.80E+000.14E+01

99

Page 101: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 9: Global mean deviation factors for each contribution averaged over all reactions.

contribution

BE11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUFOllFR11FR12GL11GL12IS11

KA11KO11LA11MA11MillMI21SHUSH21SH31SOUTA11YOU

«F»

3.013.66

13.922.452.972.896.403.267.638.71

10.12

3.463.369.933.993.39

4.01

4.224.27

5.927.275.78

(NS/NR)1.-50. MeV

(69/10)(949/42)

(17/4)(107/5)(79/8)

(100/5)(119/6)(202/6)(19/3)(4/4)(3/3)

(541/26)(862/37)(527/23)(808/35)(811/34)

(918/46)

(99/14)(727/32)

(616/31)(803/39)(873/45)

« F >

2.323.523.451.815.481.351.442.161.573.552.92

10.245.317.441.743.25

11.082.842.821.923.222.443.872.694.503.916.063.472.67

> (NS/NR)51.-200. MeV

(492/21)(1364/80)

(79/4)(187/5)

(215/19)(187/5)(137/4)

(361/10)(79/4)

(1038/50)(1238/78)

(362/47)(473/58)(415/51)(922/31)

(1284/69)(1245/75)(1224/77)(1174/68)

(23/23)(1420/85)(224/42)(882/91)(586/48)

(1278/72)(1159/68)(1371/78)(1506/85)(775/93)

201

6.611.35

2.2712.146.599.785.624.482.064.309.344.29

3.225.466.16

3.65

3.253.303.843.172.97

(NS/NR).-5000. MeV

(26/14)(18/4)

(2/2)(1267/107)(1542/147)

(228/46)(585/80)(678/92)(349/27)(598/60)

(1609/147)(1595/144)

(1767/149)(1524/161)(1680/163)(1880/164)

(1581/136)(691/92)

(1667/149)(1744/151)(1933/176)

100

Page 102: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

APPENDIX II

Graphical presentation of the results of the intercomparison

Figure Captions 1 to 341

Figure 1

Figures 2 - 7

Figures 8-13

Figures 14-21

Figures 22 - 34

Figures 35 - 59

Figures 60 - 64

Figures 65 - 92

Figures 9 3 - 139

Figures 140- 147

Figures 148-160

Figures 161-193

Figures 194-198

Figures 199-253

Figures 254-341

Global mean deviation factors for each contribution averaged over allreactions and target elements for energy groups from 0 Me V - 50 Me V, 51MeV - 200 MeV and 201 MeV to 5000 MeV.

Reaction cross sections for energies up to 200 MeV.

Reaction cross sections for energies between 1 MeV and 5000 MeV.

Results for the target element oxygen up to 200 MeV.

Results for the target element aluminum up to 200 MeV.

Results for the target element iron up to 200 MeV.

Results for the target element cobalt up to 200 MeV.

Results for the target element zirconium up to 200 MeV.

Results for the target element gold up to 200 MeV.

Results for the target element oxygen for energies between 1 MeV and 5000MeV.

Results for the target element aluminum for energies between 1 MeV and5000 MeV.

Results for the target element iron for energies between 1 MeV and 5000MeV.

Results for the target element cobalt for energies between 1 MeV and 5000MeV.

Results for the target element zirconium for energies between 1 MeV and5000 MeV.

Results for the target element gold for energies between 1 MeV and 5000MeV.

101

Page 103: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

oto

16

14

12

10

2 .

• 0 - 50 MeVM 51 -200 MeV• 201-5000 MeV

i IB B B B B B C C C C F F F F G G I K K L M M M S S S S T YE L L L L L M M M S L O R R L L S A O A A I I H H H O A O1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 3 1 1 11 1 2 3 1 3 1 2 3 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1

Fig. 1: Global mean deviation factors for each contribution averaged over all reactions and target elements for energygroups from 0 MeV - 50 MeV, 51 MeV - 200 MeV and 201 MeV to 5000 MeV.

Page 104: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

o

REACTION CROSS SECTION [mb] REACTION CROSS SECTION [mb]

o+

O

mzmxi ^CD o-< o

CD

rooo

~x r;

O+

I «, I

Z M+

X •

z *»

X •

z

z

J I I I I

~n

CJJ

ro

nen

cHmenweoz2r7;AnonnonaeeeCDpo>oniHH>>o>i / i r r i )3 )or i / ) i i z r r r r rnx

o+ru

O+

-

_

-

-

-

-

-

>8

8

8

8

— 8

i

0B ^

«

001

O H

0 «•»

8 •

8 »BM

9 •

i

1 o ' o ' ' ' 'H • BMW- ^^ f t )

« - -

-

-

-

-

1 1 1 1 1 1

IQ

ro

o

nw

<J0XOD

Page 105: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

REACTION CROSS SECTION [mb]

o+ru

O

REACTION CROSS SECTION [mb]

O+ru

O- t -Lo

mz

K- rn8 S

e

1002

00

-

-

-

---

1B

1

iB

1

1 1 1 1 1 1 1B X op _ rx- „

wom-a

t>

t>

*

x>

x >

xra

x •

KXXCB S

1 1 1 1 1 1 1

i—'•

IQ

CJ1

no

i(ji

n0)

X

XI

z

X

I I I I I I I

03

n

<0XOD

ro ro >

Page 106: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

REACTION CROSS SECTION [mb] REACTION CROSS SECTION [mb]

o+

O+U)

O-t-ro

O

o 1 ' ^ b b 'T 0 °0 o^

mi-. m

CD o-< o

fD

rooo

t>

•a

• o

• x

• X

n

I I I I I I I I I I I

o

>cI

CD

n

B XOi i i i T i i r

H » » B 1%,

-xs-m

IK

_i i i i i i i i

P?

N

oCD

<QXOD

Page 107: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

REACTION CROSS SECTION [mb] REACTION CROSS SECTION [mb]

o+ro

O

mH-. m8 2

ro

<

O

O+

i i i i i i

j i i i i i -

i—••

ID

>

Iru

?nm

I - E l V A O I Z I X X H O © ^ ^ 4 I H D * v > <OXOD

O+ru

O

• •-*• r u r o »

Page 108: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

REACTION CROSS SECTION [mb] REACTION CROSS SECTION [mb]

oro

O

+o

mz

,— m3 5 o -_

ro(D<

o+

O+OJ

O+ro

O

i i i r

I I I I I L

~n

o

ro

n

Page 109: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

REACTION CROSS SECTION [mb] REACTION CROSS SECTION [mb]

oru

O

O

mz:

h- mo -noo ±i

ru

<

O b

~\ 1 1 1—i i r r -i er

j i i i i i i i

>

c

nCD

I - E I V A < > 0 X X H O @ # ^ ^ @ [ > * > > <10XOD

O+ru

O+

Page 110: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2 F ig . 14: 0 (p, 8pxn) H-2

n

o

CJLJCO

LQCOOCLU

10 + 1 _

i i i i i i i i i i i

1 0 +

n

o

LJCO

COCO

u

l o +o

10 - 3

Fig . 15: 0 (p, 8pxn) H-3- I l l x * H I i I I I I I I

X K H X X

i i i i i i

X K X

I I I I I I I I I I I I I I I I I I

0 100ENERGY [MeV]

109

• expO BE 11N BL11OBL12v BL13^ BL21X BL23+ CM 11X CM12S CM13CSUFLUF011FR11

• FR12* GL11<§> GL12© IS11O KA110 K011X LA11X MA 11S MillA MI21V SHU< SH21> SH31El SOU1 TAU- YOU

200

Page 111: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 2

n

io + 1

o

CJLUCO

oCLU

+o _

10" 1

1 0 + 3

F i

11

11

i i

i i

In

-

- *

: Ii i

g •

XX

X

X

1

1

X *

1

6:i

X

1

0

* x

1 I

(p,1

X

1

7pxn)I I I

H

, 1 ,

Hei

X

-

1

- 3

X

-

1 1

1 1

1 M

1

x x K

- -

El

-

-

1 1 1 1 1 1 1

Fig . 17: 0 (p, 7pxn) He-4

n

o

uLLJCOCOCOocru

10 + 2

10 + 1

i i i i i i i i i i i i

• \

X "Hx,

X X X X X

s

X

I I I I I I I I I I I I I I I [

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR12GL11GL12IS11KA11K011LA11MA 11MillMI21SH11SH21SH31SOUTA11YOU

• expO BE 11M BL11OBL12v BL13^ BL21X BL23+ CM 11X CM12S CM13ACS11* FLU£ F011[si FR11• FR12^ GLU<§> GL12© IS11O KA110 K011X LAUX MA11S MillA MI21V SHU< SH21> SH31B SOU1 TA11- YOU

0 100ENERGY

110

200[MeV]

Page 112: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2 Fig . IB: 0 (p, 5pxn) Be-7i i i i i i I r i i i i i i i i i i i r

o

ULUCO

coCO

CJ

A n +0

10 - 2

QA .

oM

fto

o1

O

M

X

&

o

!

oRX

• exp-rqo BE 11- M BLU- OBL12v BL13• BL21

- X BL23+ CM 11

_ X CM12S CM13A CS11* FLUFOU

0 FR11FR12GL11GL12IS11

0 KA11IZ K011X LA11X MAUH MillA MI21V SHU< SH21> SH318 SOU1 TAU- YOU

i i i I i i i i i i

10 + 1

n

o

LJJCO

COCO

CJ

10 - 3

F ii i

-

___

-

-

-

I

--

:

-i i

g

i

i

i

f

i

A

A

A.

k |

19:

X

\A

•A

•AoA

A

" 1i

o

i

01 1

* x1

o

A

i

i i

(P.i

X

i

o

fi

5pi

A

z

1

X1

X

I

ftILA

|

n)i

A

1

Bei

x

BO1

* m *

i

1

o

A

M

I

101

X

BO

1

* t "A

M

1

1

O

A

1X

8

1

41 M)

M

1

1

O

A

M

1

1X

BO

1

X

M

1

1 1 1 -X ;

o h

A A

S

M M

i ---

=

:

-

. i i

0 100ENERGY [MeV]

ill

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR126L11GL12IS11KA11K011LA11MA 11MillMI21SHUSH21SH31SOUTA11YOU

200

Page 113: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

1 0 +

o

CJLJCO

COCO

CJ

10 + 0

10 - 2

F i g . 20: 0 (p, 3p3n) C - l l- i i i i i r i i n i i i i i i i i i

I )( *

n expO BE 11M BLUO BL12v BL13^ BL21X BL23+ CM 11X CM12S CM13A CSU* FLUA FOUIs) FR11• FR12A GL11<$> GL12© ISUO KAU0 K011X LAUX MA 11S MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

10 + 2

10

O

CJLLJ10

1010O

crCJ

+ 1 _

10 + 0 _

10 - 1 _

10 - 2

0

F

Mill

-

— >

— 1

X-

Ill

I I

\\ \ |T

-

)

1

| • 1

i

X

(

1

D

c

X

' !

o

1

1

2i

Mxx

<o

o

1 <m

ft

i#

if

i

1:

X

o

DFFi

r0

1

1

X

oL

too

I

1

01

X

A o

iunti d

I

i

(P,i

X

F,if*1

0

I

1

3p

•—

I

i

X1

X

1f

I

I

n)I

A

A A

c-1

X

A

B

1-1

o D•

* * *

I

o

|

I

X

B

X

»

I

I 1

X

A A

B

% R

1 1

1

A

O

M

1

1

X

A

B-

N

1

1

A

o

M

1

Mil

l

X

z-—6

iSS

~

og

-

-

1 1

11

-1 ,

100ENERGY [MeV]

112

200

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR12GL11GL12IS11KA11K011LA11MA 11MillMI21SHUSH21SH31SOUTA11YOU

Page 114: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

o

CJLUCO

10

COco

DC •L

CJ

10

10

- 2

+ 2

n

CD

10 +

CJ

CO

COCO

oDC

u

10 + 0

10

1 0 '

F i g . 22: A1-27 (p. 13pxn) H-2

+ 0 _

I J I I I I I J I I J 1 I ! I I I ! I J I

Fig . 23: Al-27 (p. 13pxn) H-3- I I I I I I I 1 I I I I I i I I I I \

- 1 _

o ° 9 ? O1 o

i

J

•rq o

MOvA.X+X&A*

O0X

sAV<>

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUF O l lFR11FR12GL11GL12I S 1 1KA11K011LA11MA11M i l lMI21SHUSH21SH31SOUTAUYOU

— 2 I i II i i i i i i i I i i i i i i i i i

0 100ENERGY [MeV]

113

200

Page 115: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 2Fig. 24: Al-27 (p, 12pxn) He-3

10 + 1 r

oi—i

i—

CJ

CO

LOCO

CJ

10+ 0 _

1 0 " 2

1 0 + 3

aLJJin

10 + '

eneng l O + o

CJ

10 - l

-

-

-

-

Mill

1

1 1

1 1

II

1

1

1

C

6>

. .

n

n

* j

i

•>

%f8

*

[t

1

]GBas

I

I

1

D

D

.

i

i

0

i

1

0

+

1

#

o

1

1

0

+

BX1

1

1

0

+

ft

o

1

1

0

+

B

1

1 1

o

o

1 ,

1

0

+

-

1

1 1

s

-

1

1 '

m

-

i i

i i

0

Ht

I i

1 11

1

0

-

¥ z

9 I-

=

-

i i

11 i

i |

1 ,

Fig . 25: Al-27 (p, 12pxn) He-4

£ 1 O + 2 u

• expO BE11M BL11OBL12^ BL13A BL21X BL23+ CM 11X CM12S CM13A CS11* FLUA F01113 FR11• FR12A 6L11<§> GL12© IS11O KA110 K011X LA11X MA 11H MillA MI21V SHU< SH21> SH31El SOU1 TAU- YOU

II11

If**-0 fffllo Hr

_MM

1

XMO

~ x

1

- i

r-

i i

5b)

+

Irff

i*

i

X

1

•Cfi

XX1

1

1

ttttro

IB

X M K

1

1

1

A

*

o

i

i

0

o

1

1

D+

1M

1

9

T

g

i

i

9

T

I

I

9

—A

oX

1

1 1

9

X

1 1

1 1

o

*1

1 1

1 1

0+

•1

X

1 1

1 1 1

0 0+ ±

51 •1 1

X R

1

1

T

)

, i

I —

-LJJ

.1

_

Mil

l

-

-

1

expBEUBL11BL12BL13BL21BL23CM11CM12CM13C S UFLUFD11FR11FR12GLUGL12IS11KA11K011LA11MA 11M i l lMI21SHUSH21SH31SOUTA11YOU

0 100 200ENERGY [MeV]

114

Page 116: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 1F i g . 2 6 : A l - 2 7 (p, lOp 1 In) B e - 7

n l o + o

o

LUCO

COCO

CJ

1 0 " 3

l o + o

i i i i i i i i i

F i g . 27: Al-27 (p, lOpBn) Be-10

o

LLJCO

COCO

CJ

DOMOv«̂

nxsA*

m

o0xXsAV<>

10 - 4

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR12GL11GL12I S 1 1KA11KO11LA11MA 11M i l lMI21SHUSH21SH31SOUT A 1 1YOU

D expO BE 11M BL11O BL12v BL13^ BL21X BL23+ CM 11X CM12S CM13A CS11* F L UA FOU® FR11• FR12A GL11* GL12© IS110 KA11

ta KOII* LA11X MA 11S M i l lA MI21V SHU< SH21> SH31El SOU1 TA11- Y O U

200

Page 117: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2 Fig . 28: Al-27 (p, 5pxn) F-18

o

CJLUCO

COCO

CJ

10

10

10

- 2

+ 3

10 + 2

o

CJLLJ

CO

10 + 1

COCO

§ 1 0 + 0

CJ

10 - 1

+ 0 _

111 1 1

1 1

-

r L?:

DD V- nnn *

A .

A

1 ! ! 1 1

f

1

1

I l l l

A

X

* i ;

i i i i

i i i

* ¥ + 9 ++ X + A A i

X

f 't

1 1

Ak.

i A 6<

1

1 1

1 1

A ft

1 1

1

A 1

(1

1

1 —

-

H1

1

1 1

1 II

1

1

1

1

1 1

1II

-

1 1 I

II

-

1

Fig. 29: Al-27 (p, 4pxn) Ne-20- I \^ I I I I I I i I I 1 I I T ^ i I I I I

A A j

M

i i I iti i i i i i i i i i I I I I

DOMOV

X+

s*

©

o0X

sAV<>IS1—

+

•oX!

oV

A.

X+X

sA*

[Si

©

o0XXsAV<>IS1_

e x pBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11F L UF011FR11FR12GL11GL12IS11KAllK011LA11MA11M i l lMI21S H USH21SH31SOUTA11YOUK10 3

e x pBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11F L UFO11FR11FR12GL11GL12IS11KAllK011LA11MA11M i l lMI21SHUSH21SH31SOUTA11YOU

0 100ENERGY [MeV]

116

200

Page 118: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 2

10 +

o

10 +0

LJCO

COCO

°CJ

10 "2

Fig. 30: Al-27 (p, 4pxn) Ne-21- i i i r i i i i i \ i r \ i i i i i i r ^

* • • • ,

9"

P.

• -

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUF011FRUFR126L116L12IS11KA11K011LA11MA11MillMI21SHUSH21SH31SOUTA11

YOU

10 +2

10 + 1 r

o10 + 0 r

LUCO

COCO

CJ

10-2

F i- t i

"1 M

IT

_

_

-

-

1 ll 1 1 1

1

: Efi i

g • 31i i ir**<tD

a

i• x

A.41 i i

i

**

mM

i

1

Al-27I i I

• # * * •

D M

•I

1 1 1

(p. 4p1 I

A "*

xn1

S A * A

XX

i

1 ,

) Nei

• • • <

A ^

X

1 1

-22l i

X

1 1

1

4

AM

X

1

1 1 1 -

* :

• * -

ftA 6 =

X I-

=

I 1

1 I

II

1

i 1 ,

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR126L116L12IS11KA11K011LA11MA 11MillMI21SHUSH21SH31SOUTAUYOU

0 100ENERGY [MeV]

117

200

Page 119: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10

o

CJUJCQ

COCO

CJ

+ 2 Eig. 32: Al-27 (p, 3p3n) Na-22

10 +

10 + o

10-2

•rq o

ovX+X2A

o0XX

sAV<>

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUF011FR11FR126L116L12IS11KA11K011LA11MA 11MillMI21SH11SH21SH31SOUTA11YOU

10

CJL±Jin

+ 2

1 0 + 1

1 0 + l

in

CO

CJ

10-2

F i g . 33: Al-27 (p, 3pn) Na-24- i i i i i i i i r

• «

r^ M ..- tM " " V

M «

I I I I

0 100ENERGY [MeV]

200

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUF011FRIIFR12GL11GL12IS11KAUK011LA 11MA 11M i l lMI21SHUSH21SH31SOUTAUYOU

118

Page 120: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3 Fig. 34: Al-27 (p, pn) Al-26- i r I i I I I I I I 1 1 I I [ l I

_Q

O

UJ

COCO

ou

1 0 + 2

o

CJLUCO

1 0 +

CO

g l O + o

CJ

10"1

10+2

: (f

Fig . 35: Fe (p, 26pxn) H-2i i r i i i i i i i i i i i i j .

K x xX X *

X X

10

10 + o I I 1 I I I I L J I L

D

oIXO

o0XXsAV<>

IX

o

o0X

XsAV<

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR12GL11GL12IS11KAllK011LA11MA 11M i l lMI21SH1 iSH21SH31SOUT A 1 1YOU

expBE 11BLllBL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR12GL11GL12IS11KAllK011LA11MA 11MillMI21SHUSH21SH31SOUTA11YOU

0 100

ENERGY [MeV]200

119

Page 121: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10

o

CJLLJCO

COCO

CJ

+2

10 +

1 O + I

10 - 2

F i g . 36: Fe (p, 26pxn) H-3i i l l I I l l I I 1 I ! T

* n *

D expO BE11txj BL11OBL12• BL13• BL21X BL23+ CM11X CM12g CM13A CS11* FLU, F011I FR11FR12GL11GL12IS11

O KA110 KO11X LA11X MA11S MillA MI21V SH11<3 SH21> SH31El SOU1 TA11- YOU

I T I I i i I I I I I I I I I I

10

•e

o

CJLLJCO

COCO

CJ

+ 2

10

10

F i g . 37: Fe (p, 25pxn) He-3i i i i i i i i i i i i i i i i I r

+ 0 _

-2 I L

i

ifM

! i

a

J L J I L I 1 I I J I I L

0 100ENERGY [MeV]

200

D expO BE 11M BLllOBL12v BL13^ BL21X BL23+ CM11X CM12S CM13A CS11* FLUA FO11[si FR11• FR12A GL11<§> GL12© IS11O KA110 K011X LA11X MA11H MillA MI21V SH11< SH21> SH31El SOU1 TA11- YOU

120

Page 122: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3 F i g . 38: Fe (p, 25pxn) He-4

-§ i o + 2

o

LJJLO

1 0 + 1 -

COLO

g l O + o

u

10 "1

1 1

1 1

1

-—

: * /- x /

— ^ W- V ®B

- 7 HL

}

1

"T

fi

i

O

1

>

7?v

X

oa

i

17777

X

3*

*

0

1

7X

B

O

1

s

B

*

1

,

B

1

1

4B

*

mB

O

1 I

B*

1 1

X

oiB

i

i i i

X

ao

i

1 1 1

1

X

*

B

1

1 1

1

1 1

i :« =

-*B

O

-

I—_

-

1 1

1 II

I

-

1 1

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FRIIFR126L11GL12IS11KA11K011LA11MA11MillMI21SHUSH21SH31SOUTA11YOU

l o

COCOOLT

a

+o

-§ 10"1

o

LJJCO

- 3

10 - 4

F i g . 39: Fe (p, 23pxn) Be-7- i i i i i T i i i i i T i i i i i i i i r ^

A7

A AA A * A A

J L I I I I J L J L J L

D e x pO BE 11M BL110 BL12v BL13A BL21X BL23+ CMUX CM12S CM13CS11FLUFOUFR11

• FR12A GL11>̂ GL12© IS11Q KA110KO11X LA11X MAUIS MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

0 100ENERGY [MeV]

200

121

Page 123: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 1 Fig . 40: Fe (p, lOpxn) Cl-36

oi—i

CJL±JCO

COCO

CJ

10 - 3

i i i i i i i i i i i

• expO BE 11XI BLUOBL12v BL13^ BL21X BL23+ CMUX CM12S CM13ACS11* FLUA F011@ FR11• FR12A GLU# GL12© ISUO KAll0 KOUX LA11X MA 11S M i l lA MI21V SH11< SH21> SH31IS S O U1 TAU

- YOU

10 + 0

9 10"1

o

uLUCO

10

COCO

g l O " 3

CJ

10

F i g . 41: Fe (p, 9pxn) Ar-36- i i i T T i i T I I I i i i i i i T i r r ^

-2 _

— 4 I i i i i i i i i

0 100ENERGY [MeV]

122

i I i i i i i I

200

• expO BE 11M BLUOBL12v BL13^ BL21X BL23+ CM11X CM125 CM13A CSU* FLU6 FO11@ FRU• FR12^ GLU<S> G L 1 2© ISU0 KAll0 KOUX LA11X MA11S MillA MI21V SHU< SH21> SH31ED SOU1 TAU- YOU

Page 124: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10

o

CJLLJCO

COCO

CJ

+ 2

1 0 +

1 0 + 0

10 "2

F i g . 42: Fe (p, 9pxn) Ar-38- I I I I I I I i I I I I I I I I I I I I

i i i i i i

I II A

A

A« *

I 4. I I I

{ I

* =

• expO BE 11MBL11

v BL13A BL21X BL23+ CM11X CM125 CM13A CSll* FLU6 F011HI FR11• FR12A GL11«> GL12@ ISUO KA110 K011X LAUX MAUH MillA MI21V SHU< SH21> SH31IS SOUTA11

- YOU

10Fig . 43: Fe (p, 8pxn) K-42

10

o

LLJ

coCOen

CJ

10 - 3

II

111 1

El

TT

T

II

I ll

1 1 1

1

-

1 1

1 1

1II

t

I1 1 1 1 I 1 1 1 1

A

1

11

i

1

i

AA

i

MM

)

1

1

0

W

ii

A

iM

1

r ' •

i

nI * l

i

f

1 A

I

i i i

1 1 -

• —

SI

T _

| ;

1 ;

II

I!-

:i ,

• expO BE 11

BLUO BL12v BL13

BL21X BL23+SA*

CM 11CM12CM13CSllFLU

& FOliHI FR11• FR12A G L I I<$> G L 1 2@ ISUO KA110 K011X LA11X MA 11H MillA MI21V SHU< SH21> SH3112 SOU1 TA11- YOU

0 100ENERGY [MeV]

200

123

Page 125: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 2 F 44: Fe (p, 8pxn) K-43

10 + 1 r

o

CJLLJCO

COCO

CJ

1 0 +

o

CJLJCO

COCO

CJ

0 _

10" 2

1 0 + 2

i I i i i i i i i i i 1 i i

F ig . 45: Fe (p, 6pxn) Sc-46- I I

10+ 0

10-2

- V

i I i i r \ i i i t i i I i I i i r ^

• expO BE 11CXI BL11O BL12v BL13^ BL21X BL23+ CM11X CM12S CM13A CS11* FLUA F011Lsl FR11• FR12A GL11<$> GL12@ IS110 KA11ia KOIIX LA11X MA11S M i l lA MI21

S H U< SH21> SH31E S O U1 TA11- YOU

• expO BEUXI BL11O B L 1 2v BL13^ BL21X BL23+ CM 11X CM12S CM13A CS11* F L UA F011Lsl FR11• FR12A. GL11<$> GL12© I S 1 1O KA110 KO11X LA11X MA11S M i l lA MI21V SH11< SH21t> SH31E S O U1 TA11- YOU

0 100ENERGY [MeV]

124

200

Page 126: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2 F i g . 46: Fe (p, 6pxn) Sc-47—i 1 1 1 1 1 1 1 1 1 1 1 1 r"i r

o

CJ

COGO

CJ

10 + 0

10 ~2

•oMO

*-

o0X

sAV<>

expBE 11BL11BL12BL13BL21BL23CM 1 1CM12CM13CS11FLUF011FR11FR12GL11GL12IS11KA11K011LA 11MA11M i l lMI21SH11SH21SH31SOUTA11YOU

i i i i i i i

10 + 2F ig . 47: Fe (p, 6pxn) Sc-48

I I I I i r

10 +

o

CJLUCO

COCO

a

10 + o

10 - 2 J L I I I I

t -

DOMOv

X+XxA*

I I I I 1 I L

0 100ENERGY [MeV]

200

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUF011FR11FR12GL11GL12IS11KA11K011LA11MA 11M i l lMI21SHUSH21SH31SOUTA11YOU

125

Page 127: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 1

o

CJLLJco

COCO

CJ

10 - 3

F i g .E ' ' '

-

Im

-

-_

Im

-1 1 !

48:i i

i i

Fei i

* •

i i

(P1

0

* •

1i-

0

g

i

5pr

II

H

MA

*

*

|

xn) Ti i

•i

<

!3

• A

• " • A

ft

II I

11

M

A

|

J.441

i i

i

J

i i

1 1

L « E

1 . 5 , •

* * *k

$ A

f

i i i

i i -

* :

i *~

-B *8 EA -

1 M

ill

-

-

1 ,

• expO BE 11M BL11OBL12

BL13BL21

X BL23+ CM 11X CM125 CM13A CS11* FLU6 F0110 FR11• FR12^ GL11GL12IS11

O KA110 K011X LA11X MA 11S MillA MI21V SH11< SH21> SH3112 SOU1 TA11- YOU

10

O

L±JCO

COCO

CJ

+ 3

10 + 2

+ 1

+ 0

10 - 1

F i g . 49: Fe (p, 4pxn) V-48i i i i i r T i i r i i i i i i i i

4V** •I T I J I I I I I I I I L

• expO BE11M BL11O B L 1 2v BL13^ BL21X BL23+ CM 11X CM125 CM13A CS11* FLU6 F011FR11FR12

^ GL11<$> GL12© IS11O KA110 K011X LA11X MA 11S MillA MI21V SH11< SH210 SH31El SOU1 TA11- YOU

0 100ENERGY

126

200[MeV]

Page 128: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10

o

+ 1

o 10LLJCO

COCO

g 10'CJ

- l

F i g . 50: Fe (p, 3pxn) Cr-ABI \ T

10 - 3

•q

D expO BE 11tX BL11OBL12v BL13A BL21BL23CM 11CM12CM13OS 11FLU

& FO11@ FR11• FR12*- 6L11® GL12® ISI 10 KA110KO11X LA11X MA11S MillA MI21V SHU< SH21> SH31IS SOU1 TA11- YOU

10

O

CJLLJ01

C/lCOOCEO

+ 3

10 + 2

10 + 1

10 + l

10 - l

Fig . 51: Fe (p, 3pxn) Cr-51- I I I I I I I i r 1 ( I T I I f i r

|4> I * ^ | I I I I I I I I I I I I I I I

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FRUFR12GL11GL12ISUKA11KOULA11MA11MillMI21SHUSH21SH31SOUTA11YOU

0 100ENERGY [MeV]

127

200

Page 129: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3 F 52: Fe (p, 2pxn) Mn-52i 1 T I 1 I 1 I I i ^

§ • § •

o

CJLUGO

10 + 1

if)cog l O + o

CJ

10"1

1 0 + 3

nnni

F i g . 53: Fe (p, 2pxn) Mn-54i i i i i i i i i i

10 + 2

o

CJLLJ

CO

GOGOODCCJ

10 + 1

+o

10 - l

0

•oMO

a0xXsAV<>El

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FL11F011FR11FR126L11GL12IS11KAIIK011LA11MA 11M i l lMI21SHUSH21SH31SOUTA11YOU

aoXI

ovX+X

A

I *Is]

expBEUBL11BL12BL13BL21BL23CM 11CM12CM13CS11FL11F011FR11FR126L11GL12IS11KA11K011LA11MA 11M i l lMI21SHUSH21SH31SOUTA11YOU

200[MeV]

Page 130: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

f\J ^~* C\J CO

DOX0>

CUL D

ICD

CXd

CD

•r-i

I I I I I I I I i rrrr i n i n ITT M I I• 4

4 V

4

III I M I I T

ABO < l -X«GB<

•4 „,-

I I I I I I I 11 I I I I I I I I 11 I I I I I I I I I I I I I

DOXOt> <3

IDin

iCDLJ_

cX

a.d.CD

LL

inin

•i—i

1 1 1 1 1 i

<

<

<

<

- <

<

— <

<

- <

-

i l l i i i i

X + NM -< * <Gi j i 1 1 1 i i i

o VHKI a «*

«4

ovma m

•4

« • » O»4

D •<

<y«w srx 2•4•4 Z• 4

• 4

• 44>4

7HDS4QI Z-c• 4

vak na z4>4

^Hft M X4>4

• 4Tmuma

¥ii f »f

i i n 1 1 1 1 1

0 • < 4i i

z

z

z

z

c

0

o

o

o% B

1

^@OBXX0<t>VA8- 11 1 1 1 i i i i I I 1 1 1 i i i i

o —

-

-

-

-

-

_

-

-

-

-

-

-

-

I I I I I 1 1 1 1 1

ooOJ

>CD

o >_

O CD

LU

O

CM4-

o oo+O o

CVJ

i

O O O O

o

O o

N0I133S SSOdO N0I133S SS0H3

Page 131: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3 F i g

10 + 2

o

uLUCO

10 + 1

LOLO

g l Oa

10

zo

CJLLJCO

oDCCJ

10 + 2

+ 1

10 + 0

i 1 1 1 1 1 1 1

I I I I I I

D expO BE11M BL11OBL12v BL13^ BL21X BL23+ CM 11X CM12S CM13

HI

CS11FLUFO11FR11

• FR12^ GL11<§> GL12© IS11O KA110 K011X LAUX MA 11S MillA MI21V SHU< SH21> SH31K SOU1 TA11- YOU

57: Fe (p, xn) Co-56[ i i i i I I i i T i i r I i \ i -

CD rr-2^^_8 i "o <>

I I I I I I I I I I I I I I I I I I L

nil

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUFO11FRUFR12GL11GL12IS11KA11KO11LAUMA 11MillMI21SHUSH21SH31SOUTAUYOU

0 100ENERGY [MeV]

130

200

Page 132: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10

CJLJJCO

COCO

CJ

+ 2

10

o

10

1 Q - 2

Fig . 58: Fe (p, xn) Co-57~ i i i i i i i i i i i i i i i i r i i T ^

_M

+ 0 _

• : . " .• ^ *

1, rE^Vii-i •

D expO BE 11M BL11OBL12v BL13^ BL21X BL23+ CM11X CM125 CM13A CS11* FLU6 F011EH FH11• FR12A GL11<§> 6L12© IS11O KA110 KOULA11MA 11

S MillA MI21V SH11< SH21t> SH31El SOU1 TA11- YOU

10

n

o

CJLLJ

coCOCO

CJ

l o+ o

10 - 3

Fig . 59: Fe (p, xn) Co-58i r i i i i i i i i i i i i i i

0

• • • ¥

i i I —

I I I I I I I I I L

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR126L11GL12IS11KA11KOULA11MA 11MillMI21SHUSH21SH31SOUTA11YOU

100ENERGY [MeV]

131

200

Page 133: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

io + 2

o

CJLJCO

GOCO

g i o + o

CJ

10 - l

F ig . 60: Co-59 (p, p3n) Co-56- I I I I I i

10 + 1 r

i i i i i ] i i i i

n>

8 *

- s n _ * • • $ ^ 9 A

• ! ! • ! • . • * ft *

> v o>

> >

I I 1 * 1 I I I I I I I I I I I I I I

* •

s x ! a Eo $ « f * :

D expO BE 11MBLHOBL12v BL13*• BL21X BL23+ CM11X CM125 CM13A CS11* FLU6 FOU[5J FRU• FR12A GLU<§> GL12© IS11O KA110 K011X LAUX MA11S MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

10 + 3 Fig 61: Co-59 (p p2n) Co-57

n

o

CJLLJCO

COLOOccCJ

10 + 2 _

10 + 1 _

10 + 0 _

10 - 1

- I I I I I I I I I I | I I I | I i [ I I i -

I I I

0

D expO BE 11M BL11OBL12v BL13^ BL21X BL23+ CM 11X CM12S CM13A CS11* FLUA F0110 FR11• FR12A GL11<S> GL12© IS11O KA110 K011X LA11X MA11S MillA MI21V SH11< SH21> SH31El SOU1 TA11- YOU

100ENERGY [MeV]

132

200

Page 134: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

10 + 2

o

1 0 " 1

1 0 + 2

10 +

o

CJLLJCO

COCO

CJ

10+°

10 - 2

F i g . 62 : C o - 5 9 ( p p n ) C o - 5 8

l~, 10 + 1u iULLJCO

COCO

g i o + o

CJ

— $•z I--

T1- T

I I I I I I I I I 1 I I I I I I I I I

7I-J fff^ol i* • • • • • * : : : : : ! * . . :

h ml_ I I I I I I I I I I I 1 I I

F ig . 53: Co-59 (p, An) Ni-56

CM1 1 1 1 I I I I I I I I I 1 1 1 1 L

DOXoZ\

X+XsA*

[El••

©o0XXISAV<>121_

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUFOUFR11FR126L11GL12IS11KA11KO11LA11MA 11MillMI21SHUSH21SH31SOUTA11YOU

• expO BE 11M BL11OBL12v BL13^ BL21X BL23+ CM 11X CM125 CM13A CS11* FLU6 F0110 FR11• FR12

<» GL12© I S UO KA110 K011X LA11X MA 11S MillA MI21V SHU< SH21> SH31H SOU1 TA11- YOU

0 100ENERGY [MeV]

133

200

Page 135: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10

o

CJLLJen

enen

u

+ 3

10 +2

1 0 + '

10 - l

F i g . 64: Co-59 (p, 3n) Ni-57- i i i i I l I 1 I I i i i i i i i

P:" , ^ ^ n » .

MI I I

• A.-

D expO BE11M BL11OBL12v BL13^ BL21X BL23+ CM 11X CM12S CM13A CS11* FLUA F01113 FR11• FR12A 6L11<S> GL12© IS110 KA1121 K011* LA11X MA 11S MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

10

n

o

CJLLJ

enenenoccu

+ 2

10 +

10

10

10 - 2

F i g . 65: Zr (p, 7pxn) Se-75

+ 0 _

-1 _

II11 1

-

——

-

-

Mi

ll

_-

-1 1 1 1 1 1 1

1 1

. I1

-

>

i

j

t

-A H

E

i

i

1 ni

Jii

1

I

D

)

0

1

A

D

i

i

i

S

if<

i

i i

i

i

I

$m

I

I

i

I

i

i

M•A

1

Mill

I

0

ff —

t>

1

i

) _

I

* E

• —

_

_

i

- X

_ X

0 100

ENERGY [MeV]

134

O expO BE 11M BL11O BL12v BL13^ BL21BL23CM11CM12

S CM13A CS11* FLU£> F0110 FR11• FR12*• GL11<§• GL12© IS110 KA110 K011X LA11X MA11S MillA MI21V SH11< SH21> SH31El SOU1 TA11

- YOU

200

Page 136: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

10 + 1 r

o

oLLJin

incocra

.Q

O

CJLJJCO

10 + o _

, - i —

1 0 ~ 2

1 0 + 2

1 O +

10

coCOO A 0 - l

u

10 - 2

F

Mi

ll 1

-

I.1..LJ . 1.

1 III

IILLJ

-

llll

:

1g •

i

66: Zri i

i i

(P . fi i

1 i

5p

A

*

1

xnl

A

)

i

i

<

Br-i i

t

£A

M

1

1

76i

i

A <

1

1

; *

i

iiiin

H

0 •

* •

1 |

8

-

E

-

i

Fig . 67: Zr (p, 6pxn) Br-77

+ o _

i i

_

I

-

_

—-_-

llll

-

_

I 1

1 1

I |

IT

J1

? T

i

I

i

1

[

A

A

i

i

I

1

i

!

i

i

t

$

1

t

:

E

i•

i

• aA

I

Ii[

3

i

1

1

1 1 1 1 i -

1 :

0 « t0 u - )

. = 5 -» . « > t

M1

t

i1

1 '

1 i

. • * '

]

1

fl g A ^

P * "1 * I

i

Hi

I —k • -

1_

3

-_

-

i i

TT

TT

"

-

I

D expO BE 11IX BL11O BL12v BL13* BL21X BL23+ CM11X CM125 CM 13A CS11* FLU6 F011[3 FR11• FR12A 6L11<§> GL12© IS11O KA110 K011X LA11X MA11S MillA MI21

SH11< SH21> SH31B SOU1 TA11- YOU

D expO BE 11tX BLUOBL12v BL13^ BL21X BL23

= V

CM 11CM12CM13CS11FLUF011

0 FRU• FR12^ GLU® GL12® IS11O KA110 K011X LA11X MA11S MillA MI21V SHU< SH21> SH31E) SOU1 TA11- YOU

0 100ENERGY [MeV]

200

135

Page 137: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 2

oI—I

I—

CJ

LOLOLO

CJ

10+ o _

10-2

F ig . 68:- i i i i i

in..

-

Mil

l

-

1 1

1

1

Illj

ll 1 1 1 1 1

1

I l l l

Zri i

i

11

i i

(P,i

I

I

t>

i

5pxn)i 1

t

Kr-i

A

B $A * ^

$ v • *

!1

« 1i

i

i

• ! ,

i

i

i

i

781 '

• MD *

i *

I

1 1

1

.

iA

i

i

0

5 !• e

Q *

Bs

1 1

1 1 1 -

-

M • *

BQ _A i EHX

ID

1 1

1

1

1 II

I

4

1 1

1

1

1 II

I

I 1 ,

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FL11F011FR11FR126L11GL12IS11KA11K011LA11MA11MillMI21SH11SH21SH31SOUTA11YOU

10+ 3

n

o

uLLJenLOCO

oDCCJ

10+ 2 _

10+ 1 _

10+ 0 _

10-l

F i g .

i i

in

--

-—

Mil

-

1 1

1

f 1

t 1 1

69:I I

t

i

Zrl

i

i

(P,i

i

a

I'

5p1 I

1

t

1ir

,1

xni

A

1

) K r -i i

i

TI

Q

A E3

fi i

79i i

i

i0

! • [2 A

11

1 1

1

1

O*0M

1

1

M•

A

1

III

1

1

-

n N 1 • !i • o• *

A ^ ft =H I

:Is]

^ _

Mill

I I 1 ,

0 100ENERGY [MeV]

200

D exp0 BE 11XI BL11OBL12v BL13^ BL21BL23CM11CM12CM13CS11FLU

6 F011E FR11• FR12*• GL11<» GL12© IS11O KA110 KO11X LA11X MA 11S MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

136

Page 138: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3 Fig . 70: Zr (p, 5pxn) Kr-80i i i i i i T i i i i r i i

10 + 2

a

LLJCO

COino , n +o

1 U

' o 8A

0

a

1UCJ

1 0 " 1

1 0 + 3

>

<

i i i I I l

Fig . 71: Zr (p, 5pxn) Kr-81I i i

0

o

o

uLU0 1

0 1COODCCJ

, n +

+0

10"1

$ M ; • *

A

M

I I I I I I

D expO BE 11BL11

OBL12v BL13BL21

X BL23+ CM11CM12CM13CSUFLU

& F011HI FR11• FR12A. GLU® GL12© IS11O KA110 K011X LA11X MA 11S MillA MI21V SHU< SH21> SH31El SOU1 TA11

- YOU

• _

DOMO

o0

X

sAV<3>

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR12GL11GL12IS11KA11K011LA11MA11M i l lMI21SHUSH21SH31SOUTAUYOU

0 100

ENERGY137

200[MeV]

Page 139: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3 Fig. 72: Zr (p, 5pxn) Kr-82

oI—I

LLJ

CO

COCO

g i oCJ

10

+ 1 _-

+ 0 _

"1

11

1 1

1

:

-

--

IJ

f il: . 11

i i

1

I

I

o

0

z

1

1 t

I

••I •[

1

] B

•a >

7

1 t

f

Ao

*

i

4

7•

3 *Z

1

1

0

7

*

M

|

1

A•

1

&

0

*

Hb i0

1

1 1

4

0M

i i

i

• •A

1

1

ZB

A

M

I

I I

• &

a A

i i

i

A

1

II

1 1

1

1

B

I =

—--

TT

TT

--_

D expO BE 11M BL11OBL12v BL13A BL21X BL23+ CM 11X CM125 CM13A CS11* FL116 F011HJ FR11• FR12A GL11® GL12@ IS110 KA11121 K011X LA11X MA11S MillA MI21V SHU< SH21> SH31Kl SOU1 TA11- YOU

10 + 3

o

CJLLJ

CO

COCO

CJ

10 + 1

10 - l

Fig. 73: Zr (p, 5pxn) Kr-83i i i i i T i i i i i i i i i i i i r

• i

O o

LT •AV ft

V • * •

1z

I I I I H r I I I I I [ I I I I I I I I I

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUFOUFRUFR126L11GL12ISUKA11KOIIL A UMA 11M i l lMI21SHUSH21SH31SOUTA11YOU

0 100ENERGY [MeV]

138

200

Page 140: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10

o

CJLU

COcooDCCJ

+ 2 F i g . 74: Zr (p, 5pxn) Kr-84

io

10 "2

[ I I \ i T i r i r =

• i .

< i 5

< • < " p

< > • «. H

* • • ft .

" • • • ' • *

• •* A

El0 •

00

0

9 •

A A A *

*

$2 I • :

A A A A

• expO BE 11M BL11O BL12v BL13^ BL21X BL23+ CM 11X CM12£ CM13A CSll* FLU& FOllE FR11• FR12A GL11<§> 6L12© ISllO KAll0 KOllX LAllX MA 11S MillA MI21V SH11< SH21> SH31El SOU1 TA11- YOU

1 0 +

o

LU

cn

enCOODCCJ

1 n -2 _

10 - 3

F i g . 75:- 1 1 1 E

-

: 1r

i 1

11

1

L_l_

1 1 1

>

I

i

I

>

Zr P.I

I l

t

i

i

r

L0

- i

J. t

i * '

I fI

tV

4

1 •

3

5pi

m

I I0

i

>

' A

1

I

1" 4

I

1

1

xn) K

I

A 1(

t

• * ,

1

iii

i

i •

r

A

M

|

- 35| |

1

jC

i

1

t

I c1

, A i

]

t » ;

• 4

i

i

1

[

i '

c1

11

1

1 II

1

II

IBS

[ E

! * l-I-r T i| 1 A I

• • 4

1

1

* N t.• • !

i

i i i

1

1

I

i•

zrmn

-

i

D expO BE 11

BL11OBL12v BL13

BL21X BL23

CM 11X CM12

CM13A C S l l* F L U

F O l lLs! F R U

FR12GL11GL12I S l l

O KAll0 KOllX LAl l

MA 11S M i l lA MI21V S H U

SH21SH31SOU

1 TAUYOU

0 100ENERGY [MeV]

139

200

Page 141: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ o Fig . 76: Zr (p, 5pxn) Kr-86

o

L±JCO

COCOO , n-3

CJ

10-A

- \ 1

llll

-

-

1,1

_-

-

1 1

1

>

1

l l l l

, 11 1

> > < >

><

•M

9bd EJ

M•

1 1 1

j

{1 1

A ^ '>

)< 1 I

t

1 1

|

]

, «

I

A

|

1

j

i

\

r

1

ii

I 1

1

>, A A •

< <

1

• • • •

>1 M '

1

[1

1

A i

]

M '

1

1

I

1i

A

1

III

E

1

C

(

i

t

1

"TT

TT

1

J :] "

i -

_—-

_

i

OElXXSAV<>

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR126L11GL12IS11KA11K011LA11MA11MillMI21SHUSH21SH31SOUTA11YOU

10+ 2

10 +

o

CJL±JCO

COCOoCJ

10 + 0

10-2

Fig. 77: Zr (p, 4pxn) Rb-83- I I I I I I I I I T I I I I I I I I 1 I

0

* *

V 1

A A A A

I I I I I I I I I I I I

• exp0 BE11M BL11OBL12v BL13A BL21X BL23+ CM 11X CM12S CM13A CS11* FL11A F011S FR11• FR12+• GL11<!> GL12© IS11O KA11

a KOIIX LA11X MA 11S MillA MI21V SHU< SH21> SH31B SOU1 TA11- YOU

100ENERGY [MeV]

140

200

Page 142: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 2

10 +

o

CJLUCO

COCO

CJ

10 + 0

10-2

Fig. 78: Zr (p, 4pxn) Rb-84- i i i i i i i i r i i i i i i i i i i

D expO BE 11tX BLUOBL12v BL13A BL21X BL23+ CM11X CM122 CM13A CS11* FLU£> FOUHI FR11• FR12*. GL11<§> GL12© ISUO KA110 K011X LA11X MA11S MillA MI21V SHU< SH21> SH31B SOU1 TAU- YOU

i i i i I i i i i i i i i i I i

10+ 2

o

CJLJJCO

COCO

CJ

10 +

10+ 0

10

Fig . 79: Zr (p, 4pxn) Rb-86— I i i i I i i i i r i

-2 I L

o

i i i

i » *

> <>

<D OI I

> I• B•« < B

0

i

i t ' !

A :M

A 1 A

I I I I I I I I I

D expT O BE 11I M BL11O BL12v BL13. BL21X BL23+ CM 11X CM125 CM13A CS11* FLU6 FOUHI FR11• FR12A GL11<§> GL12© IS11OKA110 K011

: LAIIX MA 11S MillA MI21V SHU< SH21t> SH31IS SOU1 TAU- YOU

100ENERGY [MeV]

141

200

Page 143: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 3

•§ 10 + 2

o

CJLUCO

10+ 1 _

GOCO

g i o + o

CJ>

10-1

F i

-

II

II

II

i i

i i

u i

ii

II

II

II

i

i i

g •i

i

80:1 1

ii

i i

i

i

i

ZrI

1

*

10

¥

(P1

i>m

3i

f

i

, 3p

1 I

a

a <

B

1

I |

xn1

)Sr-821 1 i I

. - i "

H.

X

X

1 1 1 I

1 1

A0

A A

ifi

X

i i

i i

i

H

A A

X

1 l

II 1 1 1 1

B E

0

II11

1 1 1

117 C

BC

El

_

1 1

D

- o

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUFO11FR11FR126L116L12IS11KA11KO11LA11MA 11MillMI21SH11SH21SH31SOUTA11YOU

10+ 3 Fig . 81: Zr (p, 3pxn) Sr-83

n

oI—II—uLJJ00

COCO

CJ

10+ 2 _

10+ 1 _

+ 0 _

10-1

1 1

111

-

Ill 1 1

-

II

II

II

1

1 1 i l l

1

II

1

1

1

Jz

»

\1

1 1

ii o9

nT

< 8

i i

D

-i

J

ft*

i

i

i

&

s

X

1 1 1

X

1 1 1

1 1 1

(

ci [3 ni

o

i i i

i

A

A

1

1

1

iao

1

1

A

1

J

9

1

B

o

1 -

-

1 1

1 II

I

_

-

-

-

1 1

1 1

1II

1

1

O expO BE 11XI BL11OBL12v BL13^ BL21X BL23+ CM11X CM12S CM13A CS11* FLUA F0110 FH11• FR12*. GL11<S> GL12© IS110 KA110 KO11X LA11X MA 11S MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

0 100ENERGY [MeV]

200

142

Page 144: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 3

10+ 2

o

1 0 +

LJCO

COCO

g i oCJ

10-l

Fig . 82: Zr (p, 3pxn) Sr-85- i i i i i i i i i i i T i i i i r ^

a n

DO

ov

X+XsA

o0

*HAV<>

expBE11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR126L11GL12IS11KA11KO11LA11MA11MillMI21SH11SH21SH31SOUTA11YOU

i i i i

10+ 3

10+ 2

o

CJLLJCO

COCO

oGCCJ

10+ 1

10-1

Fig . 83: Zr (p, 2pxn) Y-861 T I

0

i f i \ i i i i \ i n ~

100ENERGY

143

[MeV]

• expO BE 11

ov

X

XSA*(21

BL11BL12BL13BL21BL23CM 11CM12CM13CS11F L UF011FR11FR12GL11GL12IS11KA11K011LA11MA 11M i l lMI21SHUSH21SH31SOUTA11YOU

200

Page 145: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10

o

uLUCO

+ 3

10 + 2

10 + 1

CO

eng l O + o

Fig . 84: Zr (p, 2pxn) Y-87— I I I i i i i i I i i i i i r i

i• i

•oXIov

X

X

sA*

o0XX

sAV<>

expBE11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FRUFR12GL11GL12IS11KA11KOULA11MA 11M i l lMI21SHUSH21SH31SOUTA11YOU

10 - l \Z,T T l I I I I I I I I I I I I I I I I

10 + 3 F ig . 85: Zr (p, 2pxn) Y-88

10 + 2 _

LLJCO

COCO

o A n + o

a

10 - l

0 100ENERGY

200

• expO BE 11MBL11O BL12v BL13A BL21X BL23+ CM11X CM125 CM13A CS11* FLU6 FOU@ FR11• FR12^ GL11<§> GL12© IS 11O KA110 KOUX LA11X MAUS MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

[MeV]144

Page 146: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

10 + 2 _

o

CJLUCO

1 0 + 1 -

COCO

g l O + o

CJ

1 0 " 1

1 0 + 3

1O +2

o

LJCO

COCO

g l O + o

CJ

10 - l

F i g •

"TT

TT

-

-"T

TT

-

Z

-

-

I

r IIMI

-1

86:i

1

i

#

ii

i

*

0 £

E

5r,f

T

1

1

*

2[

H

i

i

ZrI

*F]°

<

i

(Pl

1

Vto

I*0

4

K

1

, px1 1

I 1

A

• • 8

g D

X

I |

n)i

A

1

Zri

A

B• ftD (

8

X

i

>

i

A

• •

|

86i i

A A

9

lit?—19

H

I I

1 1

1A A

i* bd

<

(D

i

i i

I

IA

aB

|8

s

i

11

ii

-

-

^ A :-

• • "X

-

s

1 1

I I

-

i 1 I

F ig . 87: Zr (p, pxn) Zr-88- i i i i i i i i i i i i i i i i i i i i

' * t * * > * . k

B

D expO BE11M BL11OBL12v BL13^ BL21X BL23+ CM 11X CM12g CM13A CS11* F L U& F011lal FR11• FR12A GL11<§> GL12© IS11O KA110 K011)K LA11X MA 11S M i l lA MI21V SHU< SH21t> SH3113 SOU1 T A U- YOU

D exp

* ° * * T * 1 •••!•:

BE 11BLUBL12BL13BL21BL23CM11CM 12CM13CS11FLUFOUFRUFR12GL11GL12ISUKA11K011LAUMA 11MillMI21SHUSH21SH31SOUTAUYOU

0 100ENERGY

145

200[MeV]

Page 147: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 3

10+ 2

o

CJLLJCO

1 O +

COCO

g i o + o

CJ

Fig . 88: Zr (p, pxn) Zr-89

10-1

D

• $ •

E

expBE 11BLllBL12BL13BL21BL23CM11CM12CM13CS11FLUF011FR11FR12GL116L12IS11KA11K011LA11MA 11MillMI21SH11SH21SH31SOUTA11YOU

10+ 1 Fig . 89: Zr (p, pxn) Zr-95

o

CJLLJCO

COCO

CJ

10-1 _

10-3

- 1 I

- *

r * «#: c

I

Mil

l

'?1

M

- • '

1

I 0

1 1 ' '

9*

i i i

3 _EHQIJ

m •

M

1

1

Q§a«•

X

i

F8

M

1

1 IA

B if • •

I

1

• •

1

T

1

1

•A

M

1

i

* ?M

1

1

• [A

• •

M

1

1

I]*B

ftIM

1

1

*

1

— f -

Bl

IKi •

A

1

—t r=-

e

B

$ • -A

J_L

w _

1 1

1 II

_

1 1

1

1

II

1 ,

0 100ENERGY [MeV]

146

200

D expO BE 11M BLllOBL12v BL13^ BL21X BL23+ CM 11X CM12S CM13A CS11* FLUA F0110 FR11• FR12^ 6L11«> GL12© IS110 KA110 K011¥ LA11X MA 11H MillA MI21V SHU< SH21> SH31m son1 TA11= YOU

Page 148: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3 Fig . 90: Zr (p, xn) Nb-90

n

10o

CJL±JCO

oDCCJ

+ 2

+ 1

i i i i i i i i i r z

o e

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUF011FR11FR12GL11GL12I S 1 1KA11K011LA11MA11M i l lMI21SHUSH21SH31SOUTAUYOU

10 + 2Fig Zn (p, xn) Nb-95

o

CJLL)en

enen

CJ

1 0 + l

10 - 2

i r \ i i i i r ^

0

* I I

* * • •

100ENERGY

147

[MeV]

•O

Ov

X+X2A

IS

o0XXsAV<>ISI

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR12GL11GL12IS11KA11K011LA11MA 11M i l lMI21S H USH21SH31SOUT A 1 1YOU

200

Page 149: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2 F 92: Zr (p, n) Nb-96

1 0 +

o

CJL±JCO

COCO

CJ

1 0 + o

10 " 2

D expO BE 11IX BL11OBL12v BL13A BL21BL23CM11CM12CM13CS11FLUF011

(3 FR11• FR12A GL11® GL12© IS11O KA110 KO11X LA 11X MA11S MillA MI21V SH11< SH21> SH31El SO111 TA11- YOU

F i g . 93: Au-197 (p, 46p77n) Se-75

o

CJLUCO

10 -2 _

COCOO * n -3

CJ

10 -4

I I I I I I I I I ! I I I I I I I I I I I

0 100ENERGY

200[MeV]

148

Page 150: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 1

n

o

CJLUCO

COCO

CJ

10A

1 0 " 3

1 0 + 1

F ig . 94:- i i i i i

ii

i i

In1

11

i i

i

1 M

ill!

-

ll 1 1 1 1 1

1

1 1 1 1 1

Au-1 I

1

i

1971 |

(P,1 |

t

43pi i

i i

7 1

i

<^

i

n)i

A

1

Rb-i i

*

*

I

i i

841

i9

*

<)

(

i i

' 1

II

III

1

II

I1

1

1

1

1

11

1

1

1 1

II

(

II 1 1 1

1 1

1

1

F i g . 95: Au-197 (p, 43pB9n) Rb-86

n l o + o

o

CJLLJCO

COCO

CJ

10 - 1 _

10 - 3

- X

I I I I I I t I I I I I I I I I I

D expO BE 11M BL11OBL12v BL13^ BL21BL23

+ CMUX CM12S CM 13A CS11* FLUA F011® FR11• FR12*• GL11® GL12© IS11O KA110 K011X LAUX MA11S MillA MI21V SHU<3 SH21t> SH31El SOU1 TA11- YOU

D exp0 BE 11M BL11OBL12BL13BL21BL23CM11CM12CM13CS11FLU

6 F01113 FR11v FR12^ GLU«> GL12© IS11O KA1121 KOUX LAUX MA 11S MillA MI21V SHU<3 SH21t> SH31El SOU1 TA11- YOU

0 100ENERGY

200[MeV]

149

Page 151: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 1 Fig. 96: Au-197 (p, 42p71n) Sr-85

n

o

LU

cocoCO

CJ

1 0 " 3

1 0 + 1 F i g . 97: Au-197 (p, 4 lp70n) Y-87

o

CJLJCO

COCO

CJ

D expO BE 11tX BL11OBL12v BL13BL21BL23CM11CM12CM13CS11FLUFO11

0 FR11• FR12A. 6L11<S> GL12© IS11O KA110 K011X LA11X MA11S MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

1 0 - 3

0 100ENERGY [MeV]

200

150

Page 152: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 1 Fig. 98: Au- 197 (p, 4 Ip69n) Y-88

n

o

CJLJJCO

COCO

CJ

10"3

l o + o Fig. 99: Au- 197 (p, 40p70n) Zr-88

10"1

10"

oi—i

I— A n-2CJ

CO

COCO

CJ

10 -A

D expO BE 11M BL11OBL12v BL13^ BL21X BL23+ CM11X CM125 CM13A CS11* FLU6 F01113 FR11v FR12A GL11•» GL12© IS11O KA110 K011X LA11X MA 11H MillA MI21V SHU< SH21> SH31El SOUTA11

- YOU

- 1 1 1 1 1 1 1

-

-

Ill 1 1 1 1 1

1 1

1 1 1 1 1 1 1

1 Illll

A

1 1 1 1 1 1 1

1 1

\

1 1

1

1

1

A

b

1

i

i i i

i

I

^

1

1

1 1 1

ITT

I I

I I

I I

11 l

lIllll

1 I

I II

I 1

1

-

I

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR12GL11GL12ISMKA11KO11LA11MA 11MillMI21SHUSH21SH31SOUTA11YOU

0 100ENERGY

151

200[MeV]

Page 153: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 1 F i g . 100: Au-197 (p, 40p69n) Zr-89

o

1 nLJJCO

COCOO , n -2

CJ

10 - 3

1 1

11

II: A * i

i—

<

i i

li11

1 ii

i i

li

11

A

1 1 1 1 1 1

i

t

1

1 1 1

1 1

1

1 II

1

1

1 1

1 1 1 1 1

III!

1

II

-

1

_ *

- V

• expO BE 11M BL11O BL12v BL13* BL21X BL23+ CM 11X CM12S CM13A CS11FLU

A F01113 FR11• FR12A 6L11>̂ GL12© ISMO KA110 K011X LA11K MA 11S MillA MI21SHU

< SH21> SH31El SOU1 TA11- YOU

10+ 1 Fig. 101: Au-197 (p, 40p63n) Zr-95- i i i i i i i i i i i i i i i i i i

oI—I

I—CJLUCO

COCO

CJ

10-1

10-3

•% n n • •

I I I J L I I I

0 100ENERGY [MeV]

152

200

• expO BE 11M BL11OBL12v BL13^ BL21X BL23+ CM 11X CM125 CM13A CS11* FLU6 F0110 FR11• FR12^ GL11<$> G L 1 2@ IS11O KA110 K011X LA11M MA11S MillA MI21SH11SH21SH31SOUTA11YOU

Page 154: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 1 F ig . 102: Au- 197 (p, 39p64n) Nb-95

o

uUJCO

LOLO

CJ

oI—I

I—

CJ

CO

i n - 1 _

1 0 ~ 3

10 + 1

_ '-

-

IIIII

-

IIIII

-

IIIII

-

i i

1 i

A

1 1

I I I I I

1

1

A

t

A

|

1I

(

1

I l l l 1

11

i1

1 1

A

i

1

1

1 1

*

i i

i i

z

D

§I

i i

i i -

X -

8

A :

II

ii

ii

Mill

-

IIII

I

-

1 I

Fig. 103: Au-197 (p, 37p65n) Tc-96

- n i O + O |_

10 - l _

COCOO A n - 2DC i U

CJ

10 - 3

D expO BE 11M BL11OBL12v BL13A. BL21X BL23+ CM 11X CM12S CM13A CS11* FL11Ch FO11HI FR11• FR12*. GL11® GL12© ISUO KA110 KO11X LA11X MA 11S MillA MI21SH11

< SH21> SH31H SOU1 TA11- YOU

= V

D expO BE 11BL11

O BL12v BL13BL21BL23

- M

+ CMU_ X CM12

CM13CS11FLU

£> FOUa FRUFR12

A GL11• GL12© IS11O KA110 K011X LA11X MA 11S MillA MI21SHU

< SH21> SH31H SOU1 TA11- YOU

= V

0 100ENERGY

200[MeV]

153

Page 155: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 1 Fig. 104: Au-197 (p, 36p59n) Ru-103

n

o

CJLLJCO

COCO

CJ

10 - 1 _

1 0 " 3

10 + 1

1 1

11

1

-

o

III 1 1 1 1 1

1 ll

: •

: f

<

II 1 M

1 1

1

t 1i

1 1 1 1 1

1 1 1

1

1

i

• •£B

a :

1

i <

1 ,

i

i •i

(

>

i

i 1

()

A

1

a 1—1 — •.

i

C

i

i

j

1

a

t

c

i

\

II

1 1

1 1

1 1

1II

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1

Fig. 105: Au- 197 (p, 35p61n) Rh- 102

o

CJLLJCO

COCO

oCLCJ

10 -l _

10 -3

• expO BE11M BLUO BL12v BL13^ BL21X BL23+ CM11X CM12S CM13A CS11* F L UA F011E FR11• FR12^ GL11<» GL12© IS11O KA110 K011X LA11X MA 11S M i l lA MI21V SHU< SH21> SH31E SOU1 TA11- YOU

111 1I

I 1

Mill

-

ll 11 i i i

il

ll 11 i i l

i i i i

L\

i

\

1

1

1

I

1

1 1 1 |

1 1

1 1

X

i

* E

A

1 *

TI•!

1

I1

1 M

1

1 II

1 I

I 1

1 II

1

1

DO

- o

expBE 11BL11BL12BL13BL21BL23C M 1 1CM12CM13CS11FLUF011FRUFR126L116L12IS11KA11K011LA11MA 11M i l lMI21SHUSH21SH31SOUTAUYOU

0 100ENERGY

200[MeV]

154

Page 156: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ oFig. 106: Au-197 (p, 33p60n) Ag-105

n 10'

o

LLJCO

GOCO

g l O " 3

CJ

1 O " 4

1 O + O F i g . 107: Au-197 (p, 30p55n) Sn-113

o

uLLJCO

inen

CJ

1 n- 2 _

10 -A

I I I I I t I I I I I I I I I I I I -

200

Page 157: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ o Fig. 108: Au-197 (p, 28p49n) Te-121

oI—I

•~ 1 n~ 2

LJCO

COCO

CJ

10~ 4

1O + O

- I I I I I I 1 I I I 1 I I I I

i i r

II

1

Mi

ll

-

ll 11 1 1

1

1

1

~ i

h

1 1 1 1 1 1 1

11 1

I

1 1

1

1

D

1 :

1

A

1 1

1

f ,\i

1

I I 1 -

X

| ! =

• *

i

]

1

1 1

1 1

1 1

1 I

I1

1 1

1 1

1 1

II

I

Fig. 109: Au- 197 (p, 26p45n) Xe- 127

_ *

ID

z V

I I I I I I t I I I I I I I I I I I I

• expO BE11M BL11OBL12v BL13* BL21X BL23+ CM11X CM12S CM13A CS11FLUF011FR11

• FR12*. 6L11<» GL12© IS11O KA110 K011X LA11X MA 11S MillA MI21SHU

< SH21> SH3112 SOU1 TA11- YOU

D expO BE 11XI BL11O BL12v BL13^ BL21X BL23+ CM11CM12

5 CM13A CS11FLU

6 F011ia FRii• FR12*. GL11<§> GL12® ISUO KA110 K011X LA11X MAUB MillA MI21V SHU< SH21> SH3112 SOU1 TA11- YOU

_ X

_ *

200

Page 158: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ o Fig. 110: Au-197 (p, 24p43n) Ba-131

10 -1 _

o

LJGO

coen

CJ

10 "4

TTTT

T

, ,

, 1

1 I

1 1

1II

Mi

ll

1

4

- I

A

A

1 1 1 1 1 1 1 1

f i l l

l •D

i

1 1 1

1 1

[ .•

1 B

A

1

1 1 1 1

1

• *

<

1 ,

]

1

1 1

1 1 1 1 1

1 I

II

1 1

1 1

1 1 1

=

1 1

1 1

1 1

LJU

U

-

-

I

DOXIov

X+X&A*

[£]

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR12GL11GL12IS11KA11K011LA11MA 11MillMI21SH11SH21SH31SOUTA11YOU

10 +0

o

LJCO

COCO

CJ

10 -A

Fig. Ill: Au-197 (p, 22p37n) Ce-139 a"i i i i i i i i i i i i i i i i i i i i ra O

i i i i

0 100ENERGY [MeV]

200

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR126L11GL12IS11KA11KOI 1LA11MA11MillMI21SHUSH21SH31SOUTA11YOU

157

Page 159: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 1 F i g . 112: A u - 197 (p, 8p 18n) H f - 172

o

CJLUCO

COCO

CJ

10 - l _

1 0 " 3

10 + 1

11

1 1 1 1 1

1

-

1 ll1 1 1

1

1 1 1 1 1

1 1 1 1 1

A

A1 1 1 1 1

1 1 1 1

A

1 1 1 1

1 1

st

1

1

1

1

M

4

1

i i

i i

11

ini

i i

11

1ii

• -

i 1

11

II

i

i

F i g . 113: Au-197 (p, 8p 17n) Hf - 173

n

o

CJLLJCO

COCO

CJ

10 - l _

•OtXOv^X+XSA*

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR126L116L12IS11KA11K011LA11MAMM i l lMI21SHUSH21SH31SOUTA11YOU

10 - 3

0 100ENERGY

200[MeV]

158

Page 160: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 2

oI—II—uLLJCO

COCO

CJ

10 + 1 r

o

CJLJJCO

COCO

CJ

10 + 0 _

10

10 +

"2

F i g . 114:

i i

11

11

1

i ii1111

-

_—

-

In 11

11

i

i i i i i i

A u -l i

i i

1971 I

i I

(P.1

I

8pI ]

I

15n)l i

A

i

I,

h\f-i i

-

)

i

175i i

!

5 M

M

* )I I

I I I

I I

I II I

I

III

I•

i 1

11

in

-

I I

I I

I M

l

I

Fig. 115: Au-197 (p, 5p 14n) W-178

10 + 0 _

10'

1 nl u

10 -3

i i i i i i i i i i i i

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR12GL11GL12IS11KA11K011LA11MA 11MillMI21SH11SH21SH31SOUTA11YOU

• expO BE 11M BLUOBL12v BL13^ BL21X BL23+ CM 11X CM125 CM 13A CS11* FLU6 FO11HI FR11• FR12+• G L U<$> G L 1 2© ISUO KA110 KOUX LA11X MA11S MillA MI21V SHU< SH21> SH31El SOU1 TAU- YOU

0 100ENERGY [MeV]

200

159

Page 161: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

o

oLJCO

10 + o _

LOO A n - iDC 1 U

CJ

10 - 2

F izM

il

l 1

ll

1 1

1

1 1

-

Mill

1 I

II

ll 1 1 1 1

1 1

1 1

g •i

i

li

i

16:i t

i i

Au-i i

A

1 1

197

I

i |

(PI

I

. 5pi i

0

I

*

M

1 I

12n)i i

o

A

*

R e -i i

oA

J

I

1 1

18ot

M

IS

t

)

1

11 1 -

o -1 • -

M • -# S "

i

ii M

ill

-

1 I

II

1 1

1

1

1 1

II

1 1

D expO BE 11M BLMO BL12v BL13BL21

X BL23+ CMMCM12

5 CM13A CSM* FLU6 FOM(Hi FRM

FR126LMGL12ISM

O KAM0 K011X LAMMAM

S MillA MI21V SHMSH21SH31SOUTAM

•= YOU

10

OI—i

I—

um

+ 2

1 0

1 0 + 0

10CO

DC 1 U

CJ

10 - 2

F i g . 117: Au-197 (p, 5p 1 In) Re-182

+ 1 _

- i i i i i i i i i I i i i i i i i i i i

0 100ENERGY [MeV]

160

200

• expO BE 11X BL11OBL12v BL13^ BL21X BL23+ CM11X CM125 CM13A CSM* FLU6 FOM(El F R M• FR12^ 6L11<§> GL12© ISMO KAM0 KOMX LAMX MAMH MillA MI21V SHM< SH210 SH31El SOU1 TAM- YOU

Page 162: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2 F i g . 118: Au-197 (p, 5p lOn) Re-183- i 1 i 1 i i

1 0 +

o

CJLJCO

COCO

CJ

1 0 + 0

10" 2

1 0 + 2

£ 1O + 1

CD

CJLLlCO

10

10o

I i I Q I

o1 J3

oM

I5

I •

a

M 0

0 A

Fig. 119: Au-197 (p, 4pl2n) Os-182

+ 0 _

COCO

o

\ i i i i i i i i i i r

o

I

*- •

QL

di0

i i i0

i i i

X+

sA

• expR O BE 11*- M BL11- OBL12

BL13BL21BL23CM 11CM12CM13CSUFLUF011FR11FR12GL11GL12IS11

O KA11\Z K011X LAUX MA 11S MillA MI21V SHU< SH21> SH31SOUTAU

- YOU

• expO BE 11IX! BL11OBL12v BL13^ BL21X BL23+ CM11X CM125 CM13A CS11* FLU6 F0UEl FRU• FR12A GL11>̂ GL12® ISU0 KA11KO11LAU

X MA 11S MillA MI21V SHU< SH21> SH31H SOU1 TAU- YOU

ElX

0 100ENERGY

161

200[MeV]

Page 163: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 3 F i g . 120: Au- 197 (p, 4 p 9 n ) O s - 185

o

CJLLJLO

10+ 1 _

COCO

g i o + o

10" 1

1 0 + 2

HIM

-

--

-

— A

A

1 1 1 1 1 1

1

I

f

1

I

<

i

.

2

B

I *

1•

0

E

J

• i• )

1

3

I. [J! •

1

- 1 <

i

Ao

i

i

i i

S-i• rj-EJ

*

A.

1 1

1 1 1

* t •

i i i

ii 11

0

! # =Q —

o} -

0

1 1

1 1

1II

-

=

1 1

1 1

1 1

1 ,

10 +

o

CJLLJCO

COCO

CJ

10 + 0 _

10 -2

•o

- o

F i g . 121:- l 1 i i i i

- I

In

i t i i

i

I

Mill

--

1 1 1

l

1 1

Au-197

]

(I I

I

I

.

)

(p, 4p3n)[ i l l

f II 1

)

>0

1 1

Os —

i i

Ik

<i

)

<

1 4

19I

i

<i

i

I

1 j

, s5 <

1 1

1

-

1 1

1 1

1 II

1

1

__1 Ill

l

1

-

1

_ >

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR12GL116L12IS11KA11K011LA11MA11MillMI21SH11SH21SH31SOUTA11YOU

D expO BE 11X BL11O BL12v BL13* BL21X BL23+ CM11X CM125 CM13A CS11* FLU6 FO11m FRII• FR12A GL11<$> 6L12© IS110 KA110 KO11* LA11X MA 11H MillA MI21V SHU< SH21

SH31SOU

1 TA11- YOU

0 100ENERGY

162

200[MeV]

Page 164: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 3 Fig. 122: Au-197 (p, 3p lOn) In-185

O

CJLJJCO

COCO

oDCCJ

10 + 1 -

+ 0 _

10-i

TTT

-

--

TTT

---_

~———

_

hi

I

i

A

' i1 1 1 1 1

1

I

I

I

i

1

1 1 1

13

1

CXI

D

I *V0

< t

\

IU i

i i i

11 Q

*W •

m ^ • 8

• &

i

i i i

i

M

A

1

1

sH

1

1 1

0

•m-

i i

i i i -

a

0-

M w

1 -1 ;0 I

-J

z

-

_

EI

-

, 1 i

• expO BE 11XI BL11OBL12v BL13^ BL21BL23CM 11CM12CM13CS11

FLU£> F011Is) FR11• FR12*• 6L113> 6L12® IS110 KA11

ia KOIIX L A l lK MA11S M i l lA MI21V SH11< SH21> SH31El S O U1 TA11- YOU

10 + 3

_Q

O

CJLJ

inCOCOoDCCJ

10 + 2 _

10 + 1 _

10 + 0 _

10 - l

F i g .— 1 1 1

-

z-

—-

III 11

i i

123:i i i

A

*

A

1 i

A u -i i

A

I

I1 Ji

197i i

a

I•

••

•J9

, 1

, 1

(p, 3p9n)i i i i

* •

• i• .

i8

^ A.

i V i I

I r —

• •

A

• aa

0H

B1

W t

i

5i

i

186

• • •

I0*

i i i

I M

11

1

$ *

^ z

I '-B

> I^ —

0

H

* E

1 ,

0 100ENERGY [MeV]

163

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR126L11GL12IS11KA11K011LAllMA 11MillMI21SH11SH21SH31SOUTA11YOU

200

Page 165: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3 F i g . 124: Au-197 (p, 3p8n) I r - 1 8 7

o

uLLJCOCOCO

CJ

1 0 +

10-l

11 1 1 1

-

1 1 1 1 1

1In

i iM

I i

i

A

A 1

I 1 1

A

L

A

\

1 1

1

<

| *

1

L

m

<

i

i

o

I4

i

i

SI

afi7

at

• •

i

i

i

m

• <

0

1

1

1

1

* 80X

0

1

M

1

O

0

1

1

1

1

M

P

s

0

1

1 1

* !

o

I

0

1

1 -

III

1 I

I1

1 1

1 1

11

11

II1

II

I

1

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUF011FR11FR12GL11GL12IS11KA11K011LA11MA11MillMI21SH11SH21SH31SOUTA11YOU

10

n

o

uLJCOCOCOocru

10

10

10

10

+ 3

+ 2

+ 1

+ 0

— 1

F ig . 125i i i i i

_

-

i i

*

[

Ii

A u -i i

i

i

«

197i

i

V

• <

1

[

7

• 1

i

(p, 3p7n)i i i

X

> t9

* A S

A • • <

& A •"

1 1 1

1

i

!

• •

I nf

>

!

c

-188i i i

< X

s

>

1<

A L

• '

1

<0

i A A An

i i i

i i

M1

1iiiin

i

ii "

8 E

is _

% —A

* • -

-

1 1

expBE 11BL11BL12BL13BL21BL23CM11CM12CM 13CS11FL11F011FR11FR12GL11GL12IS11KA11K011LA11MA11MillMI21SHUSH21SH31SOUTA11YOU

0 100ENERGY [MeV]

164

200

Page 166: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

10 + 2 _

o

CJUJUl

COCO

a

1 0 + 1 -

10 "1

F i

n 11

-

in

-_-

---

in

-A

1 1

g •

A

1

126:i i i

i

A

A1

>

< 4.I 7 *

1 '*< •

0

1 1 * 1

A u -i i

1 A

••O

3̂ 1 $B *

*•

* •

i i

197~i i

* A 9 •g • I

7

0

f

(p, 3p6n) I n -n i •

i

i i i

i i i

• • f • V S^ 5 & 5

1 1 1

11

M

1

89i i

0

I •

i i

i i -

-

v __

--__

i

---

-

1

D expO BE 11XI BL11OBL12v BL13^ BL21X BL23+ CM 11X CM12S CM13A CS11* FLU£> F011Is] FR11• FR12A. 6L11S> GL12@ IS110 KA1121 K011)K LA11X MA11S MillA MI21V SHU< SH21t> SH31S SOU1 TA11-YOU

10 +2

•§

a

LULO

coenocru

10 +

10

F ig . 127: Au- 197 (p, 3p5n) I r -190

- 2 I i

I I I I I I 1 1 ) 1

7 <

1 1

x x x

I I A

• ~ »

< gf a

3 El

• II :

I!II

* M

0 •

*t*• * » •

i i i i i i i i i i

0 100ENERGY [MeV]

165

200

D"=1 O

o

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUF011FRllFR12GL11GL12IS11KA11K011LA11MA 11MillMI21SHUSH21SH31SOUTAUYOU

Page 167: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

1 0 +

o

CJLLJCO

COCO

CLCJ

1 0 + 0

10 _ p

F i g . 128: Au-197 (p, 3p3n) I r -192- I I I I I I I I I

CD

i T

0 0 0

i I i i I l l

s ii i i

K

El

A*

• expO BE 11

BLUO BL12v BL13

BL21X BL23+ CM 11

CM12CM13CS11FLUF011

m FRUFR12GLUGL12IS11

OKA110 K011X LAUMA11

H MillA MI21V SHU< SH21> SH31El SOUTAUYOU

10 + 3

n

o

CJL±JCO

COCOOCLCJ

10 + 2

10 + 1

10 + o

10 - l

F i g . 129: Au- 197 (p, 2p8n) P t - 188- 1 I I I I I I I I I 1 T I I I I I 1 I 5~

. 8

< •

I I I I I I I

o

I I I I I I

• expO BEUMBL11OBL12v BL13. BL21X BL23+ CM 11X CM12S CM13A CS11* FLU£> F011E FRU• FR12• GLUGL12i IS11

O KA110 KO11X LA11X MA 11S MillA MI21V SHU< SH21> SH31I SOUTAU

= YOU

0 100ENERGY [MeV]

166

200

Page 168: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

10

o

CJLLJCD

10

COGO

g l O + o

CJ

F i g . 130: Au-197 (p, 2p7n) Pt-1S9

+ 2 _

+ 1 _

10 - l

1 1

-

1 1 1

1

1

1

-

-

A

1

A

I

1

i i

A1

A 1

<

1 i

I

A

&

f

1

rfi

A.

i A

i

a <

$•0

jjH

B

1

In

]<

1 1 1

s ?*

i i

§

! I

1 I

T

i i i

* M B

i i i

i i -

-

11 •=

i i

11

M

TTTT

-

nrr

-

1 ,

_ *HI

D expO BE 11M BL11OBL12v BL13A BL21X BL23+ CM 11X CM12S CM13A CS11FLUFO11FR11

• FR12A GL11<§> GL12© IS11O KA11

0 KO11X LA11X MA 11S MillA MI21V SHU< SH21> SH31H SOU1 TA11- YOU

10

JQ

O

CJLU

onGOGO

oDCCJ

+ 3

10 + 2

10 + 1

10

10 - 1

F i g . 131: Au- 197 (p, 2p5n) P t - 191T i i i i i i i i i i i i i i i i i i r

+ 0 _

0

0

i

i i i i i j i i

100ENERGY [MeV]

167

200

D expq o BE 11

1 BLUOBL12v BL13

. BL21: BL23CMU

: CM12[ CM13

csuFLUi FOUI FRUFR12GL11GL12ISUKA11

0 KO11* LA11X MA 11S MillA MI21V SHU< SH21t> SH31El SOUI TA11- YOU

Page 169: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10

o

CJLLJCO

+ 3

10 + 2

10 + 1

COCO

g i o + o

10 - 1

F i g . 132: Au-197 (p, p4n) Au-193i i i i i i i i i i i i i

& * 2

B

T !

o o o

OH I B

0 > S

A 0

21

V

Til i tt I I I I I I I I I I I I

• expO BE 11N BL11O BL12v BL13A BL21X BL23+ CM11X CM12: CM13

A CSU* FLU& FOU@ FR11• FR12. 6L11GL12IS11

0 KAU0KO11X LA11X MAUS MillA MI21V SH11< SH21> SH31El SOU1 TA11- YOU

10

n

o

uLJCO

COCO

oDCCJ

+ 3

10 + 2

10 + 1

10 + 0

10 - 1

Fig. 133: Au-197 (p, p3n) Au-194_ | | i i i i i i | i i 1 I i i i i

0

I*T pX

i i i i

100ENERGY [MeV]

200

A*

IsJ

D expO BE 11M BL11O BL12v BL13A BL21X BL23+ CM11X CM12CM13CS11FLUFOUFR11FR12GL11GL12ISU

O KA1113 K011X LAUX MA 11S MillA MI21SHU

< SH21> SH31SOUTAUYOU

ElI

168

Page 170: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 4 F i g . 134: Au- 197 (p, p2n) Au- 195 •

§ 1 0 + 3

o

LU

CO

g

10 + 0

I I I I I I I \ I I 1 r -

O

X

oXXsAV<>

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUF011FRUFR12GL11GL12ISUKA11KO11LA11MA 11MillMI21SHUSH21SH31SOUTAllYOU

10 + 3

10+ 2

o

CJLUco

COCO

oDCCJ

10 + 1

10+l

10 - l

0

Fig. 135: Au- 197 (p, pn) Au- 196i i r i i i i i i r ^

» N M • • • • • • • • • • 9 . B # 8 # :

100ENERGY [MeV]

200

notxov

X+XsA

*

HI

O0XXsAV<>

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUF011FR11FR12GL116L12IS11KA11K011LA11MA 11MillMI21SHUSH21SH31S011TAllYOU

169

Page 171: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10

o

CJLLJCO

COCO

CJ

10 + 2

l o +o

Fig 135: Au- 197 (p 5n) Hg-193- I ! I I I I I | | I I I I | | | |

OD D

• •

1 .oV

i

i8

q •i

10

•M 1

O0

i I I r -

D expO BE 11M BL11OBL12v BL13* BL21X BL23+ CM11X CM125 CM13A CS11* FLU6 F01113 FRU• FR12A. GL11* GL12© IS11O KA110 KOUX LA11X MA11S M i l lA MI21V SHU< SH21> SH31a sou1 TA11- YOU

10

o

CJLJJ

CO

COCO

oCJ

+ 3

10 +2

10 +

10+ o

F i g . 137: Au-197 (p, An) Hg- 194- i i i i i i i i i i i i i i i i i i i r

I I 7 I I I I I I I I I I I I

•oIXo

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUF011FR11FR12GL11GL12ISUKA11KO11LAUMA 11MillMI21SHUSH21SH31SOUTAUYOU

0 100

ENERGY [MeV]170

200

Page 172: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

xiijjjjjjj22U)joa:[ijju)<o<<HHiiiD<o

IDCDT-i

IOI

cn

cni

CD

m

o i

i 11111 i i i i iii i r i i i 111 i i i r

o

v m**m x i—<-

4 * X

v 4bcz s

111 i i i i i hi i i i i i i hi i i i i i i In i i i i i i

DOXO t> < Xii i i—r

CD

IDlX

'cd

en•sr-l

I

<

cri

LL

II i i i i—i mi i i i i—i mi i i i i r•

VOK* O Bl S » oOCVJ

CD

O >-O CD- DC £

LU "^ZLLJ

M I I I I I I l l l I I I I I I I I ! I I I I 1 M i l I I I I 1I l l l O

O O O•srH TTH •*-•

quj] N0I133S SS0H3

o v+ +O O

n CM ^+• + +

o o o

N0I133S SS0U3

o+O

Page 173: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

10 +

o

CJLLJCO

COCO

CJ

l o + o

1 0 ~ 2

1 0 + 2

10 +

o

CJLJCO

COCO

CJ

l o + o

10 - 2

Fig . 140: O (p, 8pxn) H-2I I I I I I I I I I I I I I I __——*• ~ T I I I I I

- M ~ X K H X KM w .

D expO BE11M BL11O BL12v BL13BL21

X BL23+ CM11X CM12! CM13A CS11* FLUF011

m FRII• FR12A GL11GL12IS11

O KA110 K011X LA11X MA11S MillA MI21V SH11< SH21> SH31EI sen1 TA11- YOU

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

Fig . 141: 0 (p, 8pxn) H-3I 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I M I T

M

* XMX

XX

- H

H

XX X x KM

H B H H H

•OMOv

X+X

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR12GL11GL12IS11KA11KO11LA11MA 11MillMI21SHUSH21SH31SOUTA11YOU

11 I I I I I I 11 I I I I I I I I I I I I

10 10 +2

ENERGY [MeV]10 + 4

172

Page 174: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 2

•§ io + 1

o

CJLLJCO

COCO

CJ

10+ 0

10" 2

1 0 + 3

10 +2

o

CJLLJCO

COCOocrCJ

10 + 1

10-1

Fig . 142: 0 (p, 7pxn) He-3\ \ i i i i 1 1 1 i i i i i i i 1 1 i [ i I i n 1 1 i r i ( i i i

X XH X X XX K

xxxxxx xx - — •

- 15

H

H H H H

DoMov

X+XsA*

OJZXXSAV<

I I I I I I I I I I I I M i l l I I I I I I I I I I I I I I I I I

Fig . 143: 0 (p, 7pxn) He-4i l l I I l l i i l I I I i I 1 I I I f I I I I l l I ( f 1 l it l

' X X * SB H B SX XX X X XX w w

* xxxxxx x

DOMOv

X+XsA#

O0

XSAV<>

expBE11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUF011FRIIFR126L116L12IS11KA11K011LA11MA 11MillMI21SHUSH21SH31SOUTA11YOU

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUF011FR11FR126L11GL12IS11KA11K011LA11MA 11MillMI21SHUSH21SH31SOUTA11YOU

' i i i i i 1 1 i i i i i i i 1 1 J I I I 1 i [ I I J I I I i m

10 + o 10 + 2 10 + 4

ENERGY [MeV]173

Page 175: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

o

CJLUCO

COCO

CJ

10 + 0

10" 2

1 0 + 2

10

oi—i

CJLLJCO

enCO

CJ

10 -2

10

Fig . 144: 0 (p, 5pxn) Be-7\ i i i i i 1 1 1 \ i i i i i 1 1 1

TT

X X X X * * x X x X X * x XXX

81 0 n• A A A AIAI^A Q A A A A A

o @ s °H o

I 1 1 ! 1 1 1 ' 1 1 ! 1 1 i•»• o

I I D

T I I I I I I I I I I I 9 I I I I

F ii

-

-_-

III!

-

I

1 1

--1

g

i

.i

i

q>

i

i

145:i i i i

1 ' ' * X

X '

*A

T OIZ

$

QA.

o

I - I i i

01 1 1

K*

iffA-1

1 l l

(P. 5pi

u * * * *

in Ea

o1

<

M

X

3

Xi

X

I

°<* •

1

1

A

$O

I

n)i

XE

dp

B e -i i i i

BEl

1—

- A A

I # l l

9 ^ ^0

i i i i

1I I

•«

j

IA

0

ll

0

S8!

nA ft 2

0

1 1

* X

x

]} o

o oo

1 T

• H IS

i I l

! 1

I

i i i

111

1

B

A 2

I

i

B

-

J

A AI

II

!

*

I

1 II

II

_1_L

--

I I I I I

• expO BE 11IX BL11O BL12v BL13^ BL21X BL23+ CM 11X CM12S CM13A CS11* FLUA F011@ FR11• FR12A 6L11<§> GL12© IS11O KA110 K011X LA11X MA 11S MillA MI21V SHU< SH21> SH318 SOU1 TA11= YOU

• expO BE 11tX BL11OBL12v BL13^ BL21X BL23+ CM11X CM12S CM13A CS11* FLUA FOUa FRII• FR12A GL11<§> GL12© ISUO KA110 K011X LA11X MA 11S MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

10 +2 10 +3

ENERGY [MeV]10 + 4

174

Page 176: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

1 0 +

o

CJLLJGO

GOGOODCCJ

10 + 0

1 0 " 2

1 0 + 2

10 +

o

CJUJGO

10 + 0

en

GO

GJ

10 - 2

F i g . 146: 0 (p, 3p3n) C - l l\ I i i r n

X X * * * X X * MXX*MXXx M XXX

A A A A A A A A AA A A A/ww A A A A A

I J

10"1 k

I I I I I I I J I I I I I I I J I 1 I I I I 1

Fig . 147: 0 (p, 3pxn) C-14I I I I i I H

• expO BE11M BL11OBL12v BL13^ BL21X BL23+ CM11X CM125 CM13A CS11* FLU6 F011@ FR11• FR12^ GL11^ 6L12© IS110 KA1112 KOU3K LA11X MAMS MIMA MI21VSHli< SH21P> SH31E SOU1 TAM- YOM

D expO BEMMBL11O BL12v BL13^ BL21X BL23+ CMMX CM125 CM13A CSM* FLM6 FOMID FR11* FR12^ GLM* GL12© ISM0 KAM0 KOMX LAMX MAMS MIMA MI21V SHM< SH21> SH31E SDM1 TAM- YOM

i i i i i i i i i i i i i i

10 + 1 10 + 2 10 + 3 10 + 4

ENERGY [MeV]175

Page 177: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

10 + 2

o

uLLJ

A p +

COLO

g i o + o

10

10 + 2

o

uLJJLO

10 + 1

LOLO

g i o + o

10 - l

Fig. 148: Al-27 (p, 13pxn) H-2I I I I I I I ! i i r i i i i i i i i i i i i i 11 i I I I i i i

X H - B

x**Kxx xxxxxx_H

10"1

+3 F i g . 149

I I I I I I I I I I I I I I I I I I i i i 1 1 1

Al-27 (p, 13pxn) H-3

> o

> I*'"

10 + 0 10 +2

ENERGY [MeV]

D expO BE 11M BL11O BL12v BL13• BL21X BL23CM11

X CM12S CM13A CSU* FLUA F0110 FR11• FR12^ GL11• GL12| IS11

O KA110 K011X LA11X MA 11S MillA MI21V SHliSH21SH31

B SOUTA11

- YOU

I I I I I 1 I I I I 1 [ 1 I 1 I I I T I \ I I I I M I I I I I I 1

X X

o o

i m i i i i i i i I i i i i i i i i i i i i i i i

D expO BE 11XI BL11OBL12v BL13BL21

X BL23+ CM 11X CM12S CM13A CS11* FLUA F011Isl FR11• FR12^ GL11• GL12< IS11O KA110 K011LA11

X MA 11H MillA MI21V SH11< SH21> SH31El SOU1 TA11= YOU

10 + 4

176

Page 178: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

o

10 + 1CJLLJLO

LOCO

g i oCJ

10

+ o

- l

F i g . 150: A l - 2 7 (p, 12pxn) H e - 3[ i l l 1 I I I I I M l I I I I I I I I I I I I I I I

• *

D expO BE 11M BL11O BL12v BL13. BL21X BL23+ CM 11X CM12: CM13CS11

* FLU, F011

@ FRU• FR12

A 6L116L12IS11

O KA110 K011LAUMA 11

S MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

i i i i i i 11 i i i i i i i 11 i i i i i i i i

10 + 3

10 + 2

o

uLJJLO

10 + 1

LOLO

§10a

10 - 1

F i g . 151: A l - 2 7 (p, 12pxn) He-4

+ 0 _

10 + 0

i 1 I 1 i 1 M 1 r 1 I T M M 1 1 1 i 1 1 i n 1 \ 1 i 1 r r

0 0

1 1 1 1 111 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 11

10 +2

ENERGY [MeV]177

D expO BE 11txi BL11OBL12• BL13. BL21X BL23+ CM 11CM12

£ CM13A CS11* FLUFOU

13 FR11FR12GL11GL12IS11

O KA110 K011X LAUMA 11

H MillA MI21V SHU< SH21> SH31SOUTAUYOU

i i i i i i

10

Page 179: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

1O +

oI—I

h -

CJ

COCOCO

o

1 0 + 0

10" 2

1 0 + 2

10 +

o

uLLJCO

10 + 0

COCO

glO" 1

CJ

10 - 2

10

F i g . 152 : A l - 2 7 (p, lOp 1 In) B e - 7I I I I I I I I [ i i i i i l n -

I I I I I I I

F i g . 153: A l - 2 7 (p, 10p8n) B e - 1 0i l l I I I I I I I [ I I I 1 I I I 1 ^

I I H-l I I

• expO BE 11N BL11O BL12v BL13*. BL21X BL23+ CM 11X CM12S CM13A CS11* FLUA F01111 FR11• FR12A GL11«> GL12© IS110 KA1121 K011X LA11X MA11H MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

• expOBE11M BL11OBL12v BL13^ BL21X BL23+ CM11X CM125 CM13A CS11* FLU6 F01113 FR11• FR12*• 6L11<S> GL12@ ISU0 KA110 K011X LAUX MA11S MillA MI21V SHU< SH21> SH3113 SOU1 TA11- YOU

i i i i i i i

10 +2 10 +3

ENERGY [MeV]10 + 4

178

Page 180: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

o

CJLUCO

COCO

CJ

10 +o

10 - 2

Fig . 154: Al-27 (p, 5pxn) F-18I ! I I I I I I

cm

I I I I I J I I I I I I J I I I I I I I

• expiqo BE 11

BLl l- OBL12v BL13^ BL21

- X BL23+ CM 11

_ X CM12EiS CM13

CS11FLUFOUFRUFR12GL11GL12IS11

O KAli0 K011X LA11X MA 11S MillA MI21V SHU< SH21> SH31IS SOUTAUYOUK10 3

I

10

O

CJLJCO

COCOO(XCJ

+ 3

10 + 2

10 + 1

10 + 0

10 - 1

Fig . 155: Al-27 (p, 4pxn) Ne-20i i i

• n* S f * ZSSZB UA AA A

MM

1 i

iii i 1 1 1 1 1

10 + 1 10 + 2 10 + 3

ENERGY [MeV]179

D expO BE 11M B L l lOBL12v BL13

. BL21X BL23+ CMUX CM12

: CM13A CSU* FLU, FOU

13 FR11• FR12A G L H

GL12IS11

O KA110 KO11X LA11

MA 11IS MillA MI21V SHU< SH21t> SH31SI SOU1 TAU- YOU

10 + 4

Page 181: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

1 0 +

o

CJLLJCO

COCO

U

1 0 + 0

1 0 " 2

1 0 + 2

10 +

o

CJLLJCO

COCO

CJ

10 + 0

10 - 2

Fig. 156: Al-27 (p, 4pxn) Ne-21i i I i i i n p

A A A A A _

H H H

D

i I iD

D expO BE 11M BL11OBL12S7 BL13^ BL21X BL23+ CM 11X CM12S CM13A CS11* FLUA F011ID FR11• FR12^ 6L11<§> GL12@ IS11O KA110 KO11X LA11X MA 11S MillA MI21V SHU< SH21> SH31

B son1 TAll- YOU

j i i i i i i i i i i i i

Fig. 157: Al-27 (p, 4pxn) Ne-22i i i i r

•A A f l v w A A A A A

" T H - -A -

•OMO

I

O0XXSAV<>

expBE11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR12GL11GL12I S UKA11KO11LA11MA 11M i l lMI21S H USH21SH31S O UT A l lYOU

I I I ,1 I I

10 10 + 2

ENERGY180

10[MeV]

+ 3 10

Page 182: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

1 0 +

o

CJLJCO

COCO

DCCJ

10 + 0

10

10

- 2

+ 2

10

o

LJCO

COCOO ADC 1

CJ

10 - 2

10

Fig . 158: Al-27 (p, 3p3n) Na-22I I [ I I I I I -

M * * * x K xxxxxx*x* xx xx

< < <

i[

r ia )!

i rh«i i i i i i i j i i i i i i i j i i i i i i i

Fig. 159: Al-27 (p, 3pn) Na-24i i I \ i n-

~ i i i i i

• expO BE 11M BL11OBL12v BL13^ BL21X BL23+ CM 11X CM125 CM13A CS11* FLU6 F0110 FR11• FR12*. GL11>̂ GL12© IS110 KA1121 K011X LA11X MA11H MillA MI21V SHU< SH21> SH31El SOU1 TA11- Y O U

D expO BE 11tX BL11OBL12v BL13^ BL21X BL23+ CM 11X CM125 CM13A CS11* FLU6 F011

m FRII• FR12*. GL11<§> GL12© IS11O KA110 K011X LA11X MA 11S M i l lA MI21V SHU< SH21> SH31E SOU1 TA11- YOU

J I I I I I I I i i i i i i

10 +2 10 +3

ENERGY [MeV]

181

10 + 4

Page 183: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

o

CJLxJCO

COCOO

ccCJ

1 0 +

10"1

1 0 + 3

£ i o + 2

o

CJLUCO

10 + 1

COcno , n +o

CJ

10 - l

F ig . 160: Al-27 (p, pn) Al-26I I I I I I I I i i i i i i n ^

A AMM A A A A A

O0

X

sAV<>

expBE11BLUBL12BL13BL21BL23C M 1 1CM12CM13CS11FLUF011FR11FR126L116L12IS11KA11K011L A 1 1MA 11M i l lMI21S H l lSH21SH31SOUTA11YOU

i i i i i i i j i i i i i i i i i i i i i i i

Fig . 161: Fe (p, 26pxn) H-2I I I I M i l l I I I I I I I I I \ i i i i i i 11 i

-

WJFTTTT

D expO BE 11M BL11O BL12v BL13A BL21X BL23+ CM 11X CM122 CM13A CSU* FLU£> F011E FR11• FR12A GL11<?> GL12© IS110 KA110 KOUX LAUX MA11S MillA MI21V SHll< SH21> SH31Bl SOU1 TA11- YOU

i i i i i i i ii i i i i i i n i i i i i i i 11 i i i i i i i

10 10 +2

ENERGY [MeV]10 + 4

182

Page 184: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

10 + 2

o

LUCO

LOLOODC

a

10"1

1 0 + 3

10 +2

o

LLJLO

10 + 1

COCO

g i o + o

CJ

10 - l

Fig . 162: Fe (p, 26pxn) H-3

+ 0 _

I I I I I I I I I ! I I I 1 I I I I I I I I 1 f I I I I I I I I I

M K

x °

I I I I I I I

D expO BE11I BL11

OBL12v BL13. BL21X BL23+ CMUX CM12: CM13

A CS11* FLUFOU

ID FR11FR12

A GL11GL12IS11

O KA110 K011* LA11X MA11H MillA MI21V SH11< SH21> SH3112 SOU1 TA11- YOU

i i i i i i i 11 i i i i i i i i

F ig . 163: Fe (p, 25pxn) He-3i I i i i 11 i i i i i i i II I T i i ri i 11 I I I I I \ \

K K

I i I I I 1 I I I

• expO BE 11M BL11OBL12v BL13. BL21X BL23+ CM 11: CM12S CM13A CS11* FLUi FO11

[5] FRU' FR12. GL11GL12* IS11

0 KA1112 KO11LA11

X MA 11IS MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

i t i triii i i i i 11 i i i i i i i 11 i i i i i i i i

10 10 +2

ENERGY [MeV]10 + 4

183

Page 185: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 4 Fig 164: Fe (p 25pxn) He-4

n

o

LJ

enen

CJ

l o + o

1 0 + 2

10 +

o

CJLUCO

CO10

CJ

10 + 0

10-2

i i i 1 1 i i i i 1 1 1 1 1

I I I I I I I I I i i i i i i n I I I I 1 I I i i i i i i i i

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUFO11FR11FR126L11GL12IS11KA11KOULA11MA 11MillMI21SHUSH21SH31SOUTA11YOU

Fig. 165: Fe (p, 23pxn) Be-7i i i i i r n i -

I J l I I I I T i I i i I i i i i i i

D expO BE 11M BL11OBL12v BL13^ BL21X BL23+ CM11X CM12S CM13A CS11* FLUd FO11E FR11• FR12

10 + 1 10 +2 10 +3

ENERGY [MeV]10

<!> 6L12© IS11O KAU0 K011X LA 11K MA11S MillA MI21V SHU< SH21> SH31El SOUI TAU- YOU

+ 4

184

Page 186: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 1

io + 0

10

oI—II - A n - 1CJLUCO

COCO

CJ

10 - 3

F ig . 166: Fe (p, 23pxn) Be-10I I I I I I P I -

X w

• ••

D

o <8

A1-1 t

4 M

• expO BE 11N BL11OBL12v BL13^ BL21X BL23+ CM11X CM12S CM13A CS11* FLUA FOU© FRU• FR12^ GL11S> GL12© IS11O KA110 K011X LA11X MA 11S MillA MI21V SHU< SH21> SH31E SOUTA11YOU

i i i i i i

10

o

CJLJCO

COCO

CJ

+2 F ig . 167: Fe (p, 17pxn) Ne-20

-§ 10 +

10 + 0

A

10 - 2

i i r ^ \ ! i i i r

A

_i [_

. • : SA

1 4 ,

* o

i r

D °

J5 • ¥

O

- i

L, > n

1 I

10 + 2 10 +3

ENERGY [MeV]185

x+XsA*6

D expO BE 11N BL11OBL12v BL13^ BL21BL23CM 11CM12CM13CS11FLUFO11

© FRU• FR12A 6L11# GL12© ISUO KA110 KO11X LA11K MA11S MillA MI21V SHU< SH21D> SH31El SOU1 TA11- YOU

10

Page 187: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10

o

CJLLJGO

GOGO

CJ

+ 2

1 0 +

10 + o

10 - 2

F i g . 168: Fe (p, 17pxn) Ne-21i i i n ^

II I)A

J I

>

• expO BE 11M BL11OBL12v BL13A BL21X BL23+ CM11X CM12S CM13A CS11* FLUA F011m FRII• FR12A. 6L11<§> GL12© IS11O KA110 K011X LA11X MA 11S MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

j i i i i i i

10

O

aLU

CO

COenoDCCJ

+ 2

10+ 1

10 + 0

10 - l

10 - 2

F i g . 169: Fe (p, 17pxn) Ne-22\ i i i i i i I r

41 ' <>

il

\ i i i i i

A A

I * ̂ X v v

D expO BEU! BLUOBL12v BL13> BL21X BL23+ CM 11X CM12S CM13A CSU* FLU£ FO11® FR11• FR12A. GLU• GL12i IS11

O KA1121 KO11: LAIIX MA 11S MillA MI21V SHU< SH21> SH31I SOUTAU

• YOUj i i i i i i i

10 + 2 10 +3

ENERGY [MeV]

186

10 + 4

Page 188: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 1

io + o

o

LJJLO

LOLOO

cr- 2

10 - 3

F i g . 170: Fe (p, 16pxn) Na-22i i i r i r i i i

B 7 HB A

A

" r* #

I I I

* *

t "s5 *

! i '

J I

n expO BE 11M BL11OBL12v BL13^ BL21X BL234- CM11X CM122 CM13A CS11* FLUA F011@ FRU• FR12^ 6L11<§> G L 1 2© ISUO KAU0 KOUX LA11X MA11S MillA MI21V SHU< SH21> SH31El SOUTAUYOU

10 + 2

n

o

CJLUCO

COCO

oDCCJ

10 + 1

10 +0

10 -1

10 - 2

F i g . 171: Fe (p, 16pxn) Na-24i i i i i i i i i I 1 1 1 1 i i i i i i i i i i r

j i i i i i i i

D,A A A

l4

'"5

A _

D exp•R O BE 11M BL11O BL12v BL13^ BL21X BL23+ CMUX CM125 CM 13A CS11* FLU6 F011is! F R U• FR12

j i i i i i i i

<§> 6 L 1 2© ISU0 KA110 K011X LA11X MA 11S MillA MI21V SHU< SH21> SH31B SOU1 TA11- YOU

10 + 1 10 +2 10 +3

ENERGY [MeV]

187

10

Page 189: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 1

n

o

LUGO

GOCO

gio-a

CJ

10 - 3

F i g . 172: Fe

11

11

1

-

Inn

--

*ili

S | r

I A

A i 'A . . :< > > i

~ AI <

~ A

IA l 1 1

(F

c

15pi i

A

A ^ L

<

<

1

1

1

)

1 1

<

j

1 1

(

1

1

1

1

1

xr

j

g

)

i

i

i

Mg-28i I I I I I I I —

_

AAAA a 2 A A A A

i

i

(

i

i

i

1 !! !

x x

i

!

i ]1

; «

:

1 1

X

1

t

-

1

-

:TT

T

-

1 1 1 1 1

I >

D expO BE 11X BL11O BL12v BL13*• BL21X BL23+ CM 11X CM12S CM13A CS11* FLU£ F011HI FR11• FR12A GL11• 6L12@ IS11O KA110 K011X LA11X MA11H MillA MI21V SHU< SH21

SH31B SOU1 TA11- YOU

10

n

o

CJLLJ

GO

COCO

oDCCJ

+ 2

10 +

10 + o _

10 - l

10 - 2

F i

11

11

1 i

-

--

Mil

l

-

III M 1

__ 1

g-

T

i lX

1

1

173t

c

i

$ x

T [iT

3A

L 1

14 I

X

Q

#

[ iI

T

Fe

s\

i

«

! :

c

9

\

i

\

(P1 t

§

8 7

A

*

i i

H•

|

<

>

I

14pi I

B |4. *

X

<

i I

X

BM

a

<

n)

. *X X

0A

<

A l

0 O

a *- K* X

T*

<

i

-26i

O 0

A *KI M V

* * * x x

fi A

1

1

*

iX XA A

1

1 1 I I I -

-

1 :

I

-

i M

iii

_

i i i i i

_ *

10 + 2 10 +3

ENERGY [MeV]

• expO BE 11M BL11OBL12v BL13*. BL21X BL23+ CM 11X CM 122 CM13A CS11FLU

£ F011a FRII• FR12A GL11<$> GL12© ISMO KA110 KOUX LA11X MA11S MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

10 + 4

188

Page 190: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10

o

CJLLJLO

LOLO

CJ

+ 2

£ 10 + 1

10 + 0

10 - 2

F 174: Fe (p, lOpxn) Cl-36i i i n i i T r

ft I

5-11 ̂9

>*i

< E

HI

D expO BE 11

BLUIOBL12v BL13

BL21X BL23+ CM 11X CM12S CM 13A CS11FLUFOUFRUFR12GL11GL12IS11

O KA110 KO11X LA11M MA11S MillA MI21V SHU< SH21> SH31SOUTAU

- YOU

10

•9

o

CJLLJLO

+ 2

10

LOLO

CJ

10 - 2

Fig . 175: Fe (p, 9pxn) Ar-36

10 + 1 b-

+ o L

10 + 2 10 + 3

ENERGY [MeV]189

• expO BE 11IX BL11OBL12v BL13^ BL21X BL23+ CM 11X CM12S CM13A CS11* FLU£ F011ID FR11• FR12^ GL11<®> GL12© IS11O KA110 K011X LA11X MA 11S MillA MI21V SHUSH21SH31SOUTA11YOU

10 + 4

Page 191: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

10

o

CJLJCO

COCO

CJ

10 +o

10 - 2

F ig . 176: Fe (p, 9pxn) Ar-38I I

*

\ i i i i i i r ^

A<

O _ H

i

•oov

X+X

sA

o0XX

sAV<>

expBE 11B L 1 1BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR126L11GL12IS11KA11K011LA11MA11M i l lMI21SHUSH21SH31SOUTA11YOU

_T I I I I I I I 1 I I I I I I

10 + 2

1 0 +

O

CJLLJCO

COCO

oU

1 0 + 0

10 - 2

Fig . 177: Fe (p, 8pxn) K-42i i i i i i i i r i i i i i I n ^

9 ~ — J _B A A

a

J I I

10 + 2 10 +3

ENERGY [MeV]

M A A

$ 9

J | L

D exp0 BE 11M BLUO BL12v BL13^ BL21X BL23+ CM 11X CM12S CM13A CS11* F L UA F011E FR11• FR12*. GL113> GL12@ IS11O KA110 K011X LA11X MA 11H M i l lA MI21V SHU< SH21> SH31E SOU1 TA11- YOU

10 + 4

190

Page 192: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

1 0 +

o

CJL±JCO

COCO

CJ

1 0 + 0

1 O ~ 2

1 0 + 2

n

CD

CJLJJ

in

1O + '

10 + o

COCO

gio-1

CJ

10 - 2

F ig . 178: Fe (p, 8pxn) K-43i i i i i i i I r i i i i i r =

a •

is i l l

•• H Pii a

I I 1

i *

j i i i i i

F i g . 179: Fe (p, 6pxn) Sc-461 I I [ I I I I I I i i i i i i t r \ \ i i i i -

i -i

* * *

J_L I I L i 1

10 10 +2 10 +3

ENERGY [MeV]

191

10

D expO BE 11M BLUOBL12v BL13^ BL21X BL23+ CM 11X CM125 CM13A CS11* FLU6 F011HI FR11• FR12^ 6L11$> GL12© IS11O KA110 KO11X LA11X MA11S MillA MI21V SHU< SH21> SH31H SOU1 TA11- YOU

• expO BE 11\X BL11OBL12v BL13•̂ BL21X BL23+ CM 11X CM125 CM13A CS11* F L U6 F O UHI FR11• FR12*• GL11^ GL12@ IS11O KA110 KO11X LA11X MA 11S M i l lA MI21V SHU< SH21> SH3113 SOU1 TA11

- YOU

+ 4

Page 193: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10

o

LJCO

CD

oo

CJ

+ 2

1 0 +

1 0

10 - 2

F i g . 180: Fe (p, 6pxn) Sc-47

+ 0 _

i i i i i i i i i i n pD expO BE 11IX BL11OBL12v BL13A BL21X BL23+ CM 11X CM12S CM13A CS11* FL11A F011Is] FR11• FR12-»> GL11• GL12© IS11O KA110 K011X LA11X MA 11S MillA MI21V SHU< SH21> SH31

SOUTA11YOU

I

i i i i i i i

10

o

CJLU00

0000

CJ

+2 F i g . 181: Fe (p, 6pxn) Sc-48

10 +

10 + o

10 - 2

i i i i i 11 i i i 1 1 1 i i i i i i -

i i i i i i m

• i

D expO BE11M BL11OBL12v BL13^ BL21X BL23+ CM 11X CM 125 CM13A CS11* FLU6 F0110 FR11• FR12^ GL11<S> GL12© IS11O KA110 K011X LAUX MA11S MillA MI21V SHU< SH21> SH31H SOU1 TA11- YOU

i i i i i i i i i i i i

10 + 1 10 +2 10 +3

ENERGY [MeV]10 + 4

192

Page 194: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 1 _

n

o

CJLJCD

COCO

U

1 O " 3

1 0 + 3

io + 2

o

CJL±JCO

10 + 1

COCO

g i o + o

CJ

10 - 1

Fig . 182: Fe (p, 5pxn) Ti-44 D

Fig . 183: Fe (p. 4pxn) V-48i i r i r i i i i i i i i i i i i i i i i i i m

B g*XK*K****X***

I T 1

• expO BE 11M BL11OBL12v BL13^ BL21X BL23+ CM 11X CM12g CM13A CS11* FLU£ F011El FR11• FR12A GL11<§> GL12@ IS11O KA110 KO11X LA11X MA 11S MillA MI21V SHU< SH21> SH31E! SO111 TA11- YOU

I I I I I I I

10 + 1 10 +2 10ENERGY [MeV]

+ 3 10 + 4

193

Page 195: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 1

1 Q +o

o

CJLJLO

LOLOO

CJ

10 - 1

- 2

10"3

10 + 3

n

o

uLxJCOGO00occu

10 + 2

10 + 1

10 + 0

10 - 1

F i g . 184: Fe (p, 3pxn) Cr -48I I I I I I TT-

j i_

A A

I I I I I I

D expOBE11tX BLUOBL12v BL13A BL21X BL23+ CM 11X CM12S CM13A CSU* FLU£ F011HI FRU• FR12A GLU# GL12© IS11KA11K011

X LAUX MA 11S MillA MI21V SHU< SH21> SH31El SOUI TA11- YOU

O0

i i i i i

F ig . 185: Fe (p, 3pxn) Cr-51I i i i r i i i i i i i i i i i i -

* x

• expO BE 11XI BL11OBL12v BL13^ BL21X BL23+ CM 11X CM12S CM13A CS11* FLU£ F01113 FR11• FR12A 6L11<S> GL12© IS11O KA110 K011X LA11X MA 11S MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

I 1 T I 1 I I I j i i i i i i

10 + 10 +2 10 +3

ENERGY [MeV]10 + 4

194

Page 196: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

10 + 2 _

o

CJLUCO

10 + 1 _

COCOO A n + 0DC 1 U

CJ

10 - 1

F ig .

1 M

ill

-

Ill 1 | I

- *® ,E j*rf*: 0*

•- M- eg

~ >

V

ifl i

186:

B ^ ^ p "' 77 $

> <

> < >

> >

1 1 1 1

F

D

r

i ii

e (p,

1

$ SI

i ,

2pxn)

B B m * W

> 8

IS

1 1 1

Mn-52

S H B B *

>

SI

1 1 1 1

B E

D

<

* * M *

H

n 0 0A A< <

1

«M*X

IS

B°< <

i

i I

I 1

11

-

t < 11

1i

n

-

B

x K EJ

4 < :

Mil

J_L

:

i 1 1 1 1 1

D expO BE 11N BL11O BL12v BL.13A BL21X BL23+ CM11X CM12g CM13A CS11* FLUA F011a FRIIv FR12A 6L11«> GL12© IS11O KA110 K011X LA11X MA 11S MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

10+ 3

•i i o + 2

o

CJLUCO

COCO

10+ 1

1 n+0

u

10-l

Fig. 187: Fe (p, 2pxn) Mn-54

10 + o

I 1 I J I I I I 1 I I I I

**

I i

O

expBE 11BLUBL12BL13BL21BL23CM11CM12CM13CS11FLUFOUFR11FR12GLUGL12IS11KA11K011LA11MA 11MillMI21SHUSH21SH31SOUTAUYOU

10 +2

ENERGY [MeV]10 + 4

195

Page 197: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

1 0 +

oI—I

h -

CJ

COCOCO

CJ

1 0 + 0

10~ 2

1 0 + 3

10 + 2

o

LLJCO

COCO

g 10

10 - 1

F ig . 188: Fe (p, pxn) Fe-52I I E I I I I I I I I I I I i 1 I I -

— O

t ;»«.::;-...•—

i " i i i i i i i

D expO BE 11M BL11OBL12v BL13^ BL21X BL23+ CM 11X CM12S CM13A CS11* FL11A F01113 FR11• FR12*• G L 1 1<§> 6L12© IS110 KA1121 KOI 1* LA11X MA 11S M i l lA MI21V SH11< SH21> SH31El S O U1 TA11- YOU

F ig . 189: Fe (p, pxn) Fe-55T i i i r i i

x*

A A A * ft A

D exp0 BE 11X BL11O BL12

BL13BL21

X BL23+ CM 11X CM12S CM13A CS11* F L Ud F011HI FR11

• FR12^ 6L11

• GL12i I S 1 1

O KA1121 K011X LA11X MA11H MillA MI21V SHU< SH21> SH31El SOU1 TAU- YOU

i i i i 11 i i i i i i i 11 J I L J L

10 + o 10 +2

ENERGY [MeV]10 + 4

196

Page 198: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

10 + 2

o

oLJCO

10 +

en

DC 1 UCJ

1 0 M

1 0 + 3

10 +2

o

oLJJen

10 + 1

eneng l O + o

u

10 - l

Fig . 190: Fe (p, xn) Co- 55i T I I I \ 1 I I I I 1 \ I T i i i i i i n -

A A A A A A -

• expO BE 11tX BL11O BL12v BL13A BL21X BL23+ CM 11X CM12S CM13A CS11* FLU£, F011E FR11• FR12AGLH-@> GL12© IS11O KA110 K011X LA11X MA11H MillA MI21V SHU< SH21> SH31B SOU1 TAU- YOU

T T i i i i

Fig . 191: Fe (p, xn) Co-56 • expO BE 11I BL11

OBL12v BL13• BL21X BL23+ CM11X CM12S CM13A CS11* FLUA F011© FR11• FR12^ GL11• GL12' IS11

O KA110 K011LA11

X MA 11H MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

I I I I I I I I I 1 I I I I I I I I A I I I I I I I i i i i i i i

10 + o 10 +2

ENERGY [MeV]10 + 4

197

Page 199: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

10 +

o

CJLLJLO

LOLO

CJ

1 0 + 0

Fig . 192: Fe (p, xn) Co-57i i i i i i i i i i i i i i i 11 i \ \ m\ i i i i i i i

10 "2

• expO BE 11M BL11OBL12v BL13• BL21X BL23+ CM11X CM12S CM13A CS11* FLUi F011I FR11• FR12• GLU

<8> GL12' IS11

O KA110 K011X LA11X MA11S MillA MI21V SHU< SH21> SH31IS SOU1 TA11= YOU

i i i i i i 11 i i i i i i i i

1 0 +

zoI—II— -i n - 1CJLJJ01

10'

COLOO

ccCJ

- 2

10 - 3

Fig . 193: Fe (p, xn) Co-58\ I I l l l l I I I I I I I I i I I I I I I I I

I [ | | | I I I I I I I 1

it

I I I I I I I

DOXIO

SAV<>

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUF011FR11FR12GL11GL12I S 1 1KA11K011LA11MA 11M i l lMI21S H USH21SH31S O UTA11YOU

10 + 0 10 +2

ENERGY [MeV]10 + 4

198

Page 200: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3 F ig . 194: Co-59 (p, p3n) Co-56

10 + 2

o

CJL±J

en

i o + 1

COCO

g i o + o

CJ

10 ' 1

10+ 3

% 1 O + 2

o

10 - 1

• >

D expO BE 11

I BL11O BL12v BL13

• BL21X BL23+ CMUX CM12

CM13A CSU* FLU

F011! FR11FR12GL11GL12IS11

O KA110 K011X LAUX MA 11S Mi l lA MI21V SHU< SH21> SH3112 SOU1 TAU- YOU

i i i i i i i i t i i i

F ig . 195: Co-59 (p, p2n) Co-57i i I i i i r

DOIXovX+XSA*

HI

AV<>

expBE 11BL11BL12BL13BL21BL23CM11CM12CM 13CS11FLUF011FRUFR12GL11GL12I S 1 1KA11K011LA11MA 11M i l lMI21SHUSH21SH31SOUTA11YOU

i i i i i j i i i i i i i

10 10 +2

ENERGY

199

10[MeV]

+ 3 10 + 4

Page 201: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

10 + 2

o

CJLJCO

10 + 1

eneng l O + o

CJ

10 - l

F ig . 196: Co-59 (p, pn) Co-58

i i i i i i

10 + 2

10+ 1

O

CJLLJ

cn

if)oCECJ

10 + 0

10 - 1

10 - 2

Fig . 197: Co-59 (p, 4n) Ni-56i i i i i i m i i i i i i i i i \ i i i i r

D expO BE11M BL11O BL12v BL13BL21

X BL23+ CM11X CM125 CM13A CS11* FLU6 F011S FR11• FR12-». GL11

GL12) IS11

O KA110 K011

LA11X MA 11S MillA MI21V SHU< SH21> SH31El SOU1 TA11= YOU

10 + 1 10 + 2 10 + 3 10 + 4

ENERGY [MeV]200

Page 202: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

•§ i o + 2

o

uUJCO

10 + 1

COCO° 1 n+0

10"1

10+4

•§ i o + 3

o

CJLLJCO

COCOoQCCJ

10 + 2

1 0 + 0

F ig . 198: Co-59 (p, 3n) Ni-57i I i i l l i f i l I I i i l r i i i n^

- i

• expO BE11N BL11OBL12v BL13A BL21X BL23+ CM11X CM12S CM13A CS11* FLU£ FO110 FR11• FR12A GL11<» GL12© IS11O KA110 K011X LA11M MA 11S MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

Fig . 199: Zr (p, 40pxn) H-2I I I I MM I I I I ( M M ( I T J I M M I I I I T T t-

-x

-K

Ov

X+

£A*

***'

• expO BE 11M BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR12GL11GL12IS11KA11K011LA11MA11MillMI21SHUSH21SH31SOUTAUYOU

T I I I I I I I I I i i i i i i i i '

10 10 +2

ENERGY [MeV]10 + 4

201

Page 203: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 4

10 + 3

o

aLLJcococo

CJ

10 + 2

10 + 0

F i g . 200: Zr (p, 40pxn) H-311 i I I 1 I I I I I I I I I I I ] \ M

x _"

D expO BE 11X BL11OBL12• BL13. BL21X BL23+ CM11X CM125 CM13A CSU* FLU6 F011ID FR11• FR12• GL11GL12ISU

O KA110 K011X LA11X MA11S MillA MI21V SHU< SH21> SH31IS SOU1 TA11- YOU

i i i i i i i i i i i i i i i i 11 i i i i i i i 11 i i i i i i i i

10 + 3

10 + 2

o

CJL±JCO

COCO

CJ

10 + 1

10 + 0

10 - l

F ig . 201: Zr (p, 39pxn) He-3I I T I I I I I I I I T I I I I I I I I I I I I I I I I I I * I I I l -

-x

H-

I I I I I I I I I I Tl I I I I I [ I i i i i i i i i

10 + o 10 + 2

ENERGY [MeV]202

•otxov

X+X

sA*

o0

X

sAV<>

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUFO11FR11FR126L11GL12IS11KAUKO11LA11MA 11MillMI21SHUSH21SH31SOUTAUYOU

i i i i i i i i

10 + 4

Page 204: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 4

-§ io + 3

o

CJLLJ10

1010occCJ

1 0 + 2

tl

10 + 0

1 0 + 2

10 +

o

CJLU10

1010oDCCJ

10 + 0

10"

Fig. 202: Zr (p, 39pxn) He-4

.X*

O expO BE 11tX BL11O BL12v BL13BL21

X BL23+ CM 11X CM12: CM13A CS11* FLUFD11

ID FR11FR12GL11GL12IS11

O KA110 K011X LA11MA 11

H MillA MI21V SHU< SH21> SH31

SOU1 TA11- YOU

I 1 I I I I I I I T I I I I I I I I I I I I I I I I I I I I I 1 I I I

F ig . 203: Zr (p, 37pxn) Be-7i i i i i i i i r i i i i i i i r ^

_ O A0 * *

x « ^ *

D

* A

J L J L

D expO BEUX3 BL11O BL12v BL13^ BL21X BL23+ CM11X CM125 CM13A CS11* FLU6 F011ID FR11• FR12A GLU® GL12® ISUO KAU0 K011X LA11X MA11S MillA MI21V SHU< SH21> SH3113 SOU1 TA11- YOU

J I I I 1 L

10 + 2 10 + 3 10 + 4

ENERGY [MeV]203

Page 205: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 +2 F ig . 204: Zr (p, 30pxn) Na-22

10 +

o

CJUJCO

COCO

CJ

10 +o

10 - 2

i i i i i i r i i i i

o

AA e

X •A

* 2II H

L_LL

X+XSA*

• expO BEUIX BLUOBL12BL13BL21BL23CM11CM12CM13CS11FLUF011FR11FR126L11GL12ISU

O KAU0 KOULAU

X MA 11S MillA MI21

SHil< SH21> SH31SOUTAUYOU

10 + 1 F ig . 205: Zr (p, 30pxn) Na-24

zo

CJ i U

LUCO

COCO

CJ

10 - 3

_ *

• expO BE 11IX BLUOBL12v BL13*. BL21X BL23+ CM 11X CM122 CM13A CS11FLU

A F011@ FRU• FR12A. GL11<§> GL12© IS110 KAU0 K011X LA11X MA 11H MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

10 + 3

ENERGY [MeV]204

10 + 4

Page 206: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

1 0 +

o

CJLLJGO

COCO

CJ

10 + 0

10 - 2

F i g . 206: Zr (p, 20pxn) Sc-46I l ( t i l l I \ I I I I i i —

O * * * HX - - - _ <

l l

O

<

i i i i i i

• expO BE 11M BL11OBL12v BL13A BL21X BL23+ CM 11X CM125 CM13A CSU* FLU6 F011lei F R U• FR12A GL11• GL12© IS11O KA110 K011X LA11X- MA 11S MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

10 + 1

£lO+° U

o

CJL±J00

10 -1 _

COCO

CJ

10 - 3

FliiM i

-

—--

1 • 11

:

-

InIN

I

-

1 g-i

i

207:i

A

A

1

Zrt t

h

1 1

(P,1 1

] H

f 'J

1 1

20p1 1

\1

-

IS

1 1

X

-

T

n)

|

Sc1

K

1

-471

K M

IS

1

1 1

I I8

ElA ,4

1 1

Mil

l

-

=

_

-

-

=

_

-

1 1 1 1

10 + 2 10 +3

ENERGY [MeV]

• expO BE 11M BL11OBL12

BL13BL21BL23CMUCM12CM13CS11FLUFO11

Is] FR11• FR12*• GL11® GL12© ISU0 KA11ia KOIIX LA11X MA 11S MillA MI21V SHU< SH21> SH31IS SOU1 TAU- YOU

10 + 4

205

Page 207: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 2 Fig. 208: Zr (p, 18pxn) V-48

•°10 +

CJLLJCO

COCO

CJ

10 + 0 _

10 -2

Mil

-

-

-

-

_LLI

=

X

1

- A 1

XA

-

A

>£» 1

i

i

t

1 )

, 1

x -1

1 1 1

i [

i 1

I

I J)

X

0A

1 ^[]

J

)

]

I

1

<

« I

1

B

e*

<

i

. ' ' '

. • •

• !.§

xnB x x x

<

<

1

1

1 1

9 o« BH _

< <

1

1

§M

<

1

HIT

, :

-

1 EX

A A -

X

<

TTT

-

—_

_

-

1 1 1 1 1

• expO BE 11M BL11OBL12v BL13^ BL21X BL23+ CM 11X CM12S CM13A CS11* FLUA F011E FR11• FR12^ GL11<S> GL12® IS11O KA110 KO11X LA11X MA11S MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

10 + 2

o

CJL±JCO

COCOOGCCJ

10 - 2

F ig . 209: Zr (p, 17pxn) Cr-51

10 + 2

\ i i i i i i t

Ax (b

_ * o

II[•

l i J

1

i i i i i i i r ^

? I ! I 3 ? o

A »

X X

10 +3

ENERGY [MeV]

206

A I

D exp0 BE 11XI B L UOBL12v BL13^ BL21X BL23+ CM11X CM12S CM13A CS11* FLU£ FOUHI FR11• FR12A. GLU<$• G L12@ ISUO KA110 KOUX LA11X MA11S MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

10 + 4

Page 208: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2 F i g . 210: Zr (p, 16pxn) Mn-52

o

CJLUCO

COCO

CJ

10 + o _

10 - 2

- 1

-

-

—-

Illl

_

i i n

-

i

i i

A

A

1 V

1 1

B

A

A

F

1 1

1

c

— t

X

* j

i

i i

H

T3 1

8

A

]

1

SI

X

BA

H

X

1

K

i

H

X

DA

1

X

A '

1

1

X

A

1

1

H

X

A

1

II

II

~-

—-

A

_

E

-i i i i

D expO BE 11M BLllOBL12v BL13^ BL21X BL23+ CM11X CM12S CM13A CS11* FLU£> FOU£] FRU• FR12A SL11® GL12@ ISUO KA110 KOUX LA11X MAUH MillA MI21V SHU< SH21> SH31E SOU1 TA11- YOU

10 + 2

n

o

CJLUCO

COCOoGCCJ

10 + 1

10 + 0

10_ 4

10 - 2

F i g . 211: Zr (p, 16pxn) Mn-54i i i i i i i r \ I I I I 1 I r -

i >

X X

* * * *

* *

J | I I I I I I

10 + 2 10 + 3 10

D expO BE 11M BLllOBL12v BL13^ BL21X BL23+ CM11X CM125 CM13A CS11* FLU6 F011HI FR11• FR12^ GL11® GL12® IS110 KA1121 KO11X LA11X MA 11H MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

+ 4

ENERGY [MeV]207

Page 209: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 1

10+ 0

10'

oI—II - A n - 1CJLJCO

COCO

CJ

10-3

Fig. 212: Zr (p, 15pxn) Fe-59i i i r i i r i \ i i i i i 1 \--

A

A 1

I * 1

D

A "

J I I I

• expO BE 11N BL11O BL12v BL13^ BL21X BL23+ CM 11X CM12g CM13A CS11* FLUA F011ID FR11• FR12A GL11<S> 6L12© IS110 KA1121 KOI 1X LA11X MA 11S MillA MI21V SHU< SH21> SH3113 SOU1 TA11- Y O U

10

n

o

uLLJCO

COCOoDCu

+ 2

10 + 1

10 + 0

10 — 1

10 - 2

F ig . 213: Zr (p, 14pxn) Co-56i \ \ i i i i r i i f i i i i r r ^

a ; ' s, 1 ' i B o J ji ! , H a1 A _ w * B * M ™ S R

! "s

- 5•A

* X X XX

A A A

S I

j l l T ?

i f <

i i i i j i i

10 + 2 10ENERGY

208

+3

[MeV]

A -

• expO BE 11IX BL11OBL12v BL13^ BL21X BL23+ CM11X CM125 CM13A CS11* FLU6 F011E FR11• FR12A GLU# GL12© IS11O KA110 KOUX LAUK MA11S MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

10 + 4

Page 210: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

o

CJLLJCO

10 + 0 _

enCOo *CJ

10 - 2

F

1 M

ill

1 1

ll 11 II

-

-

-

•ig •

i

2

A

14:

A

1

1

8

i

Zr (pi i i

T

A

qA

i1t 1 I

1

1

a

i

14pxi i

B I

~* DA

AA

! 1

n)

_ 8

Co-57

II11

1 i

* « u- H X H

^AAA *" A « A -

-

-

1 1

II

1 II

-

1 1 1 1 1 1 1 1

•oXI

ovX+X

- *

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUF011FR11FR12GL116L12IS11KA11K011LA11MA 11M i l lMI21SHUSH21SH31SOUTA11YOU

10

_Q

O

CJLUCO

COCOODCU

+ 2

10 + 1

10

10

10 - 2

F ig . 215: Zr (p, 14pxn) Co-58

+ 0 _

- 1 _

i i i i i i r i i i i i n ^

o o

A .x x

$ ii$-

6 - - 8 ® o ^ x- H m m • *A*A

I * ?

B A - «

* X XX

A =

. s

I I I

10 + 2 10 +3

ENERGY [MeV]

1 1

10

D expO BE11XJ BL11OBL12v BL13^ BL21X BL23+ CM11X CM12S CM13A CS11* FLU£> FOUIS FR11v FR12* 6L11<S> 6L12© IS110 KA1112 K011X LAUX MA 11S MillA MI21V SHU< SH21> SH31El SOU1 TAU- YOU

+ 4

209

Page 211: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

1 0 + 1 -

oi—i

CJLUCO

CJ

A r, +o _

10 - 2

F i g . 21 6: ZrHIM

-

: c

$ .$ - \

4 -

Mill

1 H

- t j "

[ ''1

i1*

Al

l

I

1 T

i

c

<D

i

1,

1 1

[*

1

i

I ,D

[ 4

a 0

r Ii

T

' T

i

14pxI I

O 0

- TI

X

<

"8A

A

if

h

i 1

o

T

XElA

n

0

T

(

A

*

)

0

iX

f

Co1

*t* w X

iAAfi

u

1

-60

1

"g>

#

i

i

i

A •M X

i

i

Mill

-

I<XA A

xS

* :

-

i i i i i

D expO BE 11IX BL11OBL12v BL13A BL21X BL23+ CM11X CM125 CM13A CS11* FLU6 F01113 FR11• FR12A GL11<$> GL12© IS11O KA110 K011X LA11X MA11H MillA MI21SHU

< SH21> SH31El SOU1 TA11- YOU

= V

10 + 1 Fig. 217: Zr (p, 13pxn) Ni-57

o

CJL±JCO

COCOoexCJ

10 - l • _

- 2 _

10 - 3

10 + 3

ENERGY [MeV]210

10 + 4

Page 212: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

CJLLJCO

COCO

CJ

10+ 2

o

10+ o

10-2

Fig. 218: Zr (p, 1 lpxn) Zn-65i i i i i i

i i

M

>t

• expO BE11N BL11OBL12v BL13^ BL21X BL23+ CM11X CM12S CM13A CS11* FLU£> FO11(H FR11• FR12^ 6L11«> GL12@ IS110 KA1121 KO11X LAUX MA11ta M I I IA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

10

O

CJLUCO

+ 2

£ io + 1

10 + o

COCO

CJ

10 - 2

F i g . 219: Zr (p, lOpxn) Ga-67

A"A ,, $

1 1 I I I -

I I t I I

o0

XHAV<>

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUF011FR11FR12GL11GL12IS11KA11KOUL A UMA 11M i l lMI21SHUSH21SH31SOUTA11YOU

10 + 2 10 +3

ENERGY [MeV]10 + 4

211

Page 213: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 2

o

CJLJCO

CO

CJ

10 + o

10-2

Fig. 220: Zr (p, 9pxn) Ge-68

10 + 1 r

t I i i i i i i -

AA

• 8

D expO BE 11IX BLUO BL12v BL13BL21BL23CM 11CM12CM13CSUFLUFOU

HI FRU• FR12*• GLU<§> GL12© IS11O KAU0 K011X LAUX MA 11S M i l lA MI21V SHU< SH21> SH31El SOU1 TAU- YOU

10+ 2

10 + 1 _

O

10CJLUCO

COCO

glO"1

CJ

+ 0 _

10-2

F—z-

-

II

II

I

-

z—-

; A

_

A

A

i C)

i

A

i

A.

A"1

j

22 1i

I t

9S 1

i L '

i • •> i

i

i

(

3

! 1

i

(

1

1

Zri

> L

ft6a x

• 9' | x

0

>

1

(p.1 1

, 1

B <

X

0

y

i i

1i

8

1

< X

IA

I

|

9pI i! 1

Ss

t

i

i

xn

ss

) Ge

1 • i

fi AA2UOH*

Qx S M

o

-69I

1 .

x n

oo

1

1

,

8

1 X

AX

o

1

1

A A

Xx SS

o

1

1 1 1 I 1 —

, :

x« :

-

o

Z—

-

ITT

-

-

i I I I i

10 + 2 10 +3

ENERGY [MeV]

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR12GL11GL12I S 1 1KA11K011LA11MA 11M i l lMI21SHUSH21SH31SOUTA11YOU

10 + 4

212

Page 214: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 2

o

CJLLJ

CO

COCO

CJ

10+ 0 _

10-2

F i g—LLU

-

-

—T

TT

-

'_ JI I

.

i

iIA

4 A-

- T A "t>

A

A M

A

~ A

-

i1

0

El

<

222:

it

0

pt

i

•*"

xTI

1

T

"4• #<i

i

i

i

X*

<

1

Zr

1

!

KB

<

I$1

* rL

1B

<

1

(P.1 1

* '

§ Or

I """" T

<

a

i i

8pi i

^ ^ ^

< *<

iiw

, i

xn)

| ;o

< ~

As-71l

1

SASAB A^

i » Ixxr-iT R T

i

i

«

ft

(X0X

1

1 1 1 1 1 1 --

1 1

* B « * •

X « " B EX I

-

< <

I

—_

i i i

i

i i i i i i

• expO BE 11tX BL11OBL12v BL13^ BL21X BL23+ CM 11S CM12S CM13A CS11* FLU£ F011Isl FR11• FR12A GL11® GL12@ IS11O KA110 KO11X LA11X MA 11ta M mA MI21V SHU< SH21> SH31B S0111 TA11- YOU

+2 F i g . 223: Zr (p, 8pxn) As-73

[quu

oi—i

h-u10

COCOoDCCJ

1

1

1

1

/I

u

0

0

0

n

+ 1

+ 0

- 1

i

-2

MM

-

-

-_

~ i

— i

- A

- A

A

1

iA

A

i

.A

9

^ 1» -

M

i

q

)i

i

i

T JI I"P1

A

A

1

-

A

1

$

A

El

1

_ *

AA

El

I

1

•X

IA

El

1

1 I 1 1

A A

A •»

El

f1 0 [5]

RI

T

I1

1

i i i l

i i i i i i i i —

B D \X

* MX X I

A Z AAMA A _ A A A * A I

—_

-

_

-

_

_

1 1 1 1 1 1 I 1

_ *

10 + 2 10 +3

ENERGY [MeV]10

• expO BE 11IX] BL11OBL12v BL13^ BL21X BL23+ CM 11X CM125 CM13A CS11FLU

6 F011B FRU• FR12A GLU<§> GL12© IS110 KA11E3 K011X LAUX MA 11H MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

+ 4

213

Page 215: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 2

f

o

CJL±JCO

COCOODCCJ

10+ 1

10+ 0

io-l

10-2

Fig. 224: Zr (p, 8pxn) As-74i i i i r i i i i i i

oA

I i i i i i i i i i i

• expO BE 11tX BL11O BL12v BL13A BL21X BL23+ CM 11X CM12£ CM13A CS11* FLUA F011El FR11• FR12*• 6L11<S> 6L12© IS11O KA110 K011X LA11X MA11S MillA MI21V SH11<3 SH21> SH31E SOU1 TA11- YOU

10 + 2

10 + 1 _

O

CJLLJGQ

CDenoCLCJ

10 + 0 _

10 - 1 _

10 - 2

Fig . 225: Zr (p, 7pxn) Se-72

II11

—-__

In

AA

A - KA

MA

- A *

~A

7 N

i

El

M

pq

0

j

i

]

Di

i

T

\ <

n25

*

1

kEl

JA

iT

1

1

AA_ -

i

1

$

El

A

i

•w

1

1 1 1

A A

A |g

- - —

8 8

Ii( )

( )

1

1

A A AAAAA

a

- - _ _8 s

i

A

El

1

A

I

1

AA

¥

i

i

A

El

$

1

1 1 1

A

1 1 1

1 -

-

-

_

_

=

-

-

Mil

l

:

-

i

10 + 2 10 +3

ENERGY [MeV]

214

D expOBE11IX BLUOBL12*• BL13^ BL21X BL23+ CM11X CM125 CM13A CS11* FLU6 F011HI FRU• FR12A. GL11#> GL12© IS11O KA110 KOUX LA11K MA 11S M i l lA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

10 + 4

Page 216: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

10 + 2

o

CJLJCO

10 + 1

enen

g l O + o

CJ

10 - l

F i g . 226: Zr (p, 7pxn) Se-75I I I I I I 1 I i I i i i n ^

I I I I I I

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUF011FRIIFR126L11GL12IS11KA11K011LA11MA 11M i l lMI21S H USH21SH31S O UTA11YOU

10

O

CJLLJcn

COoOrCJ

+ 2

10+ 1 _

10

10

10 - 2

+ 0 _

-1 _

mi

-

_

—--

mi

~ i" A .

_ t

1

• • •

F

t

i

1

i\ b

A •

s ^• p

1

g 227:I

H ft**

1

*

»••• x3» A

1 A

A

I

1

1

Zr (p

= ;«A

i i

Dfi

*

! 1

, 6pi i i

•H g

IS

El

1 1 1

xn

•i

)Br-76i i

DA AAAAA ^ ^

x x~ — —

1 1

1

AA

X

1

1111

-

_

A AH

—X I

-

-

ITT

T

-

I_

=im

-

i i i i i

10 + 2 10 +3

ENERGY [MeV]

• expO BE 11IX BL11OBL12v BL13^ BL21X BL23+ CM 11X CM12H CM13A CS11* FLU& F011@ FR11• FR12A G L I I<§> 6L12© ISUO KA110 K011X LA11X MAUS MillA MI21V SHU< SH21> SH3112 SOU1 TAU- YOU

10 + 4

215

Page 217: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

n

o

uLJenenenoccu

10 + 2

10 + 1

10 + o

10 - 1

F ig . 228: Zr (p, Bpxn) Bn-77i I I I I I F I

• _ 0

"A

i i i i i r ^

I "1S§ s

A*

D expO BE 11CXI BL 11OBL12v BL13* BL21X BL23+ CM 11X CM12S CM13CS11FLUF011FR11

• FR12-*• GL11<§> GL12© IS110 KA11El K011X LA11X MA 11S MillA MI21V SH11< SH21> SH31El SOU1 TA11- YOU

i i i i

10 + 3

n

CD

10 + 2

LJ

enininoCLCJ

10 + o

10 - l

F ig . 229: Zr (p, 5pxn) Kr-78

10 + 1 r

10

I I I I I 1 I I T I I I I I I I I I 1 I I I M -

J L

^'i^i^-*1-™*^***22M*>**9*$*%-AAa * A

sir1"* =_ « < *, o"R/K <DO0 _ IX M

J I I I I I 1 1

10 +2 10 +3

ENERGY [MeV]

• expO BE11M BL11OBL12v BL13* BL21X BL23+ CM 11X CM12S CM13A CS11* FLUA F0110 FR11• FR12^ GL11<$• GL12© IS11O KA110 K011X LA11X MA 11S MillA MI21V SHU< SH21> SH31H SOU1 TA11~ YOU

i 1

10 + 4

216

Page 218: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+3 F ig . 230: Zr (p, 5pxn) Kr-79

10 +2

o

CJLLJCO

COCO

CJ

1 0 + '

+ 0

10 - 1

i i i r r i ~r i i r

D expO BE11M BLllO BL12v BL13-̂ BL21X BL23+ CM11X CM12: CM13

A CS11* FLU

i F011m FR11• FR12A. 6L11

GL12IS11

O KA110 K011X LA11X MAllS M i l l

I A MI21V SH11< SH21> SH31El SOU1 TA11- YOU

1 1 1 1

10 + 3

£ 1 0 + 2

oi—i

1 - A Q + lCJ i U

LJCO

COCO

g l O + o

CJ

10 - 1

Fig . 231: Zr (p, 5pxn) Kr-80

10

T I I \ I I I I I

• expO BE 11M BLllOBL12v BL13^ BL21X BL23+ CM11X CM125 CM13A CS11* FLU6 F011m FRII• FR12A GL11<» GL12© IS110 KA1112 K011X LA11X MAllS MillA MI21V SHU< SH21> SH3112 SOU1 TA11- YOU

I I I I I I I I I I

10 +2 10 +3

ENERGY [MeV]217

10 + 4

Page 219: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

10 + 2

o

uLUco

10 + 1

£ 1 0 + 2

o

CJLU

co

10 + 1

cocoo i n t oDC 1UCJ

10 - 1

Fig. 232: Zr (p, 5pxn) Kr-81i i r I i i i i r F I I I I I I I i i i r

COCO

g io + o L

CJ

10"1

1 0 + 3

D expO BE 11

I BL11O BL12v BL13

• BL21X BL23CM 11CM12

S CM13A CS11* FLU, F011I FR11

• FR12• 6L11GL12ISU

O KA110 K011X LAUX MA11S MillA MI21V SHU< SH21> SH31E SOU1 TAU- YOU

j i i i i i i i

Fig . 233: Zr (p, 5pxn) Kr-82i i i i I I I I I I I-

[]

i

• •

<

o0

X

sAV<>

expBE 11BL11BL12BL13BL21BL23CM 1 1CM12CM13CS11FLUF011FR11FR126L11GL12IS11KA11K011LA11MA 11Mil lMI21S H USH21SH31SOUTA11YOU

i i i i i i i

10 10 +2

ENERGY

218

10[MeV]

+ 3 10 + 4

Page 220: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10

O

+ 3

1 0 +CJLUCO

COCO

g i oCJ

10 - 1

Fig . 234: Zr (p, 5pxn) Kr-83I [ I I I I I T 1 I I IT^ 1 i I I I I I I-

***

x x

I I I I I I

• expO BE 11M BL11O BL12v BL13^ BL21X BL23+ CM11X CM12S CM13CS11FLUF011FR11

• FR12A. GL11>̂ GL12© IS110 KAUa KOIIX LA11M MA 11S MillA MI21V SH11< SH21> SH31El SOU1 TAU-YOU

10 + 2

n

o

CJLLJCO

COCOoDCCJ

10 + 1 _

10 + 0 _

10 - 1 _

10 - 2

F i g .— I i

I

-

r i

_

235:I i

» •

ii

I

<

a0

0B

mB

BH

\i

1 1

< p

a'•

»C> (

ZrE iH•

1

_ <

< >

(P,i

wE

-ii1

i

i

_ L i i 1

5pi

R

1 i< X

> >o

A *

xn)i i

El H

1 1 I 1

>>»B,BB

1 1

Kri

Eel

<

>

a

•El

As*

_ l _

1 T

B

• »

; BBB

• *El

A

11

-84I

ISEH

BB ra O

A A

• l

: •

i i

1 figII

i

1

I I I I I l -

_

I

xx"* =

S ° -• •

El

A A A A _

-

-_

1 1 1 1 1

10 + 1 10 +2 10 +3

ENERGY [MeV]

219

10

• expO BE 11M BL11OBL12v BL13^ BL21X BL23+ CM11X CM125 CM13A CS11* FLU6 FOU@ FRU• FR12^ 6L11<S> G L 1 2® I S UO KA110 K011X LAUX MA 11S M i l lA MI21V SHU< SH21> SH31El SOU1 TAU

- YOU

+ 4

Page 221: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 1

10 + 0

o

CJLLJGO

inCO

CJ

10 - 1

1 0 ' 3

10 + 1

n l o + o

O

CJUJ

10 - l

in10

DC 1 U

CJ

10 - 3

F i g . 236: Zr (p, 5pxn) Kn-85l l l l l l l l 1 i I 1 I I i i -

i ' l i I | ! n .

i i i i i i i i i i i i

F i g . 237: Zr (p, 5pxn) Kn-B6i i f i i " i i i i i i i i i i i n T i i i i i r

A *

I [I

f i r

r II : I

IIJ! oKIP* J

•i

4 4 A _

D expO BE 11N BL11O BL12v BL13^ BL21X BL23+ CM 11X CM122 CM13A CS11* FL11A FO110 FR11• FR12A 6L11<S> GL12© I S 1 10 KA11a KOUX LA11X MA11H MillA MI21V SHU< SH21> SH3112 SOU1 TA11- YOU

• expOBE11N BL11OBL12v BL13^ BL21X BL23+ CM 11X CM125 CM13A CSU* FLU6 F011(U FRU• FR12A GLU$> GL12© ISUO KA110 K011X LA11X MA 11H MillA MI21V SHU< SH21> SH31El SOU1 TAU- YOU

10 + 1 10 +2 10 +3

ENERGY [MeV]10 + 4

220

Page 222: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

o

CJLJCO

COCO

CJ

10 + 0

1 0 ~ 2

1 0 + 2

1 0 +

o

CJLLJCO

COCO

CJ

1 0 + 0

10 - 2

F ig . 238: Zr (p, 4pxn) Rb-83I I I I 1 I I I i I i i i i i n ^

*?*?

331 j i i i i 1 1 1 j i i i i 1 1 1

F i g . 239: Zr (p, 4pxn) Rb-84I T I I I F I I I T I 1 I T I -

• expO BE 11IX BL11O BL12v BL13^ BL21X BL23+ CM 11X CM12S CM13A CS11* FLUA F011E FR11• FR12A 6L11® 6L12© IS11O KA110 K011X LA11M MA11S MillA MI21V SH11< SH21t> SH31El SOU1 TA11- YOU

D expO BE 11tx! BL11OBL12v BL13^ BL21X BL23+ CM 11X CM12S CM13A CS11* FLU£> F011m FRII• FR12*. GL11«• GL12® IS11O KA110 KO11X LA11X MA 11S MillA MI21V SHU< SH21> SH31H SOU1 TA11- YOU

i 1 1 1

10 + 1 10 +2 10 +3

ENERGY [MeV]10 + 4

221

Page 223: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

io +

o

CJLUCO

if)CO

CJ

10 + 0

10 - 2

F ig . 240: Zr (p, 4pxn) Rb-86I I l l l l l l I I I I I I i i ^

i mo o o o o @ o g o 0

T T ~[Vr. W(J)

J 2.

D expO BE 11N BL11O BL12v BL13*. BL21X BL23+ CM 11X CM122 CM13A CS11* F L UA F011lei FR11• FR12A. 6L11<§> GL12© IS110 KA11

la KOIIX LA11X MA11S MillA MI21V SHU< SH21> SH31B SOU1 TA11- Y O U

I I I I I I I I j i i i i i i i

10 + 3

10 + 2

o

oLUCO

10 + 1

COCO

g i o + o

CJ

10 - 1

F ig . 241: Zr (p, 3pxn) Sr-82

10

l f I I I I I 1 I I I I f i I I i i i i i i i i -

I I I I

S B 1 3

J I I I I I I

• exp0 BE 11M BL11OBL12v BL13* BL21X BL23+ CM 11X CM12S CM13A CS11* FLUA F011@ FR11• FR12^ 6L11<» GL12© IS11O KA110 K011X LAUX MA 11S MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

i i i I i i i

10 + 2 10 + 3 10ENERGY [MeV]

222

Page 224: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

•§ 1 0 + 2

o

CJL±JCO

10 + 1

COCO

g l O + o

10"1

1 0 + 3

5 1 0 + 2

o

CJUJCD

10 + 1

10 - 1

Fig. 242: Zr (p, 3pxn) Sr-83I I I I I I I I I I I I I I 1 I 1 i i r i i i n ^

* < B K

• « . : ° * : :

• expO BE 11M BL11OBL12v BL13A BL21X BL23+ CM 11X CM12S CM13A CS11* FLUA FO11@ FR11• FR12A 6L11<S> GL12© IS11O KA11

0 KO11X LA11M MA 11B MillA MI21V SH11< SH21> SH31El SOU1 TAU- YOU

l i t i i i 11 i i i i i i

Fig. 243: Zr (p, 3pxn) Sr-85i i i i r i i i i r i r \ \ i i i i i i i i i

& * a I I

o l 1 : : •••,,4*AAVA A&

COCO

g l O + o L

CJ

0

• exp-R O BE 11I XI BL11HOBL12v BL13^ BL21

- X BL23+ CM11

_ X CM12E S CM13A CS11* FLU& FOU|5J FR11• FR12A. GL11<%> GL12@ IS11O KA110 K011X LAUX MA 11S MillA MI21V SHU< SH21> SH31IS SOUI TAU- YOU

i I I M I l__j I I I I J I i i i i

10 10 +2 10ENERGY [MeV]

+ 3 10 + 4

223

Page 225: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3 F ig . 244: Zr (p, 2pxn) Y-86

10 + 2

o

CJLUCO

10 + 1

COCO

g i o + o

CJ

10"1

1 0 + 3

£ 1 0 + 2

oi—i

CJ 1 U

LUCO

COCO

g i o + o

CJ

10 - l

l I I I I I I I

I I I I I I I

Fig . 245: Zr (p, 2pxn) Y-87I T 1 ] 1 I I I I 1 1 I | I I I I f i i i i i i r i i i i i i i-

• expOBE11IX B L 1 1O BL12

• BL13A BL21X BL23

CM 11X CM12

: CM13A C S U* FLU6 FOUEl FR11V FR12A GL11GL12IS11

O KA110 K011LA11MA 11

S MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

D expO BE11MBL11OBL12v BL13^ BL21X BL23+ CM 11X CM12g CM13A CS11* FLUFOUFRU

• FR12*GL11® GL12® IS11O KAU0 KOUX LA11X MAUS MillA MI21V SHU< SH21> SH3112 SOU1 TA11= YOU

' H T T I ' i i i i i i J I i i i i

10 + o 10 +2

ENERGY [MeV]10 + 4

224

Page 226: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

-§ i o + 2

o

oLJCO

10 + 1

COCO

g i o + o

1 0 M

10 + 3

o

oLUCO

1 0 +

COCO

g l O + o

u

10 - l

Fig . 246: Zr (p, 2pxn) Y-88I I I I I I I I I I I i I I I I I I I I I TT-̂

X+XSA*

A A A A -

Fig . 247: Zr (p, pxn) Zr-86i j i f r i I 1 I ( f I T I—

• * A A A

B B

• expO BE 11M BL11OBL12v BL13* BL21BL23CM 11CM12CM13CS11FL11

d F011ID FR11• FR12A GL11<§> GL12© IS11O KA110 K011X LA11X MA 11H MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

• expO BE 11M BL11

BL12BL13BL21BL23CM 11CM12CM13CS11FLUFOUFR11FR12GLUGL12IS11KAUK011LAUMA11M i l lMI21SHUSH21SH31SOUTAUYOU

O

i i i i i i i i

10 10 +2 10 +3

ENERGY [MeV]10 + 4

225

Page 227: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

10 + 2

o

CJLLJCO

10 + 1

COCO

g i o + o

CJ

10"1

1 0 + 3

10 + 2

o

oL±JCO

10 + 1 _

COCO

g i o + o

10 - 1

Fig . 248: Zr (p, pxn) Zr-88i i i i i i i \ I I i t I \ \ -

DOXI

ovX+X

sA

nJ'

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUFO11FR11FR126L11GL12IS11KA11K011LA11MA 11M i l lMI21SH11SH21SH31SOUTA11YOU

i i i i i i i i i i i i i i i i i i

Fig . 249: Zr (p, pxn) Zr-89i i i i i 111 i r> i * rr\ i M 11 i i i i r i m i i i i TTTT

n f.

• exp0 BE 11M BLUO BL12v BL13

BL21X BL23+ CM11X CM12

CM13A CS11* FLUF011FR11

• FR12A 6L11

GL12ISU

O KAU0 K011

LAUX MA 11S MillA MI21V SHU< SH21> SH31HSD111 TA11- YOU

i i i i I I M i l l 1 I I I I I I I

10 10 +2

ENERGY [MeV]10 + 4

226

Page 228: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

i ~̂* ̂ -< cvi ̂ CVJ m< i i

o x o ><ixin 11 i i i r

men

ic _N

'cX

d

d.(LN

oIT)OJ

O)

mi I i i i—I mi M i i—i mi i i i i—i q< H

< H

™:K O»-e-.

' O '

III I I I I—I III! I I I I I I i I

CVJ

+O O

o+O

X U l J J J J J 2 2 Z t / ) J O ( I l J J t n < O < < H H i I l Q < Q

Q ) [ D ( n i i i c D D C J O D v 2 : s 2 : t o c / ) c n c / i >

DOX0t>tin i i i i i mi i i i i—i mi i i i i—i mi i i i i—|— _|

<l X O >» Htr-<< M

< - w X Ol ,_,•» HIH H< - \ 00 Q * HIH

- 5 .. to

I I 11 i i i i III I i i i i i lin i i i i i In i i i i i i

O

>

OJ ,-t-

o

DCLLJZLLJ

O

o

aj m

O O

CVJ

-•-

O O

o4-

o o

[qw] N0I133S SS0H3 [qw] N0I133S SSOdO

Page 229: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

10 +

o

CJLLJ

CO

COCO

CJ

10 + o

10~ 2

1 0 + 2

o

CJLLJ

CO

COCO

CJ

10 + 0

10 - 2

Fig . 252: Zr (p, xn) Nb-95I 1 1 I TT ! I I r i i i i i 111 i i i i r

o o

I I I I I I I I I I I I I I I

• expO BE 11IX BL11O BL12v BL13BL21

X BL23+ CM 11X CM12S CM13A CS11* FLUF011

m FRii• FR12GLUGL12IS11

O KA110 K011X LA11X MA 11N MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

Fig . 253: Zr (p, n) Nb-96I I I I T i l I I i i r i T i i i i r i I i i i i11 i i i I n i

i i i i i i 11

D expO BE 11BL11

O BL12BL13BL21

X BL23+ CM 11X CM125 CM13A CS11* FLU6 F0110 FR11• FR12* GL11• GL12' IS11O KA110 K011LAU

X MA11S MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

i i i i i I

10 10 +2

ENERGY [MeV]10 + 4

228

Page 230: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 4

•§ i o + 3

o

CJLUCO

COCOoDCCJ

1 0 + 2

1 0 + 0

Fig 254: Au-197 (p, 79pxxn) H-2i i i i 1 1 1 1 1 i i 1 1 1 1 1

xH — w

H _ ~ X

ET X

- K' X

X*X-

X*-

•OXIO

O0XXSAV<>ElI

expBE11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUFOUFR11FR126L11GL12IS11KA11K011LA11MA 11MillMI21SH11SH21SH31SOUTA11YOU

I I I I I I I I I I I I I I I I I I | I I I I I I I | | I I I I I I

10+ 4

n

o

CJLUCO

COCO

dCJ

10 +2

10 + 0

Fig . 255: Au-197 (p, 79pxxn) H-3I I I I I I I I I

10 + o

JJJ

I I i f I I I I / I ( ! I I I I I I { I I I I I (

is

E J _ X

H -

J ' I I I I I I I I I I

10 +2

ENERGY [MeV]

D expO BE 11XI BL11OBL12

BL13BL21

X BL23CM11

X CM12: CM13

A CS11* FLU

F011FRU

• FR12• GL11• GL12' IS11

O KA110 K011

LA11X MA 11S Mi l lA MI21V SHU< SH21> SH31EJ SOU1 TAU- YOU

J I I I I I 1 I

10 + 4

229

Page 231: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 4

£ 1 0 + 3

o

LUGO

GOGO

CJ

10 + 2

10 + o

F ig . 256: Au-197 (p, 78pxxn) He-3i l l l l l l I f I I I I I I I I 1 i I i | i

- X

- 13_ X

- X- E

X_

x*

I I I I I I I I I I I I I I

• expO BE 11IX BL11OBL12v BL13

BL21X BL23+ CM11X CM12S CM13A CS11* FLUFO11FR11

• FR12^ GL11GL12IS11

O KA110 K011X LA11X MA 11S MillA MI21'V SHU< SH21> SH31El SOU1 TA11- YOU

10 + 5

io + 4

oi—i

h- , n + 3CJ X U

LUGO

GOGO

CJ

1 0 + 1

F i g . 257: Au-197 (p, 78pxxn) He-4I I I \ I TT I I I I I I I I T T I I T 1 I I I I

B -

D expO BE 11ixi BL11OBL12v BL13BL21

X BL23+ CM 11X CM12S CM13A CS11* FLUA F0110 FR11• FR12GL11• GL12> IS11O KA110 KO11X LAI 1X MA 11S MillA MI21V SHU< SH21> SH31IS) SOU

TA11= YOU

i i i i i i i i J I i i i 1 A I I I I I I

1 0 +' 10ENERGY

+ 2

[MeV]10 + 4

230

Page 232: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10

o

CJLJCO

COCO

oCJ

+ 2

1 0 + 1

1 0 + 0

10-2

Fig. 258: Au-197 (p, 76pxxn) Be-7i i i

* »* A

X A

I I I I

I I I I

o0XX

sAV<>

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CSUFLUFOUFR11FR12GL11GL12I S UKA11KOllLAUMA 1 1M i l lMI21SHUSH21SH31SOUTA11YOU

i i i i i i

10

_Q

O

CJLJJCO

COCO

oCJ

+ 2

10 + 1

10 + 0

10 - 1

10 - 2

F ig . 259: Au-197 (p, 69pxxn) Na-22i i

A

i i i 1 i r I i I I I I r ^

A B x xg x *

9 A t

xA

1

A

4-

1A

A

1

1

1

1

[

ic

f| i 4

i- (I

X A

10 + 2 10 +3

ENERGY [MeV]231

X

A

• expO BE 11XI BL11O BL12v BL13^ BL21BL23CM 11CM12CM13CS11FLU

& F011E FR11• FR12^ GL11•§> GL12© IS11O KA110 KOllX LA11X MA 11S MillA MI21V SHU< SH21D> SH31E) SOU1 TA11- YOU

i i i i i i

10 + 4

Page 233: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10

o

CJLLJCO

COCO

CJ

+ 2

10 + 0

10 - 2

F i g . 260: Au-197 (p, 69pxxn) Na-24I I l I l I i I I l \ I I 1 I T -

r!! II

< (I

A ~i

D expO BE 11M BL11OBL12v BL13*> BL21X BL23+ CM11X CM12S CM13A CS11* FLU£> FO11Is) FR11• FR12^ GLU<S> GL12© IS11O KA110 KO11X LA11X MA 11H MillA MI21V SH11< SH21> SH31El SOU1 TA11-YOU

10

n

o

uUJCOCOCO

oorCJ

+ 2

10 + 1

10 +o

10 - l

10 - 2

Fig. 261: Au- 197 (p, 59p93n) Sc-46I I I I I I I 1 I 1 I \ \—

D1

, i

i! $ *

X X QS

:-y

B

J I T I

10 + 2 10 +3

ENERGY [MeV]

• expO BE11X BL11OBL12v BL13* BL21X BL23+ CM 11X CM12S CM13A CS11* FLUd FO11Is) FR11• FR12A GL11<§> GL12© ISMO KA110 K011X LA11X MA11S MillA MI21V SH11< SH21E> SH31H SOU1 TA11- YOU

10 + 4

232

Page 234: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 2

o

CJLLJCO

COCO

CECJ

10+ 0 _

10-2

F ] LC3 • 262

-

-

-

_

in

i '

T '

" I*1

1 .

:

1

1A

!i

I .

X

i

I

1

(

• -

i

i

ni i

i

i

*

A ]

? f

3<<

)

1

A

(

ii

u-

<

"ffl9 „

I

1

-197

X

K

<T| 1

5 ! I - -

• "rf+i '-*- < ,

j1 <

i i i

(p, 55p89n) Mn-54

i 1

11

11

0 A A -

„ x x n g *xj |x¥ * ' 8

- e J6?f M% =S ' a

1 • "•

I * * *• A '$ Tf LJ ]

• " ~P~T LLLL

1 ' '

-

-

<

--

i i i I I I I

D expO BE 11tX BL11OBL12v BL13BL21

X BL23CM11

X CM12CM13

A CS11* FLUF011

Is) FR11FH12GL11GL12IS11

O KA11

0 KO11LA11

X MA11S MillA MI21V SH11< SH21> SH31SOU

1 TA11- YOU

10 + 1

io + 0

o

CJLUCO

COCO

oDCCJ

10 - 1

- 2

10 - 3

F ig . 263: Au-197 (p, 54p85n) Fe-59i r i i i i r

- -i

i l lI 0 '

i i i r^

10 + 2 10 +3

ENERGY [MeV]10

• expO BE 11N BL11OBL12^ BL13^ BL21X BL23+ CM 11X CM125 CM13A CS11* FLU6 F011El FR11• FR12*• 6L11® GL12© IS11O KA110 KOUX LA11H MA 11S M i l lA MI21V SH11< SH21> SH31El SOU1 TA11- YOU

+ 4

233

Page 235: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 +2

10 +

o

CJLLJ

CO

IDGOCD•CCJ

10 + o

F ig . 264: Au-197 (p, 53p87n) Co-58

til

10 - 2

<< <

0

tf]1

K

0

I

o

1D

B 8

i "CD

8 x. £

i |

8 8

X

Xg)IS

1ID

0

"8 !

1

8

A

< fi )

1

a

A A

< g

4.

f

*-< • !

I I 1 I I I J I I

a"rq o

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUF011FR11FR12GL116L12IS11KA11KD11LA11MA 11MillMI21SHUSH21SH31SOUTAUYOU

10

n

o

oLJui

COCOodu

+ 2

10+ 1 _

10+ 0 _

10-1 _

10-2

Fig. 265: Au-197 (p, 53p85n) Co-60i i i i i i i i I I I I I I I I T -

A 8 A

i *

J I I I I L

10 + 2 10 +3

ENERGY [MeV]

J 1 L

• expO BE 11X BL11O BL12v BL13^ BL21X BL23+ CM 11X CM12g CM13A CS11* FLU& FOU(3 FRU• FR12^ GL11® GL12© IS11O KA110 K011X LA11X MAUS Mi l lA MI21V SHU< SH21> SH31El SOU1 TAU- YOU

10 + 4

234

Page 236: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 2 Fig. 266: Au- 197 (p, 50p83n) Zn-65

o

CJLLJCO

COCO

CJ

10+ 0 _

10-2

1 II

1II

-

Ill 1 1 1

-

: i •

-

t

[

i •

i

I

i

iI

(

,

1

A\ 8

: i

»iu

j

i

**!

— •

i

1 1

a <

1 I

t1

\ ^1

i i

c

, !

i — m

' <]

j <

i

<

i

03

1i

i iLID<

)

D O

n•a

i

0 6

i

A

D

1

A

i

1

1

A

<

I

I I

4 A

I

I

I

I I

I I

I I

A l

III I I I

-

-

TT

T

-

-

-

I I I

- X+

-IX

o0X

sAV<>

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR12GL116L12IS11KA11KD11LA11MA11MillMI21SH11SH21SH31souTA11YOU

10+ 2

_Q

O

CJLUCO

COCOODCCJ

10 + 1

10+ o

10-l

10-2

Fig. 267: Au-197 (p, 47p77n) As-74i i i r i i i i i

i

• • A

<

10 + 2

i i i i i i I r ^

• I t

«o*° o *********

°i

El

. A

A A - . i

-rrti i

I i i i i i i j i i i i i

10 +3

ENERGY [MeV]235

D expO BE 11M BL11OBL12v BL13^ BL21X BL23+ CM11X CM125 CM13A CS11* FLU6 F011Isl FRU• FR12A G L I I<®> GL12© IS11O KA110 K011X LA11X MA 11S MillA MI21V SHU< SH21> SH31El SOU1 TAU- YOU

10 + 4

Page 237: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 +2

1 0 +

o

CJLJCO

COCO

CJ

1 0 + 0

10 - 2

Fig. 268: Au-197 (p, 46p77n) Se-75I I I I [ 1 I \ I

1 1 *

T I !

D cn J

i i i i r

XX

a a X

i i i i i

• expO BE 111 BL11OBL12v BL13^ BL21X BL23

"+ CM11X CM122 CM13A CS11* FLUA F011@ FRU• FR12• GL11• GL12' IS11

0 KA11El KOI 1

LA11MA11

S MillA MI21V SHll< SH21> SH3113 SOU1 TA11- YOU

10 + 1

n

o

CJL±Jin

COCO

oLTCJ

10 + 0

10 - l

10 - 2

10 - 3

Fig. 269: Au-197 (p, 45p71n) Br-82\ i i i i i \ i r i i i i I i i r ^

a

— A

10 + 2

A A

10ENERGY

+ 3

[MeV]

D expO BE 11tX BL11OBL12v BL13^ BL21X BL23+ CM11X CM12S CM13A CS11* FLUA F01113 FR11• FR12^ GL113> GL12© IS110 KA1121 K011X LA11K MA11S MillA MI21V SHll< SH21> SH31El SOU1 TA11- YOU

10 + 4

236

Page 238: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 2

10+ 1

o

CJLUCO

COCO

CJ

10+ 0

10-2

Fig. 270: Au-197 (p, 43p71n) Rb-84i i r i i i i i T i i r i i i i

X

S

o.

* * x *

< < <J<

< AA < •

* i I r

* * * * * *

• expT 3 O BE 11

Z M BL11- O BL12" v BL13" ^ BL21- X BL23

+ CM 11_ X CM12- S CM13

: A csii_ * F L l l- A F011_ HI FR11' ' • FR12

^ 6L11= ^ 6L12- © I S 1 1- O KA11" 0 KOI 1" X LA11- X MA 11

S M i l l_ A MI21E V SHU- < SH21_ > SH31- El SOU

I TA11- YOU

10 + 1

1 0 +

o

CJLJCO

COCOOCCCJ

10'

io - 2

10 - 3

F i g . 271: Au- 197 (p, 43p69n) Rb-86I r 1 1 1 1 i i i 1 r t -

* *

• s

10 + 2

8 • •

i

O

9

** #

•6

DO

ov

X+XgA*

expBE11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUF011FR11FR12GL11GL12IS11KA11K011LA11MA11M i l lMI21SHUSH21SH31SOUT A 1 1YOU

i i i i

10ENERGY

237

+ 3

[MeV]10 + 4

Page 239: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

f 10 +

o

10 + oaLJin

inif)

CJ

10 "2

F i g . 272: Au-197 (p, 42p71n) S r - 8 5i i i i i i i i

X X x

X B

i i i r i T i T ^

x xx

< IA A A A ii

1 1 eg

I I I I

D expO BE 11Cxi BLUO BL12v BL13A BL21X BL23+ CM 11X CM12S CM13A CS11• FLUA FOUa FR11• FR12* GLU<§> G L 1 2® ISUO KAU0 K011X LA11X MAUH MillA MI21V SHU< SH21> SH31El SOU1 TAU- YOU

10 + 2

i io +

a

CJL±Jin

10 +o _

10too , n-i

CJ

10 - 2

MM

1

-

-

_

MM

-' L .

Ill 1 1

1

I

F

i

1 1

" i C)

*i

A T

T

1

1 < C

a.t

j

273:

X

A

\

I 1̂1• 1

i

3

)

' i

! IJ

A u -i

B

i

i

i

X

I B

$

1 I

f1t

1

1

11

B

fI

|

97i i

>X

H B t

A

•T I

i

i i

(P.

a BA

\

t A

! *

i

4

B

-

lp70n)

• A ^1

. • n

a P :

i : i

)

1

r

a B

J

<

i

Y-871 1 I 1 I I -

• S =-

<

iM

ii

-

_

-

i i i i i

D exp0 BE 11XI BL11OBL12

BL13BL21

X BL23+ CM 11X CM12CM13

A CS11* FLUF011FR11

• FR126L116L12IS11

O KA110 KD11X LA11MA11

S MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

10 + 2 10ENERGY

+ 3

[MeV]10 + 4

238

Page 240: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

§ 10 +

o

CJLJJCO

10 + 0

COCO

gio-CJ

10 - 2

F ig . 274: Au- 197 (p, 4 Ip69n) Y-88i i

_ a ~ *B ¥

x x x

••Ili'u:;- A

D

i i i i i -

i • i «

t iSf A .

D expO BE 11M BLllO BL12v BL13A BL21X BL23+ CM11X CM125 CM13A CS11* FLU6 F011B FRU• FR12A. GL11• GL12© IS11O KAU0 K011X LAUX MA 11S MillA MI21V SHU< SH21> SH31SOUTAU

|ElI

j - YOU1 1 1 1

10 + 2

•§ 1 0 + 1

o

CJLUCO

10 + 0

COCO

CJ

10 - 2

F ig . 275: Au-197 (p, 40p70n) Zr-88i i i i i T r i i i i i ^ H

I i

Px

Dr f 4 51 - ••

1 T T

D

A A A A

X X X

I I

I I I I

10 + 2 10 +3

ENERGY [MeV]239

aoMOv

+

SA*

ID

O0XXHAV<>

expBE 11BLllBL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR12GL11GL12IS11KA11KOULAUMA11MillMI21SHUSH21SH31SOUTAUYOU

I 1 I I l l I

10 + 4

Page 241: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 2

o

CJLJCO

COCOoCJ

10+ 0

-l

10"2

Fig . 276: Au-197 (p, Zr-89I I I I

* AA $

* Ifin

HD

.

X XX X * A A A it

A A <B 0

• „ I

X+XSA*

D expO BE 11txl BL11OBL12v BL13^ BL21BL23CM 11CM12CM13CS11FLU

A F011© FRU• FR12A GL11® GL12© ISUO KA110 KOllX LA11X MA 11S MillA MI21V SHU< SH21> SH31E SOU1 TAU- YOU

10 +

10 + 0

a

CJLLlCO

COCO

o

10 -1

10 -3

Fig. 277: Au- 197 (p, 40p63n) Zr-95

10 + 1

I I I l I l I I I I I 1 I T i l l i i i i r i i -

a

D expO BE 11M BL11O BL12v BL13A BL21X BL23+ CM11X CM125 CM13A CS11* FLU6 F011E FR11• FR12-*• 6L11<§> GL12© IS11O KA110 KOllX LAUX MA11N MillA MI21V SHU< SH21> SH31B SOU1 TAU- YOU

I I I [ I i i i i i i i

10 + 2 10 + 3 10 + 4

ENERGY [MeV]240

Page 242: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 1

10 + 0

o

uLU10

CO

CJ

10

10

- 3

+ 2

o

CJLLJCO

COCO

CJ

10 + 0

10 - 2

10 + 1 r

F ig . 278: Au-197 (p, 39p64n) Nb-95l I l l I l l l I I I I I I I I I —

J I I I I J I I I I I I I I I I I I I I I

D expO BE 11M BL11O BL12v BL13A BL21X BL23+ CM 11X CM12g CM13A CS11* FLU£ F011@ FR11• FR12*GL11<S> GL12© IS110 KA110KO11X LAUX MA 11S MillA MI21V SHU< SH21> SH31El S0111 TA11-YOU

F ig . 279: Au-197 (p, 37p65n) Tc-96

-

--

-

i

B

B B A

ms

A

r A *: *

11

r

- .

. 1ft•

(

t

i

F i •

X ci

p;

i

I

II—ff—i

I

B H 'I

\

r

i i

*

B g B

$ $ * * i

t *i

i

1 < a ! !

i

i

i

i i <

< X * * x .B B

B B •

. 1* .3 I f J *

g p •si i

i

J

r •H

. yi <

T

I

1

( X

T

s

i

i

A

X X

It

<s

1

I

X

\

i

\ A

J<

1

13

i

i i

11

ii

A j

-

-

-

TT

TT

:

-

i i i

D expO BE 11tX BL11OBL12BL13BL21

X BL23+ CM11• X CM12

CM13A CS11* FLUFCM1FR11

• FR12GL11GL12IS11

O KA110 KOI 1X LA11X MA11H MillA MI21V SHU< SH21> SH31IS SOUTA11YOU

10 + 2 10 + 3 10 + 4

ENERGY [MeV]241

Page 243: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 1

n

o

CJLLJGO

GOGO

CJ

10 - I

10"3

10 + 1

10 + 0

10"

Oi—i

I - A n - 1CJLLJLO

GOLO

CJ

10 - 3

F i g . 280: Au- 197 (p, 36p59n) Ru- 103i i i r i I F i i i i i i i i i i i l i i i n -

D expO BE 11M BL11O BL12v BL13^ BL21X BL23+ CM11X CM12S CM13A CS11* FLU£ FO11m FR11• FR12* 6L11® GL12@ IS11O KA110 K011X LA11X MA11S MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

i i i i i i

Fig. 281: Au-197 (p, 35p61n) Rh-102I I

XI I I I I

X X

<

A B B

ff) ffl *

If

< t

- <a<i

•OM

,Ov

X+X

s.A

*

LH

expBE 11BL11BLl2BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR12GL116L12IS11KAUKO11LA11MA 11M i l lMI21SHUSH21SH31SOUTAUYOU

10 + 2 10ENERGY

242

+ 3

[MeV]10 + 4

Page 244: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

§ 10 +

o

CJLJCO

COCO

CJ

1 0 + 0

10 - 2

F i g . 282: Au-197 (p, 33p60n) Ag-105I l I l l I I T r

, . !

h

A AA A A A i.

* * x x x w x .

* J t ' t

li .

X XXX* X X *• • J X

8 !

•a° D°n

n

•* I J

j i i

D expOBE11M BL11OBL12v BL13^ BL21X BL23+ CM11X CM125 CM13A CS11• FLU6 FO11t§] FR11• FR12* GL11® GL12© IS110 KA110KD11)K LA11K MA 11IS MillA MI21V SHU< SH21> SH31BS0111 TAU- Y O U

10 + 1

n

o

uLJJcnCOLO

CJ

10 - 3

F i g . 283: Au-197 (p, 30p55n) Sn-113i i i i i x '

!i . .

A

I

«:{ Jt • t

i r T l -

I I I I I I

10 + 2 10 +3

ENERGY [MeV]

D expO BE 11,M BL11OBL12v BL13^ BL21X BL23+ CM 11X CM125 CM13A CSU* FLU6 F011Is] FRU• FR12* G L 1 1«> GL12@ IS11O KA110 KO11X LAUHMA11H M i l lA MI21V SHU< SH21> SH31IE) SOU1 TAU- YOU

10 + 4

243

Page 245: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 1

9 1 0 + 0

LLJCO

COCO

CJ

10 - 3

F i g . 284: Au-197 (p, 28p49n) Te-12 1I I I I

*

: * •**i * I f

I I A A A I A

DO < < D

i> a ii

D expq o BE 11

BLU- OBL12

v BL13^ BL21X BL23+ CM 11X CM12S CM13A CS11* FLUA FO11@ FRU• FR12*• GL11<S> G L 1 2

© I S UO KAU12 KO11

LA11X MA11S M i l lA MI21V SHU< SH21> SH31

SOUTA11YOU

I

10 + 2

n

o

CJLLJGO

COCOOdCJ

10 + 1

10 + o

10 - l

10 - 2

F i g . 285: Au-197 (p, 26p45n) Xe-127

11 ;

. (I 44> i

\ i i r \ i T i i r

M M

i.i

• * * - 1 » ° I. i ! 4 I

x x ¥̂

' ' ' : i l l - 1

• 1 < J

10 + 2 10 +3

ENERGY [MeV]

i i i i

A

D expOBE11M BLUOBL12BL13BL21

X BL23+ CM 11X CM12CM13CS11FLUFOUFR11FR12GLUGL12ISU

O KA110 KO11X LA11X MA 11S MillA MI21SHU

< SH21> SH31SOUTA11YOU

10 + 4

244

Page 246: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 2 Fig. 286: Au-197 (p, 24p43n) Ba-131

oI—II—uLJCO

COCO

O

10 +0

10 - 2

I I I I 1 I I I

X X

\ \

f i> :!

II II

i I •• ;|

I ,

II(I

i i i i i i i r =

Q f l 2 i e, Ai

I 4

« • « *

• expO BE 11XJ BL11O BL12v BL13BL21BL23CM11CM12

•g CM13A CSU* FLUA F011

m FRU• FR12A GLU• GL12@ IS11O KAU0 K011X LA11X MA 11IS MillA MI21V SHU< SH21> SH31H SOU1 TA11- YOU

10

o

LUCO

CO10O

crCJ

+ 2 F i g . 287: Au-197 (p, 24p41n) Ba- 133

10

10 - 2

1 1

1

111

\ iH

_ A

1 1

1

1

1 1 1

II

H

A

1

1

X

•A

S

I

A

1

1

A

1

1

a

9

i

i

A

1

1 1

1

1 II

>

1 1

1

1 1

IJ 1

1

1

-

1 1

1

1

1 1 1

II

• expO BE 11M BL11O BL12v BL13^ BL21BL23CM 11CM12CM13CSUFLU

A FOU@ FRU• FR12*• GLU<§> GL12© IS11O KAU0 K011X LAUK MA 11IS MillA MI21V SHU< SH21> SH3112 SOU1 TAU- YOU

10 + 3

ENERGY [MeV]245

10 + 4

Page 247: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2 Fig. 288: Au-197 (p, 22p37n) Ce-139

10 +

o

CJLLJCO

COCO

CJ

10 + o _

10-2

- I l l

-

—-

_

I

n

X J

1 1 1 1 1 1, -

J

1 1

-1

i • } •

X 1

{•

AA

1

1 I l l l

8 9 o "S T !

•$ ? A ^ A

* * A * x x>T 1 A S *1

(

1

, 1

1 X

1l di jA T •1

1

<

I l l l

1 I

I 11

1

If ? =

, l f f I :< " x * " x x

*

1 I

I1

III

-

Ill 11 1

_L_L

i i i i i i i

• expO BE 11M BL11OBL12v BL13A BL21X BL23+ CM11X CM12S CM13A CS11* FLU£> F011HI FR11• FR12A GL11<®> GL12© ISMO KA110 K011X LA11X MA11S MillA MI21V SH11< SH21> SH31E SOU1 TA11- YOU

10+ 2

o

LLJCO

COCO

CJ

10-2

Fig. 289: Au-197 (p, 19p36n) Pm-143 a1 I I I I P3 Oi i i i i i

El BA H

O

A1 1 I I I I I I J I L

10 + 2 10ENERGY

246

+ 3

[MeV]

expBE11BL11BL12BL13BL21BL23CM 11CM12CM13CSUFLUFO11FR11FR126L116L12IS11KA11K011LA11MA11MillMI21SHUSH21SH31SOUTAUYOU

10 + 4

Page 248: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10

o

CJLLJCO

COCO

CJ

+ 2

10 + 0

10 - 2

Fig. 290: Au- 197 (p, 17p36n) Eu- 145I I I ¥ [ l i l t

II 1 1

1

y

(

i

' I

)

H!

i \ i i i i r ^

8 1 11 1 » •

T 1 ? • ii i

XX XX~ *X « * j

I I I I

X

+

• expOBE11N BL11OBL12^ BL13^ BL21BL23CM 11

JX CM 12S CM13A CSU* FLUA FO11© FHU• FR12A G L I I^ GL12© IS110 KA110KO11X LA11X MA 11S MillA MI21V SHU< SH21> SH31B SOU1 TA11- YOU

10

o

OLLJCO

COCO

CJ

+ 2

1 0 +

10 + o

10 - 2

Fig. 291: Au-197 (p, 17p34n) Eu-147I I 1 I i i I I I I 1 I 1 I I 1 I -

I *

. * * n •

* : i j f i * i

X >"•$«? x x *

A '

D expO BE 11M BL11OBL12v BL13^ BL21X BL23+ CM11X CM12S CM13A CS11* FLUA F011© FR11• FR12^ GL11<§> GL12© IS11O KA110 KO11X LA11X MAUS MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

10 + 2 10ENERGY

+ 3

[MeV]10

247

Page 249: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 1

o

CJLUCO

COCO

CJ

10 - 1 _

10 - 3

F ]-g 292z

_

_-

I-

1 1 1 1 1 1

i

i i1

i

I

c

A "t*i

i i

A

1

Au--1971 i

B

' I§«

1

1 i

1

I

i 1 i i

i i

H _T «

r o o

\ * *

'Q '

a* !

)

1

I I

(P , 1I

1 I T(D• *

*

<

3 [

1

" A X

1 1 -1-

7p33n)i

< . 5

i i )

i

AX

1—1

X

XX X )

X X

1 1 1 1

Eu

>

e x

i i

- 1

[ 3I .a "

(

><

X

i

4 8i i i i -

-

i -

' A A ^

(

-

-

-

1 1

1 1

II

1 1 1 1

D expO BE 11

BL11O BL12

BL13BL21

X BL23CM11CM12CM13CS11FL11F011FR11FR12GL11GL12IS11

0 KA1121 KOI 1

LA11X MA 11

MillA MI21V SH11< SH21> SH31El SOU1 TA11- YOU

10+ 2

o

CJLUCO

COCO

CJ

10+ 0

10-2

Fig. 293: Au-197 (p, 17p32n) Eu-149\ i r i i i i i \

r

i i i i i i

I f

i X

I I I 1

g

•< J c * *

*

A A

J I I I I I I I

10 + 2 10 +3

ENERGY [MeV]10

• expO BE 11X BL11OBL12v BL13^ BL21X BL23+ CM 11X CM12S CM13A CS11* FLU£> F011@ FR11• FR12^ GL114> GL12© IS110 KA110 K011X LA11X MA 11H MillA MI21V SHU< SH21> SH31H SOU1 TA11- YOU

+ 4

248

Page 250: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2 F i g . 294: Au-197 (p, 16p36n) Gd-146

•g

oi—i

h -CJLLJLO

LOLO

CJ

+0

10-2

I I 1 I I I I I i I I I I i i r ^

A<

I < £

* i *-i

. 11

1 1 I I

I x Si

i i i i i i i i i i

HI

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR12GLUGL12IS11KA11K011LA11MA 11MillMI21SHUSH21SH31SOUTA11YOU

10

o

CJLULO

LOLO

CLCJ

+2F i g . 295: Au-197 (p, 16p35n) Gd-147

1 0 + 1 -

1 0 + o _

1 U

10-2

TT

TT

TT

-

_--—

--

1 11i 1'I

1

Ii

f 'I

1

c

\

1

L f. I

1 1

i !•

ii

<

i

i

*

cI

<

1

1 1 1

• ••

£ z ~T

M

•i 1 1

i

< • #

* * * i!B - * x *

x ~ - _

f * § $I

i

<

A*

xf >

1

1

1

)

1

<

A

4i

<f 1

"

1

1

f

«t 1

T

f

I

I I

* A

*

*

f

1 1

1 M

ill

-

A 5

TT

T

—-

-

-

1 1

1

1

10 + 2 10ENERGY

+3

[MeV]

- V

• expO BE11M BL11OBL12v BL13^ BL21X BL23+ CM 11X CM12S CM13A CS11* FLU£> F011a FRII• FR12A 6L11<S> GL12© IS11O KA110 K011X LA11X MA11S MillA MI21SHU

< SH21> SH3113 SOU1 TAU

10

- YOU

+ 4

249

Page 251: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10

o

CJUJCO

+ 2

10 +

10 + o

COCOo ,or 1CJ

10 - 2

F i g . 296: A u - 197 (p, 16p33n) Gd- 149l l l I l I I

T T / I I I I I I I I

• expO BE11M BL11OBL12v BL13. BL21X BL23+ CM 11kX CM12S CM13A CS11* FLUi F011E FR11• FR12• 6 L 1 1GL12IS11

O KA110 KO11X LA11X MA11H MillA MI21SH11

< SH21> SH31SOUTAllYOU

10

n

CJL±Jco

COCO

oCJ

+ 2

10

10 + 0

10 - l

10 - 2

F i g . 297: Au-197 (p, 16p31n) Gd-151I i I i I \ I [ \ I I i r -

+ i _4s A

A i,< - - * « AS 8 A - S IrO A „ O A I I

, X *X X x

10 + 2 10ENERGY

+ 3

[MeV]

• expO BE11M BL11O BL12v BL13^ BL21X BL23+ CM11X CM12S CM13A CS11* FLU£> F011HI FR11• FR12* GL11<S> GL12© IS11O KA110 K011X LA11X MA11S MillA MI21V SH11<3 SH21> SH31El SOU1 TAll- YOU

10 + 4

250

Page 252: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

•§ i o +

o

CJLUCO

COCO

ccCJ

10 + 0

10 - 2

F i g . 298: Au-197 (p, 16p29n) Gd-153I I I I 1 T 1 I I i i i i i r ^

•f

* *i

n u n

I!t-

X X

I f$

X * X

• expO BE 11MBL11OBL12v BL13^ BL21X BL23+ CMUX CM 12S CM13A CS11* FLU£, FD110 FRU• FR12A GLU<®> G L 1 2@ IS110 KA1113 KOI 1X LA11X MA 11S MillA MI21V SHU< SH21> SH31El SOU1 TAU- YOU

10

o

CJL±JCO

COCOO

CJ

+2 F ig . 299: Au-197 (p, 15p34n) Tb-149

10 +

1 0 + o

10 - 2

i i i i i i i r i i

< II I *• •*

. i li T

*k4c

JU(1

o

D =

D expO BE 11tO BL11O BL12v BL13A BL21X BL23+ CMUX CM12S CM13A CS11• FLUA F011@] FR11• FR12A GL11<$- GL12® IS11O KA110 K011X LA11X MAUS MillA MI21V SHU< SH21> SH31B SOU1 TAU- YOU

J I I I I I I I

10 + 2 10 + 3 10 + 4

ENERGY [MeV]251

Page 253: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

o

CJLLJ

CO

coCO

CJ

10 - 2

F

-

_

1 M

ill

-

Illl

--

ig-i

i

i

i

300*I

i

\

i

X (

1

T

i

ii

1

A u -i i

*

I|Ib

f3 T

t>

1 1

197I 1 I

* * •

5*

Vl*

i i i

(P.

i—

! •

! X

(

ii

i

*

X

f

5p32n)I i

O

:;: ° S

$ $ ° x x l

- i

i i %

i

T b -i

X I

1

151

it9

f\

i

1

11

11

1

i i

J_I i.iii

_

U_L

-

i l l l

r V

D expOBE11IX BLUOBL12v BL13^ BL21BL23CM 11CM12CM13CS11FLU

& FOU0FR11• FR12AGLU<$> G L 1 2© ISUO KAU0 K011X LA 11X MA11S MillA MI21SHU

< SH21> SH31E SOU1 TAU- YOU

10

CD

CJLJ00

0000

oCJ

+ 2

10 + 1 r

10 + 0 _

10 -1 _

10 - 2

F

i Ii1

11

1

-

-

--

Mill

---

i c 30i

i

i

0 '

1

1

i

<

i

1

i

rT /

>

i

A u -1 i

4$ I

T • ^

• 1*Arn

i i

\ X

i

X

>

f

>

1 1

197i i i

A

<

X

>

1 1 1

(p, 15p30n1 i

i ~~X X * x K x

XX

f

1 1

)1

8

XK

|

T b -i

I

$

X X

It

1

153I 1 1 I I -

I !x $ :

E-

--

Mil

l

--

-

1 I l l l

10 + 2 10 +3

ENERGY [MeV]

• exp0 BE11X BL11OBL12^ BL13A. BL21X BL23+ CM 11X CM12S CM13A CS11* FL11A F011® FR11• FR12-*• G L 1 1<§> GL12© IS11O KA110 K011X LA11X MA11S MillA MI21V SHU< SH21> SH31E SOU1 TAU- YOU

10 + 4

252

Page 254: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10

o

CJLLJCO

COCO

oDCCJ

+ 2 Fig. 302: Au- 197 (p, 15p28n) Tb- 155

10+ 0

10-2

i i i f i i

H

_ A

•H 6 H

DA A

• „

n

ano

o

XA 1 +

X

expBE 11BLllBL12BL13BL21BL23CM11CM12CM13CS11FLUF011FR11FR126L11GL12IS11KA11K011LA11MA 11MillMI21SHUSH21SH31SOUTA11YOU

10

n

o

uUJCO

+ 2

10

COCO

a: 1 uCJ

10'

Fig. 303: Au-197 (p, 12p26n) En-160

10 + 1 r

+ o _

1U.1

-

11

1 1

1 1

Min

i i

A

i

i

A

A

1

1

A

i

1

I i

HUP- A

1

1t ,

1 '

•A

S

9

i i

i i

A

DDA

i"

1

BA A

K

1

1

A A

I 1

$

1

1 1 1 1 1 1 -

L A A A "

1 M

ill

1

i m

il

l

-

i I I I I

10 + 2 10ENERGY

+ 3

expBE 11BLllBL12BL13BL21BL23CM 11CM12CM 13CS11FL11F011FR11FR12GL11GL12IS11KA11KO11LA11MA 11MillMI21SH11SH21SH31SOUTA11YOU

[MeV]10 + 4

253

Page 255: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 2 Fig. 304: Au- 197 (p, 1 Ip22n) Tm- 165

10

o

LLJLO

COCO

CJ

10-2

TTTT

i1

Mil

l

-—-A

1 II

llll

A

T 1

1

*(

t ,

! '

» t)

&

k

<A

1 <

<

j

X

1

I

)

<

X

f

1

1

1

i

1

i i

« ;B >

{

1 1

» i

>

i

i

i

& S; A

i

i

A A W

1

A

I

i

A

<

* A

i

i

A

<

!i

i

i

A

1

TT

TT

A t

II 1 1 1

1

_

-

z

TT

T"

-

ll

ll

-

I I I

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUFO11FR11FR12GL11GL12IS11KA11K011LA11MA 11MillMI21SHUSH21SH31SOUTA11YOU

10+ 2

o

10+ 0 _

LO

LOLO

(X 1

u

10-2

F

i m

i

-

-—

nil

-

Illl

ll

ll

_

i

_

i gi

8

A•

X

1

305:

-

fTi

I !

* Q

- « ?• I A

$ •I D *A

<

X

A u -l i

•gDS

°A *

§ I

X

1 1

197I I 1

;

;

$ $ iX

1

1 1 1

(p.

[

i

9

D

*

lp20

i A<]

m °f f |

n

A

g

1

1

A

X

*

i

T m-

A

I

i

i

• i 67i i i

A A

f

i i

i i -

-

A •;

_

-

TT

TT

_

ll

ll

-

I I

10 + 2 10ENERGY

+ 3

[MeV]

expBEUBLUBL12BL13BL21BL23CM11CM12CM13CS11FLUFOUFR11FR12GL11GL12ISUKA11K011LA11MA 11MillMI21SHUSH21SH31SOUTAUYOU

10 + 4

254

Page 256: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

f 10 +

o

CJUJ

10 + 0

tn

gio-1

CJ

F i g . 306: Au-197 (p, 1 lp 19n) Tm-168

10 - 2

I I 1 I I I I i i i i r ^

* »c

I I I I

DO

Ov

X+XSA

*

IS)

OElXXSA.V<>ElI

expBE11BL11BL12BL13BL21BL23CM11CM12CM13CS11FL11F011FR11FR126L11GL12IS11KA11K011LA11MA 11MillMI21SHUSH21SH31SOUTA11YOU

i i i i i i i

10+2 F i g . 307: Au-197 (p, 10p22n) Yb-166

£ 10 + 1

o

CJLLJ

10+ o

enif)

CJ

10-2

\ i i i i i i r

.m

i i i i i i i r ^

• c! i S*•

A ^ A

* * * * * *

A i ,

i i i i J I I I I I I

10 + 2 10 +3

ENERGY [MeV]255

10

D expO BE 11M BL11OBL12v BL13^ BL21X BL23+ CM 11X CM12S CM13A CS11* FLUA F011ta FRII• FR12A. 6L11<§• GL12© ISUO KA110 K011X LA11X MA 11S MillA MI21V SHU< SH21t> SH31IS! S O U1 TA11= YOU

+ 4

Page 257: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 2 Fig. 308: Au-197 (p, lOp 19n) Yb-169

f 10 +

o

CJLUCO

COCO

CJ

10+ l

10-2

I l l I I I I \ I I I i i -

A A A A A

•oo

o0

X

sAV<>

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUFO11FR11FR12GL116L12IS11KA11KO11LA11MA 11MillMI21SHUSH21SH31SDHTA11YOU

10

nE

o

CJL±JCO

COCOocrCJ

+ 2

1 0 +

10 + o

10 - l

10 - 2

F i g . 309: Au- 197 (p, 9p20n) L u - 169i i i i i i i i r i i i i i i i ~

oo -

• • ^4 - * * D X

* ID < ^

A X

A A

<

i

* nA < >

< • •

# # } # t ! *•

D expO BE 11M BL11OBL12v BL13^ BL21X BL23

f+ CM11X CM12S CM13A CS11* FLUCh F011a FRII• FR12*. GL11•$> 6L12© IS11O KA110 K011X LA 11X MA11S MillA MI21SHUSH21SH31SOUTAUYOU

V<>ElI

10 + 2 10ENERGY

+3

[MeV]10 + 4

256

Page 258: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

10 + 2

o

CJLLJCO

inen

CJ

10 + 1

10 - l

F i g . 310: Au- 197 (p, 9p 19n) L u - 170i i T i i i i i

- <

\ i i i r i r

2 * m • - « is *?St X X

<• I D

I Lj > *

A

D expR O BE 11

BL11OBL12BL13BL21

X BL23CM11CM12CM13CS11FLUFOUFRUFR12GL11GL12IS11

0 KA1121 KOI 1X LAUK MAUS MillA MI21V SHU<3 SH21> SH31E SOU1 TAU- YOU

i i i i

10 + 2

i o +

o

CJLUen

COenoccCJ

10 + 0

- i

10 - 2

F i g . 311: Au-197 (p, 9p 18n) Lu- 171\ r r i i i i i T i \ i i i -

• • : !

if It

A A

D

i S 1w 0

: *xx» *

Lia

iX X

• exp0 BE 11IX BLUOBL12v BL13^ BL21X BL23+ CM11X CM125 CM13A CS11* FLU6 F01113 FR11• FR12*6L11«> GL12® IS11O KA110 K011X LAUX MA 11S MillA MI21V SHU< SH21> SH31H SOU1 TAU- YOU

J I I I I I J I I I I I I I

10 + 2 10 +3

ENERGY [MeV]

257

10 + 4

Page 259: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

1 0 + 1 -

o

CJLUCO

COCO

CJ

10 + 0 _

10 - 2

Fig— iM

M

-

: B

$-

r -I: •-_ *—

i

)

i

3

0

D

<

A

12:i

in

<

j

i

i

9

t

(51

5

i

X

A

A u -1

li ia

X

A

1 1

197I i i

g < <

4 B T

1 1

1 1

(P.

r ^t43 &Ds 8

t X

A

9p

D

n; 9

Ixfx

A

16n)

° ^

*

J A

LuI

isI

*i *

A

i

-173I i i i -

-

< TT

TT

lie-

i

TT

T

-

A A ^ A ,-rrrr TT

T

_

I I i I I I

D expO BEUXI BLUO BL12v BL13^ BL21X BL23+ CM11X CM12S CM13A CSU* FLUA F01113 FR11• FR12A G L I I<§> GL12© IS11O KA110 K011X LA11K MA 11H M i l lA MI21

S H U< SH21> SH31El S O U1 TAU- YOU

- V

10

o

CJLUCO

COCO

CJ

+ 2

1 0 +

1 0

10 - 2

F i g . 313: Au-197 (p, 8p lBn) Hf- 172

+ o _

A , ,

o o o •* s

A -

1 ) .o

I I I I

10 + 2 10ENERGY

+ 3

[MeV]10

• expO BE 11M BL11O BL12v BL13^ BL21BL23CMUCM12CM13CSUFLU

d FOU@ FR11• FR12A 6LU<S> G L 1 2© ISU0 KA110 K011X LA11X MA 11N MillA MI21V SHU< SH21> SH31El SOU1 TA11

- Y O U

+ 4

258

Page 260: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10

o

CJLLJ

enenen

CJ

+ 2

1 0 +

1 0 + 0

10 - 2

F i g . 314: Au-197 (p, 8p 17n) Hf - 173I l l l I I 1 1 1 I I I -

o o

s

1 * ***** * * i

<

^ #

• expO BE 11IX BL11OBL12v BL13^ BL21X BL23+ CM 11X CM12S CM13A OS 11* FLU£, F0110 FR11• FR12A GL11<§> GL12© IS11O KA110 K011X LA11X MA11SI MillA MI21V SH11< SH21t> SH31El SOU1 TA11- YOU

10

o

CJL±J

enCOenoCLCJ

+ 3

10 + 2

10 + o

10 - l

F i g . 315: Au-197 (p, 8p 15n) Hf - 175i i 1 i r i I i i

10 + 1 r

i i i r i i r i -

I I L_L

10 + 2 10ENERGY

+3

[MeV]

• expO BE 11M BL11O BL12v BL13^ BL21X BL23+ CM11

sA*

CM12CM13CS11FLUF011FR11FR12GL11GL12IS11KA11K011

X LA11X MA 11S MillA MI21V SH11< SH21> SH31El SOUI TA11= YOU

o0

_L_L

10 + 4

259

Page 261: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 1 F i g . 316: Au- 197 (p, 7p9n) Ta- 182

n

o

CJLJCO

CO

co

CJ

10 - 3

I I I f I I I T I T i i i i

D

mV * *

H 9

I I [ I i I j | i i l l

D expO BE 11M BL11OBL12^ BL13^ BL21X BL23+ CM 11X CM12S CM13A CS11* F L U£> F011@ FRU• FR12A GL11<®> GL12© IS11O K A U0 K011X LA 11M MA11H M i l lA MI21V SHU< SH210 SH31H SOU1 TAU- YOU

10 + 2

n

o

oLLJ

CO

COCO

oCLU

10

10

10

10 - 2

F i g . 317: Au-197 (p, 6p 14n) W-178

+ 1 _

- 1 _

E

:i

ii11

M

i i

i

Z A

Z f )

1

> 11

1

>

1

i

A

A

S

f

I

I

K

M

1

1 |

D

1 1

1 1

D

w@

H

1 1

1 1

~ M

| |

X

s

1 1

X

* I

i i

i i

A £

1 1

111

A A ,

1 1

1 1

1 1

1 II

1 1

1 1

1 1I

I1

1 1

1 1

II

1

1 1 1 1

+ 0 _ _

•oM

ov

- X

10 + 2 10ENERGY

+ 3

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FRUFR126L11GL12IS11KA11KOULA11MA11M i l lMI21SHUSH21SH31SOUTA11YOU

[MeV]10 + 4

260

Page 262: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10

o

CJLLJCO

+ 3

§ 1 0 + 2

1 0 + '

COCO

g l O + o

CJ

10 - l

F i 318: Au-197 (p, 5pl2n) Re-181i \ I I I T ^ I I I I I I I F ^

• • • •

- O

— *

3 ••

X+XsA

• expO BE 11M BLUOBL12v BL13BL21BL23CM 11CM12CM13CS11FLU

& F011Isl FR11• • FR12^ 6LU<§> GL12© IS110 KA1121 K011X LA11X MA 11S MillA MI21V SHU< SH21> SH31H SOU1 TAU- YOU

10

o

CJLLJ

CO

gCJ

+2 F ig . 319: Au-197 (p, 5p 1 In) Re-182

1 0 +

10 + o

10 - 2

i i i i i i I i r

- f

! )!

KM

10 + 2

<>

X X X

» ~ o -

ii m

_i I

" * X x w * « X X ) t K X * X

K - - -- o

* 1 i i Ofi * i *

o6

I 1I f

i i i i i i j i

10 + 3

ENERGY [MeV]261

D e x pO BE 11txj BL11O BL12

• BL13- BL21X BL23+ CMUX CM122 CM13A CS11* FLUi FOUI FR11• FR12• GLU• GL12i IS11O KAU0 KOULAU

X MA 11ta M I UA MI21V SHU< SH21> SH318 SOU1 TA11- YOU

i i i i i i

10 + 4

Page 263: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

n

o

CJLJCO

coCOoDCu

10 + 2

10

10 + 0

10 "1

F i g . 320: A u - 197 (p, 5p lOn) Re - 183

+ 1 '!_

i i i i i i

[I A

M 0

X * X

A A

D expO BE 11M BL11O BL12v BL13• BL21X BL23+ CM11X CM12S CM13A CS11* FLU£> F011(Hi FR11' FR12. GL11• GL12i IS11

O KA110 K011X LA11MA11

H MillA MI21V SHU< SH21> SH31SOUTAUYOU

10+3 F i g . 3 2 1 : A u - 1 9 7 (p , 4 p 1 2 n ) O s - 1 8 2

5 1 0 + 2

o

10 -1

g i o + o H z

CJ

I I I I I I I

* X *

•> E 0 B

J I I I I I I L

10 + 2 10 +3

ENERGY [MeV]

D expO BE 11M BL11O BL12v BL13^ BL21X BL23+ CM11X CM125 CM13A CSU* FL116 F011HI FR11• FR12A GL11® GL12® IS110 KA110 KOUX LA11X MA 11S MillA MI21V SH11< SH21> SH31El SOU1 TA11- YOU

10 + 4

262

Page 264: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

10 + 2

o

LLJ

co

a:o 1 f l t oa: l uCJ

10 - 1

F i g . 322: Au- 197 (p, 4p9n) Os- 185i i i i n i i I I I I T I i i i TIn^

' 2 Mf

A -i

D expO BE 11IX BL11OBL12v BL13^ BL21X BL23+ CM 11X CM125 CM13A CS11* FLU6 F011HI FR11• FR12A GL11<S> GL12@ IS11O KA110 KD11X LA11X MA11S MillA MI21V SHU< SH21> SH31El SOU1 TA11

- YOU

10 + 2

10 + 1

a

CJLJCO

COCO

oCJ

10 + 0

10 - l

10 - 2

F i g . 323: Au- 197 (p, 4p3n) Os- 191

I

< <

'L 1

i l l i r i t i r i i i i i r -

i !'

? ? i I * * ' *M l i f M !*s:"

I I I 1 I I

O0XXsAV

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR12GLUGL12IS11KA11KOULA11MA11MillMI21SHUSH21SH31SOUTA11YOU

J I I I I I 1

10 + 2 10ENERGY

263

+3

[MeV]10 + 4

Page 265: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

n 10 + 2

O

CJLLJCO

COCOodCJ

10 + 1

10 + 0

10 - l

F i g . 324: A u - 197 (p, 3p lOn) I n - 185I I I I

- o

i i i i i I r

A A A " ,

D expO BE 11M BL11OBL12v BL13^ BL21X BL23+ CM11X CM12S CM13A CS11* FLUF011FR11

• FR12*GL113> GL12® IS11OKA110 K011X LA11X MAUS MillA MI21V SHU< SH21> SH31IS SOU1 TA11- YOU

10 +3

9 1 0 + 2

oi—if— /i n + 1CJL±JCO

10

COCO

g i o + o

CJ

10 - l

Fig . 325: Au-197 (p, 3p9n) In-186i i i i i i

•rl nx * *

X x X K X * * " A A

> r •

•it

• expO BE11XI BL11OBL12v BL13A BL21X BL23+ CM 11

: CM12! CM13

A CS11* F L Ui F011I FR11• FR12• GLU• GL12) ISU0 KA110 KO11X LA11X MA11S MillA MI21V SHU< SH21> SH31B SOU1 TA11- YOU

,1 I I L_J I I I

10 + 1 10 + 2

ENERGY264

10[MeV]

+ 3 10 + 4

Page 266: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

10 +2

o

CJLJJCO

10 + '

enCO

§ 1 0 + 0

CJ

10"1

1 0 + 3

10 + 2

o

CO

COGO

g l O + o

CJ

10 - l

F ig . 326: Au-197 (p, 3p8n) In-187i r i T \ r i n \ I I I 1 I I F T i i i i i n -

A A T

A •H

<•

0

O0

XHV

i i i i I ^ I i i i i i i i i i i i i i i

Fig. 327: Au-197 (p. 3p7n) Ir-188I I I I \ I I M i i i r l r i i \ i r 1 i i i -

A H

i i i i i

10 + 1 10 +2 10 +3

ENERGY [MeV]

265

10

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FR11FR12GL11GL12IS11KA11K011LA11MA11MillMI21SHUSH21SH31SOUTA11YOU

• expO BE 11X BL11OBL12v BL13^ BL21X BL23+ CM 11X CM125 CM13A CS11* FLU6 F011(Hi FR11• FR12^ GL11<§> GL12@ IS11O KA110 K011X LA11K MA11S MillA MI21V SH11< SH21> SH31BS0111 TA11~ YOU

+ 4

Page 267: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

10 + 2

o

CJLxJCO

10 + 1

COCO

g i o + o

1 0 " 1

1 0 + 2

1 0 +

O

CJUJCO

10 + o

COCO

gio-1

CJ

10 - 2

F i g . 328: Au-197 (p, 3p6n) In-189I I I i I T I I i i i i n -

x *

A A A A _ i .

i i i i i i i i i i

F i g . 329: Au-197 (p, 3p5n) In-190i I 1 i i r i i i r T i i r i T I I

A A ~

! ! l l

1 1 1

D expO BE 11N BL11OBL12v BL13^ BL21X BL23+ CM 11X CM12S CM13A CS11* FL11£ FO11B FR11• FR12A. 6L11<8> GL12© IS11O KA11

0 K011X LA11K MA 11S MillA MI21V SHU< SH21> SH3112 SOU1 TA11- YOU

D expO BE11XJ BLllOBL12v BL13^ BL21X BL23+ CM 11X CM12S CM13A CS11* FLU£1 F0110 FR11• FR12A GL113> GL12© IS110 KA110 K011X LA11X MA 11H Mi l lA MI21V SH11< SH21> SH3113 SOU1 TA11- YOU

I,. I I I I I I I I I I I I

10 10 +2 10 +3

ENERGY [MeV]10 +4

266

Page 268: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 2

o

10 +0

LU

COcooa:u

10 "2

F i g . 330: Au- 197 (p, 3p3n) I n - 192 •i i i i I I I TT-

i i

A A A A A A A A A ^ . ̂

O

o0

X

sAV<>

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUF011FR11FR126L116L12IS11KA11K011LA11MA 11MillMI21SHUSH21SH31SOUTA11YOU

I I I I I I

10 +3

10 +2

o

CJLUCO

COCO

CJ

1 0 +

10 - l

F i g . 331: Au- 197 (p, 2p8n) P t - 188\ I I i 1 I I I I 7 H I I I I I I 1 I I I I 1 I I I I -

i i i

10 + 1 10 +2 10 +3

ENERGY [MeV]10

• expO BE 1100 BL11OBL12v BL13A BL21X BL23+ CM 11X CM125 CM13A CS11* FLU6 F0110 F R U• FR12* G L i l-§> GL12© I S 1 1Q KA110 K011X LA11K MA 11IS M i l lA MI21V S H U< SH21> SH31B S O U1 TA11

- YOU

+ 4

267

Page 269: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 3

10 + 2

o

CJLLJ

10 + 1

COCO

° 1 0 + 0

CJ

10"1

10+3

£ 10+2

o

LUin

10+ 1

COCO

g l O + o

u

10"1

F i g . 332: Au-197 (p, 2p7n) Pt-189I I I I i I I I I I l l M l l i i r i i n -

A A i .

Ko o

D expO BE 11M BL11O BL12v BL13^ BL21X BL23+ CM11X CM12S CM13A CS11* FLUF011FR11

• FR12A 6L11® GL12@ IS110 KA11ia KOIIX LA11X MA11S MillA MI21V SH11< SH21> SH3112 SOU1 TA11- YOU

i i i i i i

Fig. 333: Au-197 (p, 2p5n) Pt-191i i i i 1 1 1 i i i i i i

°O *HO m •I 1

D expO BE 11I BL11OBL12v BL13• BL21X BL23+ CM11X CM12S CM13A CS11* FLU,A F011E FR11• FR12A GLU- GL12) ISMO KA110 K011X LA11i MAMS MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

I L P I I I I I I i i i i i i j i i i i i i i

10 10 +2 10 +3

ENERGY [MeV]10 + 4

268

Page 270: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 3

-§ i o + 2

oi—ii—oCO

10

COCO

g i o + o

CJ

Fig. 334: Au- 197 (p, p4n) Au- 193

+ 1 _

10-1

- *

• expO BE 11X BL11O BL12v BL13^ BL21

-\ X BL23+ CM11X CM12S CM13A CS11FLU

A F011@ FR11• FR12^ GL11<§• GL12© IS11O KA1121 KOI 1X LA11X MA 11S MillA MI21V SHU< SH21> SH31E SOUTA11YOUI

10+3

£ 1 0 + 2

o

10 -l

Fig . 335: Au- 197 (p, p3n) Au-194

u ! 0 + 1 rL±JCO

CO

§10*° U

CJ

10

I I 1 I 1 I I I I I f I I I i I I r i I T T I 1 I

i a

I*I Tl I B I I I I I i i i i i i

• expO BE 11BLU

OBL12v BL13BL21

X BL23+ CM 11X CM12CM13

A CS11* FLUF011FR11FR12

.*. GL11GL12IS11

O KA110 K011

LA11MA 11

S MillA MI21V SH11<3 SH21> SH31El SOU1 TA11- YOU

j i i i i i i i

10 + 2 10 + 3 10 + 4

ENERGY [MeV]269

Page 271: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10F i g . 336: Au-197 (p, p2n) Au-195

10 + 3 _

o

CJLUCO

COCO

CJ

10 + 2 _

10 + o

TT

TT

TT

AF 9jSm'- *$? 1!

°0V I

0

I V

_

o0

-

- "

I m

1 1 1 1

rI

a

1 1* T

1 1 1 1

I

111

. • • • •

[~nHri

El

1

1 1 1 1 1 1 1 1

<* A

i i i i i i i

i 1

11

11

TTTT

_

-

• m E

« . , f JM

1 1

1 1

1

1 1 1 1 1 1 1 1

• expO BE 11N BLUO BL12v BL13^ BL21X BL23+ CM 11X CM12S CM13A CSU* F L UA F011!H FR11• FR12*. GL11® GL12© IS11O KA110 KOUX LA11X MAUS M i l lA MI21V SHU< SH21> SH31H SOU1 TA11

- YOU

10 + 3

n

o

CJLUCO

COCOoCLu

10 + 2

10 + 1

10 + 0

10 - 1

F i g . 337: Au-197 (p, pn) Au-196i n ~ i i I m i i i i i i i i i

I I I I 1 I I I I I I I

i i i i i i I P

10 + 1 10 + 2

ENERGY10

[MeV]

+ 3

expBE 11BL11BL12BL13BL21BL23CM 11CM12CM13CS11FLUF011FRUFR126L11GL12IS11KA11KO11LA11MA 11M i l lMI21SHUSH21SH31SOUTAUYOU

10 + 4

270

Page 272: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 + 4

10 + 3

o

CJLLJCO

COCO

CJ

10 + 2

l o + o

1 0 + 4

1 0 + 3

o

CJLLJCO

COCO

CJ

10

10 + 0

Fig.' 338: Au-197 (p, 5n) Hg- 193i i i i i i i i i i i i i i i i r i i i r

x * ** X

J [ M l I I I I I

i T o ; s * i l

j i i i 1 1 1 1

$ A A

Ji I It l I I l

• expO BE 11X BL11O BL12v BL13. BL21X BL23+ CM11X CM12S CM13A CS11* FLUF011FR11

• FR12GL11GL12IS11

0 KAU21 KO11

LA11X MAUS M i l lA MI21V SHU< SH21> SH31El SOU1 TA11

>- YOU

F ig . 339: Au-197 (p, 4n) Hg-194i i i i i I n ^

+ 2 _

,xj«xx*

I

Lr x *

B ^ CD „ A • • ! _ I

I 7 I I I I I I I j i i I I I I I I I a l < J . i

A A

I I I I

D expO BE 11X BL11OBL12v BL13^ BL21X BL23+ CM 11X CM12S CM13A CSU* FLUA F011LH FR11• FR12^ 6L11® GL12© IS11O KAU0 KOI 1X LAUX MA11S MillA MI21V SHU< SH21> SH31El SOU1 TA11- YOU

10 + 1 10 +2 10 +3

ENERGY [MeV]10

271

Page 273: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10+ 4

•°io+3 u

oI—II—CJ

en

enen

CJ

10+ 2 _

l o +o

F

11

1M

i

i

i 1

1M

M

\ « c

E

11

4• "Q 0

D

<g

7

i

g •i

11

i

340:i i i i

r

c

1 1 1 1

A u -1 1 1

<

i

I , 1

1971

nil

"fI

(P.1

si

i

3n jl i i i

l i l l

H g -i i

195

ii i

M

i i

i IIiM

i

-

i 1

11

1I

I

:

X )X

w X * X

* * *xx x

- • ! • * j r 1

< T I I

i i

i l

11

II

i A A .

1 1 1 1

expBE 11BL11BL12BL13BL21BL23CM11CM12CM13CS11FLUF011FR11FR12GL116L12IS11KA11K011LA 11MA 11MillMI21SHUSH21SH31SOUTAUYOU

10+ 3

o

CJLJ

cnenenoDCu

10+ 2

10+ 0

Fig. 341: Au-197 (p, n) Hg-197

10 + 1 r

i i i i i i i i i

in 1 1 1

• expO BE 11M BLUOBL12v BL13^ BL21X BL23+ CM 11X CM12S CM13A CS11* FLUA F011S FR11• FR12A 6L11<S> G L 1 2© ISMO KA110 K011X LA11X MA 11S MillA MI21V SHll< SH21> SH31El SOU1 TA11= YOU

10 + 0 10ENERGY

+2

[MeV]10 + 4

272

Page 274: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

APPENDIX III

This Appendix contains the detailed description of models and codes as revealed by the answers to thequestionnaire in which this information was requested in the specifications of the exercise.

Index

1 MECC7 + EVAPF Questionnaire

2 HETC/KFA2 Questionnaire

3 HETC-3STEP Questionnaire

4 HETC/BRUYERE Questionnaire

5 CEM95 Questionnaire

6 HETC-FRG Questionnaire

7 INUCL Questionnaire

8 ISABEL-EVA Questionnaire

9 ISABEL/SMM Questionnaire

10 PACE + MSM Questionnaire

11 MSDM Questionnaire

12 CASCADE Questionnaire

13 DISCA Questionnaire

14 ALICE 92 Questionnaire

15 ALICE-IPPE Questionnaire

16 AREL Questionnaire

17 HMS-ALICE Questionnaire

18 PEQAG2 Questionnaire

19 FKK-GNASH Questionnaire

20 MINGUS Questionnaire

21 QMDRELP + SDMRELP Questionnaire

22 SPALL (modified)/YIELD Questionnaire

273

Page 275: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

1 MECC7 + EVAP_F

Code Information Questionnaire

I. General Questions:

1. Name of the code

MECC7 + EVAP_F

2. Name of the participant

G. Youinou, F. Atchison, H.U. Wenger

3. Responsible author of the code

H. W. Bertini (ORNL) for MECC7L. W. Dresner (ORNL) for EVAPF. Atchison (PSI) fission modified version of EVAP plus translation of MECC7 to VAX

4. Reference of the code

MECC, H. W. Bertini Phys. Rev. 188 (1969) 1711EVAP, L. W. Dresner ORNL-TM-196 (1962)Fission, F. Atchison paper II, Juel. Conf. 34, 17 (1980)

5. Is a manual available?

A manual for the VAX version of HET (of which MECC etc., are parts) is available.

6. What nuclear reaction models are contained?

Medium energy intra-nuclear cascadeEvaporation

Fission

7. Range of targets allowed

5<A<260

8. Range of projectiles allowed

Nucleons and charged pions

9. Incident energy regime permittedNucleons 15 < E < 3500 MeVPions 2.5 < E < 2500 MeV

II. Specific Questions:

1. How are reaction cross-sections generated in the entrance channel?

Entrance channel reaction cross-sections calculated (Serber model).

2. What nuclear density distribution is used, and how does it enter the calculation?

3-region nucleus with densities based on measurements of Hoffstadter (Rev. Mod. Phys. 28, 214(1956)). No refraction.

274

Page 276: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

3. Is the Fermi energy calculated in a local density approximation?

Yes.

4. What nuclear radius parameterization is used?

Fixed data for nucleus "target-area" (outer radius of region 3).

5. For INC models

See Bertini report (Phys. Rev. 188 (1969) 1711. No modification of the physics content has beenmade in producing the VAX version but the mass-range allowed has been extended to 260.

6. If there is a precompound phase, describe the PE model used, parameters, i.e., partial statedensities, transition rates?

No pre-equilibrium phase in the calculation.

Are clusters multiple PE decay, relativistic kinematics used?

How are angular distributions computed?

Source of inverse cross-sections?

7. What physics are used for the final de-excitation state: evaporation model, Fermi breakup?

Evaporation model as described by Dresner ORNL-TM-196 (1962) with following changes (i)velocity dependent term to coulomb barrier, (ii) fission competes with neutron emission for Z >70, (iii) Q-values based on the 1983 mass table (A. H. Wapstra and G. Audi Nucl. Phys. A432,(1985) 1).

Describe parameters used: level densities, inverse cross-sections or transmission coefficient,choice of optical model parameters if relevant (or reference to source), range of excitationsallowed, inclusive or exclusive results?

8. Is there any limit as to the number of nucleons from target for which yields may becalculated?

In principle no, but:

(i) Binding energies for each element extrapolated (where necessary) to cover range +/- 15masses from "most-stable" smoothly and used as "fixed" data. Nuclei outside this rangeduring the evaporation process use values from the Cameron mass formula. No smoothjoining of these regions attempted which leads to obviously silly end-state nucleioccasionally!

(ii) Evaporation of n, p, d, t, 3-He and 4-He only treated (evaporation terminated if nucleuscorresponds to a cluster).

(iii) Be-8 breakup automatic.

9. Any other comments on aspects not considered in the above questions?

The MECC and EVAP_F codes are the "heart" of HETC and the benchmark calculations havebeen performed using a program that links to the same OBJECT modules as used by our VAXversion of HETC.

275

Page 277: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10. References to the literature or reports discussing these codes as implemented?

276

Page 278: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

2 HETC/KFA2

Code Information Questionnaire

I. General Questions:

1. Name of the code

HETC/KFA2

2. Name of the participant

R. Michel, M. Gloris

3. Responsible author of the code

P. Cloth

4. Reference of the code

See References 1-6

5. Is a manual available?

Yes

6. What nuclear reaction models are contained?

Bertini INC used in these calculations. Evaporation model of Weisskopf-Ewing^, with fissionmodel of Fong (level density parameters by Baba for evaporation stage**).

7. Range of targets allowed

Unrestricted

8. 9 Projectiles and energy regime

Nucleons to 3.5 GeV (scaling law above)Pions to 2.5 GeV (scaling law above)

II. Specific Questions:

The INC used is the unmodified Bertini model as implemented in the HETC code. The fissionmodel is the statistical model of P. Fong. The nuclei at the end of the INC stage are put into theevaporation routine.

1. How are reaction cross-sections generated in the entrance channel?

Three density zone geometric picture of Bertini^.

2. What nuclear density distribution is used, and how does it enter the calculation?

See(l)

3. Is the Fermi energy calculated in a local density approximation?

Yes

4. What nuclear radius parameterization is used?

277

Page 279: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

5. For INC models

6. If there is a precompound phase, describe the PE model used, parameters, i.e., partial statedensities, transition rates?

No PE phase.

Are clusters multiple PE decay, relativistic kinematics used?How are angular distributions computed?Source of inverse cross-sections?

7. What physics are used for the final de-excitation state: evaporation model?

Describe parameters used: level densities, inverse cross-sections or transmission coefficient,choice of optical model parameters if relevant (or reference to source), range of excitationsallowed, inclusive or exclusive results?

Level density parameters due to Baba^.

8. Is there any limit as to the number of nucleons from target for which yields may becalculated?

No

9. Any other comments on aspects not conserved in the above questions?

10. References to the literature or reports discussing these codes as implemented?

1. Radiation Shielding Information Center, "HETC Monte Carlo High-Energy Nucleon-MesonTransport Code", Report CCC-178, Oak Ridge National Laboratory (August 1977).

2. H. W. Bertini, Phys. Rev. 188 (1969) 1711.3. P. Cloth, D. Filges, G. Sterzenbach, T. W. Armstrong, and B. L. Colborn, Kernforschungs-

anlage Jiilich Report Jiil-Spez-196, 1983.4. T. W. Armstrong, P. Cloth, B. L. Colborn, D. Filges, and G. Sterzenbach, in Proceedings of

ICANS VII, AECL Report AECL-8488, 1984, p. 205.5. T. W. Armstrong, P. Cloth, D. Filges, and R. D. Neff, Kernforschungsanlage Jiilich Report

Jul-1859, 1983.6. T. W. Armstrong, P. Cloth, D. Filges, and R. D. Neef, Nucl. Instrum. Methods. Phys. Res. A

222, 540 (1984).7. V. F. Weisskopf, Phys. Rev. 52, 295 (1937); V. F. Weisskopf and H. D. Ewing, ibid. 50, 475

(1940).8. H. Baba, Nucl. Phys. A159, 625 (1970).

MONTE CARLO SIMULATIONS: HETC/KFA-2

The present calculations are based on the intranuclear cascade-evaporation model originallydeveloped by Bertini [1], and implemented in the high-energy nucieon-meson transport code [2]developed at Oak Ridge National Laboratory (ORNL). This Monte Carlo code for particleproduction and radiation transport has been modified several times in the past. Various codemodifications of HETC have been made at the Forschungszentrum JJich (KFA). All themodifications relevant to the included nuclear model refer to the evaporation model, whichinvolves the Ewing-Weisskopf formalism [3] without a contribution from preequilibriumprocesses. The changes contain an update of the atomic masses using the 1977 Atomic MassEvaluation values of Wapstra and Bos [4]. The range of possible residual nuclei was extended byimplementing the semi-empirical mass formula of Cameron [5] in case of masses not covered bythose tables. Furthermore, the parameter B o in the formula of the level density is allowed to varywith A, using data compiled by Baba [6]. A new kinematic calculation involving the recoilmomentum of the residual nucleus allows non isotropic evaporation. At last the high energyfission model (RAL-model [7]) has been included in the evaporation model based on the

278

Page 280: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

statistical model of Fong [8]. In the actual update this modified HETC has been implemented intothe framework of the HERMES code system [9], resulting in the actual version HETC/KFA-2.

The calculational predictions of proton induced neutron emission presented were made by usingthe so-called "thin targef'-setup of HETC/KFA-2. In this setup only the included nuclear modelsof HETC are taken into account. Starting an on-line analysis of emitted nucleons directly aftertheir emission from the nucleus, time consuming extranuclear transport algorithm are switchedoff. This procedure is somewhat different from previous published calculations [10] avoiding thewriting of large event histories on computer storage devices. Physically this setup can beunderstood as an ideal thin target consisting of only one nucleus. This method is valid because the"geometrical' cross section of the bombarded nucleus is known by the code [9]. This methodresults in significantly shorter computing times than another method simulating the geometry of areal thin target used in experiments. For U and Pb targets the RAL fission model [7] with aconstant value of B o = 8 MeV and isotropic emission of secondary particles during evaporation inthe laboratory system were used. For all other target nuclei the fission model was excluded andthe variable Bo-option was selected, while non-isotropic emission of evaporation particles wasallowed.

To achieve optimum comparison, identical energy intervals as used in the experimental analysiswere provided in the HETC calculations. Depending on target material, emission angle andincident proton energy, the number of spallation events varied from 2.5-10^ to 6.0«10^ to achievereasonable statistics in the calculations.

[1] H. W. Bertini, Phys. Rev. 188 (1969) 1711.[2] T. W. Armstrong, K. C. Chandler, Nucl. Sci. Eng. 49 (1972) 110.[3] V. F. Weisskopf, Phys. Rev. 52 (1937) 295; V. F. Weisskopf and D. H. Ewing, ibid 50

(1940)475.[4] A. H. Wapstra, K. Bos, At. Data Nucl. Data Tables \9 (1977) 175.[5] A. G. Cameron, Can. J. Phys. 35 (1957) 1021; 36 (1958) 175.[6] H. Baba, Nucl. Phys. AJ59 (1970) 625.[7] F. Atchison, Meeting on Targets for Neutron Beam Spallation Sources, KFA Julich, Report

JUl-Conf-34, 17(1980).[8] P. Fong, Statistical Theory of Nuclear Fission, Gordon and Breach Science Publishers, New

York (1969).[9] P. Cloth, D. Filges, R. D. Neef, G. Sterzenbach, Ch. Reul, T. W. Armstrong, B. L. Colborn,

B. Anders, H. Bruckmann, KFA-Report Jlil-2203 (1988).[10] D. Filges et al., Physical Review C36 (1987) 1988.

279

Page 281: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

3 HETC-3STEP

Code Information Questionnaire

I. General Questions:

1. Name of the code

HETC-3STEP

2. Name of the participant

H. Takada, N. Yoshizawa, K. Ishibashi and Y. Nakahara

3. Responsible author of the code

N. Yoshizawa

4. Reference of the code

N. Yoshizawa, K. Ishibashi and H. Takada, Development of High Energy Transport Code HETC-3STEP Applicable to Nuclear Reaction with Incident Energies above 20 MeV, J. Nucl. Sci.Technol. 32, No. 7,601 (1995).

5. Is a manual available?

No, but being prepared at presentInput data and output list are almost the same as those of HETC-KFA2. New input data for thepreequilibrium calculation was added.

6. What nuclear reaction models are contained?

(1) Intranuclear cascade model developed by H. Bertini [1].(2) Precompound decay with closed form exciton model.(3) Evaporation model based on Weisskopf-Ewing model.(4) Fission model developed by F. Atchison [2]. The model is based on the statistical model using empiricaThese models are the same as the ones implemented in HET-KFA2 [3] except for theprecompound decay calculation.

7. Range of targets allowed

A= 1,8<A<239

8. Range of projectiles allowed

p, n, n+, 7t", TI°, n+, u"

9. Incident energy regime permitted

1 TeV

II. Specific Questions:

1. How are reaction cross-sections generated in the entrance channel?

As the total cross sections, geometrical cross sections, ag, are used, which are calculated from thenuclear radius data stored in the nuclear structure data base 'CRSC in the code. The reactioncross section, ar, is obtained by the Monte Carlo calculation as

280

Page 282: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

where N, is the number of total events and Nr is the number of non-elastic events.

2. What nuclear density distribution is used, and how does it enter the calculation?

A nucleus is divided into three regions. For each region i, the density parameter p, is given also inthe data base CRSC:

The neutron density p" in the region i is given by

The proton density pf is given by

P,'-Prz

where A and Z are the mass and atomic numbers, respectively.

3. Is the Fermi energy calculated in a local density approximation?

The Fermi energy is also parameterized as follows, using the parameters Uj stored in the database CSRC, i.e.,

for neutrons, E" = U{ (A - Zf\

for protons, Ef = U: ZM.

4. What nuclear radius parameterization is used?

The outer radius (nuclear radius) and two concentric radii to define the inner regions.

5. For INC models

a. What nucieon-nucleon cross sections are used? Are they energy and isospin dependent?

The free nucieon-nucleon cross secrtions compiled by H. W. Bertini in 1963 [1] are used evennow. The cross sections are given for nucleons in the energy region below 3.5 GeV, while theyare given for charged pions up to 2.5 GeV. For nucleon-nucleon and pion-nucleon non-elasticcollisions at higher energies, the information at 3.5 GeV (if the particle is a proton or neutron) orat 2.5 GeV (if the particle is a charged pion) are used as the input to scaling routines that use theextrapolation method of Gabriel, Alsmiller, Jr., and Guthrie.

It is reported that HETC has been run successfully for energies up to 1 TeV but the comparison ofHETC results with experimental data have been made only for energies < 30 GeV.

b. How is Pauli exclusion handled in the INC?

The Pauli exclusion principle at INC process is treated as follows: the nucleons of the target areassumed to occupy all the energy levels up to the Fermi energy. When a nucleon-nucleoncollision is simulated, the energies of the two nucleons after the collision are compared with theFermi energy. If both energies are greater than the fermi energy, the collision is allowed and thedirections of motion of the nucleons are determined based on the differential cross sections. If theenergy of one of the nucleons is lower than Fermi energy, the collision is prohibited and a newcollision point is sampled and new collision simulation is performed. This procedure is applieduntil the energies of all the moving particles become lower than the cascade cut-off energy or the

281

Page 283: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

nucleons go out of the nucleus. Here, the cascade cut-off energy is set equal to the Fermi energyfor neutron, while to the Fermi energy plus Coulomb barrier for proton.

c. How are the nuclear density effects treated?

The nuclear density effects are considered only as the nucleon density distribution at thebeginning of the calculation described in 2.

d. How are ejectil binding energies handled?

The value 7 MeV is used for all nuclides and everywhere inside the nucleus.

e. Is any nucleon-cluster scattering considered?

A correlated two nucleon cluster is not taken into consideration in code.

f. Are ejectiles subject to surface refraction/reflection angular distribution?

No, the surface refraction/reflection are not considered in the code.

g. What channels other than neutron and proton are treated e.g. alpha, deuterons, tritons, pi,K, p etc.?

7t+ , 71', 71°, H + , p--

h. How is the transition made to the next phase of the calculation?

The next phase is precompound. The cascade process is terminated by the use of a probabilityfunction f(Ec) for suppressing low-energy particle emission. This method is adapted to excludethe precompound effect in the cascade calculation. The form of f(Ec) is given by

where Eo is adjusted to 40 MeV.

6. If there is a precompound phase, describe the PE model used, parameters, i.e., partial statedensities, transition rates?Are clusters, multiple PE decay, relativistic kinematics used?How are angular distributions computed?Source of inverse cross-sections?

Monte Carlo algorithms formulated by Y. Nakahara and T. Nishida [4] by the use of the excitonmodels proposed by J. J. Griffin, C. Kalbach and K. K. Gudima, et al.. The procedure of the pre-compound decay simulation in HETC-3STEP is described in Ref. 5.

Nuclear angular momenta and shell structures are not taken into consideration.• The exciton state density w(p, h, E) proposed by Kalbach, using the Griffin's model.

Spin dependent particle emission rate.Cluster emissions can be treated.The transition rate on interaction between excitons formulated by Gudima et al., wasmodified and increased up to a factor of F:

0.2,3.4-4A J'

282

Page 284: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

where A is the mass number of a target nucleus. The resultant transition rate A in thepreequilibrium process is expressed as:

where\+ : transition probability for increasing the number of excitons,XQ : transition probability for not changing the number of excitons,X. : transition probability for decreasing the number of excitons,Fj : emission rate of particle j ,j : neutron G=l)> proton (j=2), deuteron (j=3), triton (j=4), 3He (j=5) and "He (j=6).

• Relativistic kinematics are not used.• Angular distribution: basically isotropic as the multistep compound process.• The number of particles in the exciton state, p0, is taken to be equal to the number of

particles whose histories have been terminated during INC, because of the energydecrease below one-half of the Coulomb barrier. The number of holes, h0, is taken to beho=po-\.

7. What physics are used for the final de-excitation state: evaporation model, Fermi breakup?

For final de-excitation calculation of a residual nucleus, the EVAP program [6] is used. Thisprogram was written originally by L. Dresner and was revised later by M. Guthrie. In HETC-3 STEP, the fission process was treated as a competitive process with the evaporation process bythe use of the high energy fission model developed by F. Atchison [2].

Describe parameters used: level densities, inverse cross-sections or transmission coefficient,choice of optical model parameters if relevant (or reference to source), range of excitationsallowed, inclusive or exclusive results?

The level densities compilation by H. Baba [7] has been used in the code. The mass formuladerived by A.G. Cameron [8] and the atomic mass table evaluated by A.H. Wapstra [9] have alsobeen employed so far. In this activation yield benchmark, however, those parameters werederived as follows: the level densities derived by Ignatyuk [10] with parameters proposed byMengoni et al. [11] were used. The mass formula derived by Tachibana et al. [12] and the atomicmass table evaluated by Audi and Wapstra [13] were employed. As for the inverse cross sections,the values were obtained by the empirical formula derived by Dostrovsky [14].

8. Is there any limit as to the number of nucleons from target for which yields may becalculated?

No, there is not any artificial limit as to the number of nucleons.

9. Any other comments on aspects not considered in the above questions?

Fission process: F. Atchison's model [2]

10. References to the literature or reports discussing these codes as implemented?

[1] H.W. Beiiini, Phys. Rev. 188(1969) 1711.

[2] F. Atchison, Spallation and Fission in Heavy Metal Nuclei under Medium Energy ProtonBombardment, Proc. of Meeting on Targets for Neutron Beam Spallation Source, KFA-Julich, Germany, June 11-12, 1979, Jiil-Conf34 (1980)

[3] Y. Nakahara and T. Nishida: Monte Carlo Algorithms for Simulating Particle Emissionsfrom Pre-equilibrium States during Nuclear Spallation Reactions, JAERI-M86-074 (1986).

283

Page 285: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

[4] P. Cloth et al., "HERMES (High Energy Radiation Monte Carlo Elaborate System)", KFA-IRE-E AN/12/88, 1988.

[5] N. Yoshizawa, K. Ishibashi and H. Takada, Development of High Energy Transport CodeHETC-3STEP Applicable to Nuclear Reaction with Incident Energies above 20 MeV, J.Nucl. Sci. Technol. 32, No. 7 (1995) 601.

[6] L.W. Dresner, EVAP - A Fortran Program for Calculating the Evaporation of VariousParticles from Excited Comound Nuclei, ORNL-TM-196 (1962).

[7] H. Baba, Phys. Rev. A159 (1970) 625.

[8] A.G.W. Cameron et al., Can. J. Phys. 35 (1957) 1021.

[9] A.H. Wapstra et al., Atomic Data and Nuclear Data Tables 19 (1977) 175.

[10] A.V. Ignatyuk, Phys. Rev. C47 (1993) 1504.

[11] A. Mengoni et al., J. Nucl. Sci. Techn. 31 (1994) 151.

[12] T. Tachibana et al., Atomic Data and Nuclear Data Tables 39 (1988) 251.

[13] G. Audi et a!., Nucl. Phys. A565 (1993) 1.

[14] I. Dostrovsky et al., Phys. Rev. 116 (1959) 683.

284

Page 286: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

4 HETC/BRUYERE

Code Information Questionnaire

I. General Questions:

1. Name of the code

HETC/Bruyere

2. Name of the participant

Jean Luc Flament

3. Responsible author of the code

K.C. Chandler and T. W. Armstrong, modified by Olivier Bersillon

4. Reference of the code

ORNL 4744 (1972)

5. Is a manual available?

no

6. What nuclear reaction models are contained?

- intranuclear cascade Bertini- precompound decay no- evaporation Weisskopf-Ewing

- fission model Atchison

7. Range of targets allowed

no limitations

8. Range of projectiles allowed

p, n, p, m, d, t, 3He, "He

9. Incident energy regime permitted

50 MeV - 2.5 GeV

II. Specific Questions:

1. - 5. no modifications from the original version

1. How are reaction cross-sections generated in the entrance channel?

2. What nuclear density distribution is used, and how does it enter the calculation?

3. Is the Fermi energy calculated in a local density approximation?

4. What nuclear radius parameterization is used?

285

Page 287: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

5. For INC models

6. If there is a precompound phase, describe the PE model used, parameters, i.e., partial statedensities, transition rates?

no

Are clusters multiple PE decay, relativistic kinematics used?How are angular distributions computed?Source of inverse cross-sections?

7. What physics are used for the final de-excitation state: evaporation model?

level densities: Ignatyuk formulainverse cross sections: geometricrange of excitations allowed: no limitation

Describe parameters used: level densities, inverse cross-sections or transmission coefficient,choice of optical model parameters if relevant (or reference to source), range of excitationsallowed, inclusive or exclusive results?

8. Is there any limit as to the number of nucleons from target for which yields may becalculated?

no

9. Any other comments on aspects not conserved in the above questions?

10. References to the literature or reports discussing these codes as implemented?

286

Page 288: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

5 CEM 95

Code Information Questionnaire

I. General Questions:

1. Name of the code

CEM95

2. Name of the participant

Stepan G. Mashnik

3. Responsible author of the code

The authors of the primary version of the code named MARIAG are K.K. Gudima, S.G. Mashnikand V.D. Toneev. The author of the present modified version of the code named CEM95 is S.G.Mashnik.

4. Reference of the code

The code CEM95 is an extended version of the previous version named CEM92M. CEM95differs from CEM92M in the following: input and output files were modified; useful commentshave been added; minor observed errors are corrected. The code CEM95 allows us to calculatereaction, elastic, fission and total cross-sections; nuclear fissilities; excitation functions; nuclidedistributions; energy and angular spectra; double-differential cross-sections; mean multiplicities,i.e., the number of ejectiles per incident bombarding particle; ejectile yields; mean energies andproduction cross-sections for n, p, d, t, He3, He4, pi-, piO and pi+ emitted in nucleon- and pion-induced reactions using the Cascade-Exciton Model (CEM) of nuclear reactions [1]. A detaileddescription of the standard version of CEM may be found in Ref. [1]. Further extensions of theCEM incorporated in the code CEM95 are described in Refs. [2-4]. Part of the primary version ofthe code concerning the pre-equilibrium and equilibrium stages of the reactions may be found inRef. [5]. The Dubna version of the intranuclear cascade model used in the CEM95 is described indetail in the monograph [6].

Primary version of the majority subroutines used in CEM95 to describe the cascade stage ofreactions is published in Ref. [7]. A detailed description of subroutines used at the cascade stageof the reaction in CEM95 is given in Ref. [8].

5. Is a manual available?

Yes. A new manual with a detailed description of all subroutines of the recent modified version ofthe code is in preparation.

6. What nuclear reaction models are contained?

The code CEM95 is intended for the Monte Carlo calculation of nuclear reactions in theframework of the CEM [1]. The CEM assumes that reactions occur in three stages. The first stageis the intranuclear cascade. The excited residual nucleus formed after the emission of cascadeparticles determines the particle-hole configuration that is a starting point for the second pre-equilibrium stage of the reaction. The subsequent relaxation of the nuclear excitation is treated interms of the exciton model of preequilibrium decay which includes the description of theequilibrium evaporative stage of the reaction.

In the CEM angular distributions for particles emitted at the preequilibrium stage of the reactionmay be calculated from N-N scattering, or (by analogy of the Moving Source Model) under theassumption that the momentum of a residual nucleus formed after the cascade stage of thereaction should be attributed only to n excitons rather than to all A nucleons. Then particle

287

Page 289: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

emission will be isotropic in the proper n-exciton systems, but some anisotropy will arise in boththe laboratory and center-of-mass reference frame. Both methods give rise to similar distributionsfor preequilibrium particles. In CEM95, I used the first method to allow for the asymmetry ofparticles emitted at the pre-equilibrium stage.

In the CEM95, evaporation is calculated by the Monte Carlo method in the statistical theory ofWeisskopf-Ewing.

In comparison with the primary version of the code, CEM95 includes shell and pairingcorrections, competition between particle emission and fission at the compound stage ofreactions; uses more realistic nuclear level density (with N, Z, and E dependencies of the leveldensity parameter; takes into account angular momenta of preequilibrium and evaporatedparticles.

Different versions of liquid-drop models (LDM), single-Yukawa modified LDM and Yukawa-plus-exponential modified LDM for fission processes (see [4]) are incorporated (and may beeasily selected by an input switch) in the CEM95.

Different empirical formulae for the level density parameter a(Z,N,E), and different shell andpairing corrections(see [3]) are incorporated in the CEM95 and may be easily selected by inputswitches.

For present Intercomparison, calculations for all targets, except 0-16, and all incident energieswere performed taking into account angular momentum of emitted particles with level densitiescalculated under the third Iljinov et al. [9] systematics for a(Z,N,E) (input parameter IFAM=9),with Cameron shell corrections [10] (input parameter ISHA=1), and pairig corrections accordingto [9] (input parameter CEVAP=12.0). To avoid some purely technical computing troubles, forthe light target 0-16 calculations were performed with a fixed value for the level densityparameter a=0.125A (input parameters IFAM=1 and AM=0.125) and without taking into accountangular momentum of preequilibrium and evaporative particles.

Competition between evaporation and fission of excited compound nuclei was taken into accountonly for heavy target Au-197. Macroscopic fission barriers by Krappe, Nix, and Sierk [11] (inputparameter IB=6), with Cameron [10] shell corrections for g.s. masses (input parameters ISH=1),and Barashenkov et al. [12] corrections for saddle-point masses (input parameter IDELTA=1) formicroscopic fission barriers and with Cameron at al. [13] shell corrections (input parametersISHA=2) in Iljinov et al. third systematics of level density parameters were used for Au-197target. No dependencies of fission barriers Bf on angular momentum are taken into account inthese calculations (input parameter IJSP=O). For the ratio of level density parameters af and a, afixed value of af/a= 1.100 (input parameter WAM=1.100) was used for all incident energies from10 MeV to 600 MeV. But to describe the decrease of p-induced Au-197 fission cross section withincreasing of proton energy at incident energies about 1 GeV, with a possible minimum at about 2GeV, which seems to be observed in experiment (see Table 139 in a monograph [6]), I had to fitthe ratio af/a, and the values of 1.080, 1.073, 1.064, 1.053, 1.045, and 1.004 for this ratio atproton energies of 1.0, 1.2, 1.6, 2.6, 3.0, and 5.0 GeV were used, correspondingly.

7. Range of targets allowed

The CEM is a statistical model, therefore the CEM95 has not to be used for very light targets likeHe4. Usually I use the CEM95 for C-12 and heavier targets, though it provides rational resultseven for Be-targets.

8. Range of projectiles allowed

The CEM95 allows us to calculate only reactions induced by nucleons and pions. But the codecan be modified to describe also reactions induced by other projectiles.

9. Incident energy regime permitted

288

Page 290: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

The CEM95 version of the code permits us to calculate reactions for incident energies from about10 MeV up to several GeV.

II. Specific Questions:

1. How are reaction cross-sections generated in the entrance channel?

The reaction cross-section is calculated by the Monte Carlo method. Its value is equal to thegeometrical cross section times the total number of inelastic interactions over the total number ofelastic and inelastic simulated events.

2. What nuclear density distribution is used, and how does it enter the calculation?

The nuclear matter density is described by the Fermi distribution with two parameters taken fromanalysis of electron-nucleus scattering: c=1.07*A**(l./3.) fin, and a=0.545 fm. Practically thenucleus target is divided by concentric spheres into seven zones in every of which the nucleardensity is considered to be constant.

3. Is the Fermi energy calculated in a local density approximation?

The energy spectrum of nuclear nucleons is estimated in the perfect Fermi gas approximationwith the local Fermi energy.

4. What nuclear radius parameterization is used?

In the Saxon-Woods distribution of the nuclear density the value r0=1.07 fin is used; The inversecross-sections at the pre-equilibrium and compound stages of the reaction are estimated byDostrovsky et al. approximations [14]. These systematics were fitted with the value rO(eff.)= 1.5frn for the effective nuclear radius R=r0(eff.)*A**(l./3.) in the calculations of Coulomb barriers.The value for rO(eff.) is an input parameter (RM) of the CEM95. All calculations for thisIntercomparison where performed with a fixed value of this parameter RM=1.5, though for somemedium and heavy nuclei one obtains better agreement with experiment for rO(eff)=l-4, or 1.3fm. In the CEM95, different models are incorporated to calculate fission barriers. For eachconcrete model of fission barrier one uses its corresponding values for rO (see details in [4]).

5. For INC models (For the cascade stage of the reactions)

S.a. What nucleon nucleon cross sections are used? Are they energy and isospin dependent?

Nucleon-nucleon and pion-nucleon cross-sections are energy- and isospin-dependent and arecalculated by the approximation of the experimental data with special polynomial expressionswith energy-dependent coefficients given in Ref. [6].

5.b. How is Pauli exclusion handled in the INC?

The Pauli exclusion principle at the cascade stage of the reaction is handled in the following way:One assumes that nucleons of the target occupy all the energy levels up to the Fermi energy. Eachof simulated elastic or inelastic interaction of the projectile (or of a cascade particle) with anucleon of the target is considered as forbidden if "secondary" nucleons have energies smallerthan the Fermi energy. If so, a new partner, a new interaction point, and a new interaction mode issimulated for the projectile (or the traced cascade particle) and again the simulated energy of"secondary" nucleons are compared with the Fermi energy for this new point of interaction. Thisnew interaction is again considered as forbidden if the energies of "secondary" nucleons aresmaller than the Fermi energy, and so on, until the Pauli principle is kept or until the tracedparticle leaves the nucleus.

5.c. How are the nuclear density effects treated?

At the beginning of simulation of each event, the nuclear density distributions for protons andneutrons of the target are calculated according to the Saxon-Woods distribution as described

289

Page 291: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

above in point 2. In the CEM95, which uses the standard version of Dubna ICM [6], a furtherdecrease of the nuclear density with emission of cascade particles is not taken into account. Ourdetailed analysis of different characteristics of nucleon- and pion-induced reactions for targetsfrom C to Am has shown that this effect - the so-called "trawling" of a nucleus may be neglectedat incident energies below about 5 GeV. The version of CEM95 used in this Intercomparison doesnot take it into consideration. But at higher incident energies the progressing decrease of nucleardensity with development of intranuclear cascades has strong influence on the calculatedcharacteristics and this trawling effect has to be taken into account [6]. Therefore,. to use theCEM95 at incident energies higher than about 5 GeV, the corresponding subroutines used todescribe the standard version of Dubna ICM have to be replaced by a version which includes thenonliniar trawling effect of the local reduction of the nuclear density during the development ofthe cascade [6].

5.d. How are ejectile binding energies handled?

In the CEM95, it is assumed that the mean nucleon binding energy at the cascade stage of areaction is equal to 7 MeV and the pion binding energy is equal to zero (the mean pion potentialenergy in a nucleus is independent of the radius and pion energy and is equal to 25 MeV).

5.e. Is any nucleon-cluster scattering considered?

No nucleon-clusters scatterings are considered.

5.f. Are ejectiles subject to surface refraction/reflection angular distributions?

In the standard version of Dubna ICM used in CEM95 the kinetic energy of cascade particles areincreased or decreased as they move from one potential region (zone) to another, but theirdirections remain unchanged. That is, in CEM95 refraction or reflection of cascade nucleons atpotential boundaries is neglected.

5.g. What channels other than neutron and proton are treated e.g. alpha, deuterons, tritons, pi,K, p, etc.?

In CEM95, at the cascade stage of the reaction only emission of nucleons and pions is considered.(At the preequilibrium and equilibrium stages of the reaction emission of n, p, d, t, He3, and He4is taken into consideration.)

5.h. How is the transition made to the next phase of the calculation?

After the cascade the next phase is the precompound one. In the conventional cascade-evaporation models fast cascade nucleons are traced up to a certain minimal energy, with cut-offenergy being about 7-10 MeV below which particles are considered to be absorbed by a nucleus.At the very beginning of the development of the CEM we also used this criterion for the transitionfrom the cascade stage to the precompound one (see Ref. [1]).

In the present version of the CEM it is suggested to use another criterion according to which aprimary nucleon and those of second and subsequent generations (if any) are considered ascascade ones, namely the proximity of the imaginary part of the optical potential calculated in thecascade model to the experimental one. This value is characterized by a fixed parameter of themodel: P=0.3[l],

5.i. What criteria for p-h excitation? is the next phase precompound or compound'?

The number of captured cascade nucleons and of "holes" produced due to the intranuclearcollisions gives for the precompound stage of the reaction the initial particle-hole configuration ofthe remaining excited nucleus the energy, momentum and angular momentum of which aredefined by the conservation laws. The Monte Carlo method of the CEM permits easily to takeinto account the charge of the excitons, as well.

290

Page 292: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

6. If there is a precompound phase, describe the PE model used, parameters, i.e., partial state

densities, transition rates?

Are clusters multiple PE decay, relativistic kinematics used?

How are angular distributions computed?

Source of inverse cross-sections?

The preequilibrium and equilibrium stages are considered in the framework of the modifiedexciton model [17,5]. This model uses effectively the relationship of the master-equation with themarkovian random processes. This fact prompts a simple method of solving the related system ofmaster-equation: simulation of the random process by the Monte Carlo technique. In thistreatment it is possible to generalize the exciton model to all nuclear transitions with changing theexciton number by +2, -2, and 0, and the multiple emission of particles and to depletion ofnuclear states due to particle emission.

We use an equidistant level scheme with the single-particle density g, Williams formulae [18]corrected for the exclusion principle and indistinguishability of identical excitons in Ref. [19].

The transition rates, are estimated under the assumption that M+=M-=M0=M and the value of Mfor a given nuclear state is estimated by association of the transition with changing the excitonnumber by +2 with the probability for quasi-free scattering of a nucleon, which is above theFermi level on a nucleon of the target nucleus (see [1]).

The emission rates of n, p, d, t, He3, and He4 into the continuum are estimated according todetailed balance principle. The inverse cross-sections are taken according to Ref. [14]. For thisIntercomparison the binding energies from Ref. [10] are used.

Angular distributions for nucleons emitted at the preequilibrium stage of the reaction arecomputed in CEM95 from N-N scattering assuming that the nuclear state with given excitationenergy E should be specified not only by the exciton number n but also by the momentumdirection. A corresponding master equation can be generalized for this case provided that theangular dependence for the transition rates is factorized. This calculation scheme is easily realizedby the Monte Carlo technique (see [1]). The angular distribution of preequilibrium complexparticles is believed to be similar to that for the nucleons in each states. But the angulardistribution summed up over all populated nuclear states will certainly differ, because thebranching ratio for different particles depends essentially on the decaying nuclear state.Relativistic kinematics was used.

7. What physics are used for the final de-excitation state: evaporation model, Fermi breakup?

Describe parameters used: level densities, inverse cross-sections or transmission coefficient,choice of optical model parameters if relevant (or reference to source), range of excitationsallowed, inclusive or exclusive results?

For the final de-excitation stage is used the evaporation model realized in CEM95 as described in[2]. Different empirical formulae for the level density parameter a(Z,A,E), and different shell andpairing corrections are incorporated in the CEM95. The concrete models (input options of theCEM95) used in these calculations are cited above in point 6. At the evaporation stage ofreactions the inverse cross-sections are taken according to Ref. [14]. In the CEM there are nolimits for the excitation energies of nuclei.

Due to the Monte Carlo method of the CEM the results for all three (cascade, preequilibrium andevaporative) stages of the reaction are exclusive.

8. Is there any limit as to the number of nucleons from target for which yields may becalculated?

291

Page 293: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

In the CEM95 there is no limit as to the number of nucleons from target for which yields may becalculated.

9. Any other comments on aspects not considered in the above questions?

Almost all calculated with the CEM95 characteristics are histograms. So, e.g., in the calculatedspectra are shown not the energies and the angles of the ejectiles but the corresponding intervalsfor them. To economize the space the beginnings and the ends of the calculated characteristicscontaining only zeros are not printed.

Besides the requested production cross-sections for all targets and incident energies of thisexercise, I calculated also the mean multiplicities, mean energies, yields and production crosssections of all ejected particles, the yields of all residual nuclei, and, for incident energies below200 MeV, the yields of different modes ("excitation function") contributing to the production ofconcrete final nuclides.

10. References to the literature or reports discussing these codes as implemented?

From the outset this code was developed and applied to describe nucleon-nucleus reactions atintermediate incident energies (see e.g., [1,20]). After that the code was modified and applied todescribe stopped negative pion absorption by nuclei [21] and photonuclear reactions [22]. Thiscode has been also widely applied to analyze pion-nucleus interactions at intermediate energies,in particular, to study mechanisms of in-flight pion absorption [23], as well as to investigate thecumulative particle production in interactions of protons, neutrons, pions and photons with nucleifrom C to Bi at energies of several tens of MeV up to several GeV [24]. A brief review of physicsand possibilities of the CEM95 may be found in Ref. [25]. Currently, the CEM95 is widely usedto calculate and analyze different excitation functions for proton-induced reactions at intermediateenergies [26].

REFERENCES

1. K.K. Gudima, S.G. Mashnik, and V.D. Toneev, Nucl. Phys., A401 (1983) 329. JINRCommunications P2-80-774, P2-80-777, Dubna, 1980 [in Russian].

2. S.G. Mashnik, Izv. Akad. Nauk, Ser. Fiz., 60 (1996) 73 [Bull. Russian Acad. Sci.: Physics, 60(1996)].

3. S.G. Mashnik, Acta Phys. Slovaca, 43 (1993) 86.4. S.G. Mashnik, Acta Phys. Slovaca, 43 (1993) 243.5. S.G. Mashnik and V.D. Toneev, "MODEX - the Progeam for Calculation of the Energy

Spectra of Particles Emitted in the Reactions of Pre-Equilibrium and Equilibrium StatisticalDecays", Communications of the Joint Institute for Nuclear Research, P4-8417, Dubna, 1974[Fortran66; text - in Russian],

6. V.S. Barashenkov and V.D. Toneev, "Interaction of High Energy Particles and Nuclei withAtomic Nuclei", Moscow, "Atomizdat", 1972, [in Russian].

7. A.S. Iljinov, "A Code for Intranuclear Cascade Calculation in the Energy Range < 5 GeV,"JINR Report B1-4-5478, Dubna, 1970 [Fortran66; text - in Russian].

8. F.G. Gereghi, V.A. Zolotarevsky, K.K. Gudima, S.G. Mashnik, and L.V. Bordianu,"Calculation of Photoneutron Reactions Cross Sections", Report No. 01870081266, KishinevState University, Kishinev, 1990 [in Russian].

9. A.S. Iljinov, M.V. Mebel et al., Nucl. Phys. A543 (1992) 517.10. A.G.W. Cameron. Can. J. Phys., 35 (1957) 1021.11. H.J. Krappe, J.R. Nix, and A.J. Sierk, Phys. Rev. C20 (1979) 992.12. V.S. Barashenkov, A.S. Iljinov, V.D. Toneev, and F.G. Gereghi, Nucl. Phys. A206 (1973)

131.13. J.W. Truran, A.G.W. Cameron, and E. Hilf, Proc Int. Conf. on the Properties of Nuclei Far

From the Region of Beta-Stability, Leysin, Switzerland, 1970, v. 1, p. 275.14.1. Dostrovsky, Z. Fraenkel, and G. Friedlander, Phys. Rev. 116 (1959) 683.17. K.K. Gudima, G.A. Ososkov, and V.D. Toneev, Yad. Fiz. 21 (1975) 260 [Sov. J. Nucl. Phys.

21 (1975)138].18. F.C. Williams Jr., Phys. Lett. B31 (1970) 184.19.1. Ribansky, P. Oblozinsky, and E. Betak, Nucl. Phys. A205 (1973) 545.

292

Page 294: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

20. S.G. Mashnik, Thesis, Lab. Theor. Phys., JINR, Dubna, 1981; K.K. Gudima, S.G. Mashnik,and V.D. Toneev, in: Proc. Europhys. Topical Conf."Neutron-Induced Reactions", Smolenice,June 21-25,1982, Phys. and Appl. v.10, 347.

21. S.G. Mashnik, or S.G. Mashnik et al., Revue Roum. Phys. 37 (1992) 179; Sov. J. Nucl. Phys.:47 (1988) 760 and 47 (1988) 612; Proc.Int.Workshop on Pions in Nuclei, Penyscola, Spain, 3-8 June 1991, "World Scientific, 1992, p. 525; Proc. of the 20th Winter School of theLeningrad Inst. Nucl. Phys., Leningrad, 3 (1985) 236; Sov. Physics-Lebedev Institute Reports1 (1979) 14; Preprint INR P-0156, Moscow, 1980; in:"Elementary Particle and AtomicNuclei", Moscow, "Energoatomizdat", 1986, p.60.

22. T. Gabriel, G. Maino, and S.G. Mashnik, JINR Preprint E2-94-424, Dubna, 1994; Proc. XIIInt. Sem. on High Energy Probl., Dubna, Russia, 12-17 September, 1994, "Wold Scientific",Singapore, 1996.

23. S.G. Mashnik, Yad. Fiz. 58 (1995) 1772 [Phys. At. Nucl. 58 (1995) 1672]; Acta Phys. Pol.B24 (1993) 1685.

24. S.G. Mashnik, or S.G. Mashnik et al., Nucl. Phys. A568 (1994), 703; Int. Nuclear Phys. Conf.Beijing, China, August 21-26, 1995, Book of Abstr. p. 5.6-9; Nucl.Phys. A326 (1979) 297; Z.Phys. 312 (1983) 259; Proc. 18th Winter School Lemingrad Inst.NucI.Phys., 3 (1983) 172;Preprint Leningrad Inst. Nucl. Phys. LINP-1302, Leningrad, 1987; Preprint Inst. Appl. Phys.84-3, Kishinev, 1984; Communications JINR E2-11307, Dubna, 1978.

25. S.G. Mashnik, Proc. 7th Int. Conf. on Nuclear Reaction Mechanisms, Varenna, June 6-11,1994, p. 100; Proc. Int. Conf. on Nuclear Data for Science and Technology, Gatlinburg,Tennessee, May 9-13, 1994, p. 499; S.G. Mashnik and S.A. Smolyansky, JINR Preprint E2-94-353, Dubna, 1994; in : "Dynamics of Transport in Plasmas and Charged Beams", Eds. G.Maino and M. Ottavani, "World Scientific", Singapore, 1996.

26.Yu.E. Titarenko, S.G. Mashnik, et al. Proc. Int. Workshop on Nucl. Methods ofTransmutation of Nuclear Wastes: Problems, Perspectives, Cooperative Research, Dubna,Russia, May 29-31, 1996; Proc. II Int. Conf. on Accelerator-Driven TransmutationTechnilogies and Applications, Kalmar, Sweden, June 3-7, 1996 (in press); O. Bersillon, T.Gabriel, and S.G. Mashnik, "Cascade-Exciton Model Detailled Analysis of Proton Spallationat Energies from 10 MeV to 5 GeV," NEA OECD Report, Issy-les-Moulineau, France, 1996(in press).

293

Page 295: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

6 HETC-FRG

Code Information Questionnaire

I. General Questions:

1. Name of the code

HETC-FRG

2. Name of the participant

K. Ishibashi, N. Shigyo

3. Responsible author of the code

K. Ishibashi

4. Reference of the code

P. Cloth et al, HERMES, High Energy Radiation Monte Carlo Elaborate System, KFA-IRE-EAN/12/88 (1988).

5. Is a manual available?

To be prepared to Memoirs of the Faculty of Engeneering Kyushu

6. What nuclear reaction models are contained?

Intranuclear cascade

Precompound decayFragmentation process based on liquid-gas phase transition modelEvaporation - Weisskopf-EwingFermi statisticsFission modelStatistical model

Empirical formulas are used as far as possible (F. Atchison)

7. Range of targets allowed

A= 1 and4<A<239

8. Range of projectiles allowed

1 < A < 20

9. Incident energy regime permitted

0 < E < 1 TeV

II. Specific Questions:

1. How are reaction cross-sections generated in the entrance channel?The geometrical cross section is multiplied by ratio of numbers of reaction to total (reaction +pseud) of incident particles.

2. What nuclear density distribution is used, and how does it enter the calculation?

294

Page 296: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

3-step functions.

where i is the region number, a, is the factor for the region i and p(0) is the normal density.

3. Is the Fermi energy calculated in a local density approximation?

yes

4. What nuclear radius parameterization is used?

r = rl *A1/3

rl = 1.07 * 10-13cm

5. For INC models

5.a What nucleon nucleon cross sections are used? Are they energy and isospin dependent?

G.Q. Li and R. Machleidt [1] energy dependent model.

5.b How is Pauli exclusion handled in the INC?

where Q is the solid angle of the Fermi surface.

5.c How are the nuclear density effects treated?

Nucleon-nucleon collision cross section depends on the nuclear density, mean free path isobtained by nuclear density and nucleon-nucleon cross section.

5.d How are ejectile binding energies handled?

7 MeV fixed for all ejectiles.

5.e Is any nucleon-cluster scattering considered?

No.

5.f Are ejectiles subject to surface refraction/reflection angular distributions?

No.

5.g What channels othe than neutron and proton are treated e.g. alpha, deuterons, pi, K, p,etc.?

7t\ Tt\ 71°, U+, U"

5.h How is the transition made to the next phase of the calculation?

under cut-off energy (15 MeV).

5.i What criteria for p-h excitation? Is the next phase precompound or compound?

295

Page 297: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

p-h excitation not considered.

6. If there is a precompound phase, describe the PE model used, parameters, i.e., partial statedensities, transition rates? Are clusters multiple PE decay, relativistic kinematics used? Howare angular distributions computed? Source of inverse cross-sections?

Fragmentation based on liquid-gas phase transition model [2]. Transition rates are obtained byexcitation energy after cascades. No relativistic model. Angular distribution is isotropic in themoving frame.

7. What physics are used for the final de-excitation state: evaporation model, Fermi breakup?Describe parameters used: level densities, inverse cross-sections or transmission coefficient,choice of optical model parameters if relevant (or reference to source), range of excitationsallowed, inclusive or exclusive results?

Evaporation model. Level density is a function of mass and atomic number. Inverse Cross sectionis from Dostrovsky's empirical equation.

S. Is there any limit as to the number of nucleons from target for which yields may be

calculated?

No.

9. Any other comments on aspects not considered in the above questions?

No.

10. References to the literature or reports discussing these codes as implemented?

[1] G.Q. Li and R. Machleidt, Phys. Rev. C48 (1993) 1702; Phys. Rev. C49 (1994) 566.

[2] N. Shigyo et al, J. Nucl. Sci. Technol. 32 (1995) 1; JAERl-Conf. 95-0008 (1995) 217.

296

Page 298: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

7 INUCL

Code Information Questionnaire

I. General Questions:

1. Name of the code

INUCL

2. Name of the participant

Vladimir D. Kazaritsky and ?.?. Vyacheslav

3. Responsible author of the code

Nikita Stepanov

4. Reference of the code

N. Stepanov Ph.D. thesis, ITEP, Moscow, 1990

5. Is a manual available?

no

6. What nuclear reaction models are contained?

Intranuclear cascade,Precompound decay (exiton master equation)Evaporation (Weisskopf - Ewing)Fission (phenomenological model, incorporating some features of the fission statistical model)

7. Range of targets allowed

arbitrary.

S. Range of projectiles allowed

p,n,pi and nuclei.

8. Incident energy regime permitted

II. Specific Questions:

From a few Mev to 10 GeV for n,p,pi and up to about 100 MeV/nucleon for nuclei.

1. How are reaction cross-sections generated in the entrance channel?

Total inelastic cross section has to be taken from outside to normalize all data. Total reactioncross-sections [mbam] were calculated by J.R. Letaw's formulae:

45*A**0.7*(l+0.016*sin(5.3-2.63*logl0(A)))**(l-0.62*exp(-E/200)*sin(10.9*E**(-0.28))).

Ref.: S. Pearlstein, The Astrophysical Journal, 346: 1049-1060, 1989 November 15

2. What nuclear density distribution is used, and how does it enter the calculation?

297

Page 299: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Nuclear density distribution are derived from the Re(Vopt(r)) distribution.

In cascade part, nucleus is divided into a finite number of zones with constant density.

3. Is the Fermi energy calculated in a local density approximation?

Generally speaking, Yes (see 2.)

4. What nuclear radius parameterization is used?

By the definition R(A) is derived from eq. Den(R(A)) = 0.01* Den max

5. For INC models

5.a. What nucleon nucleon cross-sections are used? Are energy and isospin dependent?

Parametrizations based on the experimental data (ED) are used. They are energy and isospindependent. ED available before 1980 are used only. The parameterizations described in ([1]Barashenkov V.S., Toneev V.D. High Energy interactions of particles and nuclei with nuclei.Moscow, 1972 (in Russian, but there is an English translation)) are used.

5.b. How is Pauli exclusion handled in the INC?

Simulated particle-particle interaction is accepted only for secondary nucleons which have En >Ef.

5.c. How are nuclear density effects treated?

Densities are recalculated after each step, but not other parameters.

5.d. How are ejectile binding energies handled?

For nucleons binding energies are calculated using mass formula. For pions Vopt is taken to beconstant (about 7 MeV).

5.e. Is any nucleon-cluster scattering considered?

Not yet, except pion absorption.

5.f. Are ejectiles subject to surface refraction/reflection angular distributions?

Yes (see 2.).

5.g. What channels other than neutron and proton are treated e.g. alpha, deuterons, tritons, pi,K, p, etc.?

5.h. How is the transition made to the next phase of the calculation?

Cascade is stopped when all the particles, which can escape the nucleus, do it.Then conformity with the energy - conservation law is checked and the given event is accepted, ifE(exitation) > Ecut ~ a few MeV.

5.i. What criteria for p-h excitation? is the next phase precompound or compound'?Only pions.

The next phase is precompound. Initial conditions are defined during the cascad phase: p -number of "particles", i.e. nucleons, which can not escape the nucleus and have too smallinteraction probability; h - number of "holes" = number of nuclear nucleons involved in thecascade; energy - momentum of the exiton system derived from the conservation law.

298

Page 300: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

6. If there is a precompound phase, describe the PE model used, parameters, i.e., partial statedensities, transition rates?

Main parameters are taken from (Ribansky I. et al, Nucl.Phys.,1973, A205, p.545 (leveldensities); Kolbach.C, Z.Phys.,1978, A287, p.319 (matrix elements)).Only N -> N, N -> N + 2, N -> N -2, N -> N - 1 channels are treated. The angular distribution isisotropic in the frame of rest of the exiton system.

Are clusters multiple PE decay, relativistic kinematics used?How are angular distributions computed?Source of inverse cross-sections?

7. What physics are used for the final de-excitation state: evaporation model?

Describe parameters used: level densities, inverse cross-sections or transmission coefficient,choice of optical model parameters if relevant (or reference to source), range of excitationsallowed, inclusive or exclusive results?

Weisskopf-Ewing evaporation in competition with fission. Emissions of n,p,d,t,He3,He4,gammais allowed. Level densities derived from exp.data are used. Angular momentum and spindependence are not included. Other parameters are the same as in ([1], see 5a.) Fermi breakup isallowed onlyin some extreme cases, i.e. for light nuclei and E(exitation) > 3.*Eb. Only the totalnuleus decay into neutrons and protons is treated.

8. Is there any limit as to the number of nucleons from target for which yields may becalculated?

Generally speaking, no.

9. Any other comments on aspects not conserved in the above questions?

INUCL is designed as a particle - nucleus interaction simulation block for the particle - targetinteraction simulation program PHOENIX. It produces an exclusive approach to simulatingevents with reasonable performance.

10. References to the literature or reports discussing these codes as implemented?

Shvedov.O.V. et al, Preprint ITEP 81-93, Moscow, 1993 (the most recent one).

299

Page 301: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

8 ISABEL-EVA

Code Information Questionnaire

I. General Questions:

1. Name of the code

ISABEL-EVA

2. Name of the participant

Zeev Fraenkel

3. Responsible author of code:

Zeev Fraenkel

4. Reference for the code:

Phys.Rev.166, 1305(1968)Phys.Rev. C8, 581 (1973)Phys.Rev. C20, 2227(1979)Phys.Rev. C24, 488 (1981)Phys.Rev. 116, 683(1960)

5. Is a manual available?

NO

6. What nuclear reaction models are contained?

-intranuclear cascade: YES-precompound decay: NONE-evaporation: Weisskopf-Ewing-Fission model: Bohr-Wheeler

7. Range of targets allowed:

A>16

8. Range of Projectiles:

protons, pions, heavy ions.

9. Incident energy regime permitted:

lOOMeV < E/A < lOOOMeV

VI.2 Specific Questions:

1. How are reaction cross-sections generated in the entrance channel?

total # of cascades - transparencies* geometric cross section

total # of cascades calculated

2. What nuclear density distribution is used:

300

Page 302: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

an 8-step density distribution approximating the Hofstadter distribution.

3. Is the Fermi energy calculated in a local density approximation:

YES

4. What nuclear radius parametrization is used:

Half-Density-Radius = 1.07*(A**l/3) Fm

5. For INC models:

5.a. cross section tables for total cross sections& angular distributions

BOTH ENERGY AND ISOSPIN DEPENDENT.

5.b. How is Pauli exclusion handled in the INC:

The particle energy is not allowed to fall below the (local) Fermi energy.

5.c. How are nuclear density effects treated:

the particle energy changes according to the change in Fermi energy as the particle enters adifferent density region, there are two OPTIONS AVAILABLE: 1) THE PARTICLE MAY BEREFRACTED OR REFLECTED, i.e.the RADIAL part of its momentum is changed WITHOUTchanging ist tangential momentum. 2) NO refraction/reflection, i.e. the particle energy is changedwhen the particle enters a new density region but its direction is NOT changed.

5.d. How are ejectile binding energies handled:

a fixed energy is subtracted from the emitted particle, the total excitation energy of the residualnucleus is calculated on the basis of nuclear mass tables.

5.e. Is any nucleon-cluster scattering considered?

NO

5.f. are ejectiles subject to surface refraction/reflection angular distributions?

Both options avaiable, see 5 c.

5.g. In INC part of calculations, only nucleons and pions are considered.

IN THE EVAPORATION PART P,N,D,TRITON,HE3,HE4 EVAPORATION IS INCLUDED asa standard. Heavier ions may be included if desired.

5.h. How is the transition made to the next phase of the calculation?

The INC phase of the calculation stops when none of the remaining PARTICLES IN THENUCLEUS HAVE ENOUGH ENERGY TO ESCAPE FROM IT. At this stage the nucleus isconsidered an excited equilibrated 'compound nucleus' of given A,Z,excitation energy andangular momentum and these data represent the input for the second part of the calculation (seebelow).

5.i. What creteria for p-h excitation?

NOT CONSIDERED

is the next phase precompound or compound?

301

Page 303: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

COMPOUND

6. If there is a precompound phase, describe the PE model used, parameters, i.e., partial statedensities, transition rates?

not relevant (no pre-equilibrium phase)

7. What physics is used for the final de-excitation stage?

EVAPORATION MODEL.

the level density parameter is an input parameter.

the inverse cross sections are simple parametrisations of the continuum cross-sections, gammacompetition is neglected.the excitation energy range is not restriced by the proram but rather by the range of validity of theWeisskopf theory, these theoretical consideration also limit the validity of the program to nucleiheavier than about A=16.

8. Is there any limit as to the number of nucleons from target for which yields may becalculated?

none except for the limitations mentioned in 7.

9. Any other comments on aspects not conserved in the above questions?

none

10. References to the literature or reports discussing these codes implemented?

see VI.1.4.

302

Page 304: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

9 ISABEL/SMM

Code Information Questionnaire

I. General Questions:

1. Name of the code

combination of ISABEL (isobar) with SMM

2. Name of the participant

Hans-Jurgen Lange

3. Responsible author of the code

ISABEL: Zeev Fraenkel

SMM: Alexandre Botvina

4. Reference of the code

ISABEL: see ISABEL contribution by Zeev Fraenkel

SMM: A. S. Botvina, I. N. Mishustin, Phys. Lett. B 294 (1992) 23-26

5. Is a manual available?

no

6. What nuclear reaction models are contained?

ISABEL: intranuclear cascadeSMM: statistical multifragmentation

evaporation (Weisskopf-Ewing)

fission

7. Range of targets allowed

No restrictions by authors, but restrictions due to statistical assumptions.

8. Range of projectiles allowed

hadrons and hadron clusters

9. Incident energy regime permitted

200MeV-10GeV

II. Specific Questions:

1. How are reaction cross-sections generated in the entrance channel?

geometric cross sections

2. What nuclear density distribution is used, and how does it enter the calculation?

volume of nucleus divided in eight shells, see also ISABEL contribution by Zeev Fraenkel

303

Page 305: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

3. Is the Fermi energy calculated in a local density approximation?

local Thomas Fermi density approximation for momenta, see also ISABEL contribution by ZeevFraenkel

4. What nuclear radius parameterization is used?

see ISABEL contribution by Zeev Fraenkel

5. For INC models

see ISABEL contribution by Zeev Fraenkel

6. If there is a precompound phase, describe the PE model used, parameters, i.e., partial statedensities, transition rates?

no

Are clusters multiple PE decay, relativistic kinematics used?How are angular distributions computed?Source of inverse cross-sections?

7. What physics are used for the final de-excitation state: evaporation model?

Describe parameters used: level densities, inverse cross-sections or transmission coefficient,choice of optical model parameters if relevant (or reference to source), range of excitationsallowed, inclusive or exclusive results?

for detailed description of last step see SMM-publications above

8. Is there any limit as to the number of nucleons from target for which yields may becalculated?

no

9. Any other comments on aspects not conserved in the above questions?

no

10. References to the literature or reports discussing these codes as implemented?

no

304

Page 306: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

10 PACE +MSM

Code Information Questionnaire

I. General Questions:

1. Name of the code

PACE-MSM

2. Name of the participant

Olga Vladilenovna Fotina

3. Responsible author of the code

Olga Vladilenovna Fotina

4. Reference of the code

Description of using MSM model is, for example, in ref. (1): D.O.Eremenko, O.V.Fotina et al.,in: Intermediate Energy Nuclear Data: Models and Codes, Proceedings of Specialists' meeting,ISSY-les-Moulineaux,(France) 30 May - 1 June 1994, OECD, Paris,1994, p.287.

5. Is a manual available?

Description presented in code.

6. What nuclear reaction models are contained?

Reaction cross sections generated in the entrance channel by our own approximation expressions(see ref.(*)).

Instead of use of the intranuclear cascade model and precompound models we used estimations inthe frame of Moving Source model (MSM); see ref.(l) for preequilibrium particles (neutron andproton).

Evaporation - Hauser-Feshbach formalism, realized in widely used code PACE (this is a modifiedversion of JULIAN - the Hillman-Eyal evaporation Monte-Carlo code coupling angularmomentum.)

A default level density is taken from Gilbert and Cameron. The fermi-gas level density parameter'a' can alternatively be taken as A/const. The yrast line of Gilbert-Cameron can be replaced by theCohen-Plasil-Swiatecki yrast line.

Fission is also considered as a decay mode, if the fission barrier at the angular momentumconsidered is less than 40 MeV. This cutoff level can be changed in the program.

The default fission barrier is the Cohen-Plasil-Swiatecki rotating liquid drop fission barrier. Thesaddle point level density is the ground state level density m.b. exponentiated to SQRT(ARATIO).

7. Range of targets allowed

Range of targets allowed of A from 20 up to 250 (determined by MSM model).

8 Projectiles and energy regime

305

Page 307: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Only protons are allowable as projectiles. This connected with the supplied version of MSMmodel. In the case of dominating of evaporation processes the code PACE has not restrictions forcalculations of evaporation processes.

9 Projectiles and energy regime

The proton energy range is from 100 Mev up to 1000 MeV.

For evaporation processes the code PACE has excitation energy limitations near 300 MeV, that

connected with computing limitations.

II. Specific Questions:

1. How are reaction cross-sections generated in the entrance channel?

2. What nuclear density distribution is used, and how does it enter the calculation?

3. Is the Fermi energy calculated in a local density approximation?

4. What nuclear radius parameterization is used?

5. For INC models

6. If there is a precompound phase, describe the PE model used, parameters, i.e., partial statedensities, transition rates?

Are clusters multiple PE decay, relativistic kinematics used?How are angular distributions computed?Source of inverse cross-sections?

7. What physics are used for the final de-excitation state: evaporation model?

Describe parameters used: level densities, inverse cross-sections or transmission coefficient,choice of optical model parameters if relevant (or reference to source), range of excitationsallowed, inclusive or exclusive results?

8. Is there any limit as to the number of nucleons from target for which yields may becalculated?

9. Any other comments on aspects not conserved in the above questions?

10. References to the literature or reports discussing these codes as implemented?

306

Page 308: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

11 MSDM

Code Information Questionnaire

I. General Questions:

1. Name of the code

MSDM - Many Stage Dynamical Model

2. Name of the participant

A.S. Botvina, A.V. Dementyev, O.N. Smirnova, N.M. Sobolevsky, V.D. Toneev

3. Responsible author of the code

N.S. Amelin - string model of hadron-hadron interactionK.K. Gudima, V.D. Toneev - cascade, coalescence and pre-equilibrium stages of the reactionJoint Institute for Nuclear Research, Dubna

A.S. Botvina - equilibrium deexcitation stage of the reactionN.M. Sobolevsky - some interface programs

Institute for Nuclear Research of Russian Academy of Science, Moscow

4. Reference for the code

Answer to Specific Question 10.

5. Is a manual available?

No

6. What nuclear reaction models are contained?

- Intranuclear cascade (including nucleus-nucleus interaction)

- Coalescence- Precompound decay; exiton master equation- Evaporation; Weisskopf-Ewing- Fermi statistics- Fission model- Multifragmentation of highly excited nuclei

7. Range of targets allowed

Unlimited

8. Range of projectiles allowed

Nucleons, pions, kaons, antinucleons, nuclei

9. Incident energy regime permitted

Up to 500 GeV (per nucleon)

Note: MSDM was used as hadron-nucleus generator of the transport code SHIELD at the thicktarget benchmark NSC/DOC(95)2. A.V.Dementyev, N.M.Sobolevsky. SHIELD - a Monte CarloHadron Transport Code. Inter-mediate Energy Nuclear Data: Models and Codes, Proc. ofSpecialists' Meeting, 30 May - 1 June 1994, OECD, Paris, 1994.

307

Page 309: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

II Specific Questions:

1. How are reaction cross-sections generated in the entrance channel?

Cross section is calculated as ageom. r\a where the transparency factor r|tr = Njn / (Nin + Nel) withNd is a number of events when a projectile has passed through without collisions.

2. What nuclear density distribution is used and how do these enter the calculation?

The nuclear matter density is described by the Fermi distribution with parameters c = 1.07 * A"3

frn, a = 0.545 fm. For light nuclei (A < 12) the Gaussian distribution is used with individualvalues of parameter for each A.

3. Is the Fermi energy calculated in a local density approximation?

Yes.

4. What nuclear radius parameterization is used?

The average nucleus radius R=1.3 * A1/3 but the maximal interaction radius is defined by the pointwhere the nuclear density is decreased by 20 as compared to the density at center of a nucleus.

5. For INC models:

5.a. What nucleon nucleon cross-sections are used? Are energy and isospin dependent?

The hadron-nucleon cross sections are energy- and isospin-dependent and are calculated byapproximations of experimental data [1] (at low energies up to several GeV). At high energy thecross sections for different channels are calculated on a basis of Quark-Gluon String Model(QGSM) [3,5]. The coherence of the cross sections in the transition energy region is provided.

5.b. How is Pauli exclusion handled in the INC?

It is assumed that nucleons in the nucleus-target occupy all energy levels up to Fermi energy. Anyelastic or inelastic interaction of some cascade particle with intranuclear nucleon is considered asforbidden if secondary nucleon has energy below the Fermi energy.

5.c. How are nuclear density effects treated?

The nucleus is traeted as a collection of separate nucleons rather than a drop of continuous matter.At the beginning of simulation of each hadron-nucleus interaction the intranuclear nucleons aredistributed according to appropriate nuclear matter density (see item 2). The decrease of nucleardensity due to knocking nucleons out of the nucleus during the cascade process is taken intoaccount.

5.d. How are ejectile binding energies handled?

The nucleon binding energy is equal to 7 MeV at the cascade stage of the reaction for all targetnuclei.

5.e. Is any nucleon-cluster scattering considered?

No.

5.f. Are ejectiles subject to surface refraction/reflection angular distributions?

No, as no inner surfaces are used at nuclear density description.

5.g. What channels other than neutron and proton are treated e.g. alpha, deuterons, tritons, pi,K, p, etc.?

308

Page 310: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Projectiles are nucleons, pions, kaons, antinucleons etc. (altogether almost 70 hadrons as QGSM[3,5] considers two lowest SU(3) multiplets in mesonic, baryonic and antibaryonic sector) as wellas any nuclei beginning with deuterons.

5.h. How is the transition made to the next phase of the calculation?

After cascade stage the following characteristics of the residual nucleus are known: A and Z,excitation energy, momentum, angular momentum, particle-hole configuration. Therefore one cansimulate further pre-equilibrium and/or equilibrium stages of the reaction.

5.i. What criteria for p-h excitation? is the next phase precompound or compound?

The number of captured cascade nucleons and of "holes" produced due to the intranuclearcollisions gives the initial particle-hole configuration for simulation of precompaund stage.

6. If there is a precompound phase, describe the PE model used, parameters, i.e. partial statedensities, transition rates? Are clusters treated multiple PE decay, relativistic kinematicsused? How are angular distributions computed? Source of inverse cross-sections?

Precompaund stage of the reaction is described by means of Monte Carlo solution of the masterequation [6]. The emission of n, p, d, t, He3, and He-4 is considered at relativistic kinematics. Theinverse cross sections are taken according to I. Dostrovsky et al.. A single particle equidistantlevel density scheme with the Pauli correction is used. Anisotropy of angular distributions arisesdue to the recoil nucleus momentum is attributed to the exciton system only rather then to allnucleons.

7. What physics are used for the final de-excitation stage: evaporation model, Fermi breakup?Describe parameters used: level densities inverse cross-sections or transmission coefficient,choice of optical model parameters if relevant (or reference to source), range of excitationsallowed, inclusive or exclusive results?

Light (A < 16) excited nuclei undergo explosive Fermi break-up [7,8]. The way of deexitation ofmore heavy nuclei depends on the value of excitation energy E*. At relatively small excitationenergy (E*/A < 2 MeV) the nucleus suffer traditional evaporation/fission process [8-11]. WhenE*/A > 2 MeV the multifragmetation of the nucleus occures [8,10,12] giving several exitednuclear fragments ( in average 2 - 4 as a rule). In the following these fragments undergo thesuccessive particle evaporation/fission or Fermi break-up in dependence on A. Physically thisprocess is a manifestation of liquid-gas type phase transition in finite nuclei. Thus the Many StageModel provides exclusive description of the nuclear reaction to the full extent.

8. Is there any limit as to the number of nucleons from target for which yields may becalculated?

No.

9-10. Any other comments on aspects not covered in the above questions?

References to the literature or reports discussing these codes as implemented?

See below "The Model Description" and References herein.

The model description

Our description of nuclear reactions is based on the Many Stage Model (MSDM) combiningtogether several approaches and being tested on a large variety of hadron-nucleus and nucleus-nucleus collisions in a wide range of the beam energy: from about 15 MeV till few hundreds ofGeV. We assume that the interaction process proceeds through the following subsequent stages:

309

Page 311: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

fast cascade stage which reduces the projectile-target interaction at a serie of binary collisionsbetween nuclear constituents and/or produced hadrons; coalescence stage followed by thecascade one at which cascade baryons can form a complex particle due to the final stateinteraction; pre-equilibrium stage of residual nuclei when a nucleus is getting equilibrated(thermalized) and some particles can be emitted during this equilibration process; equilibratedde-excitation stage of a nucleus which is followed by the pre-equilibrium particle emission andcan be realized in a competing way via Fermi decay, subsequent particle-fragment evaporation,nuclear fission or mult if ragmen tation process.

Cascade stage:

For energies below 600 MeV when it is possible to limit our consideration by only nucleons,pions and deltas, we use the Dubna Cascade Model] (DCM) [1] extended to proper describingpion dynamics for production and absorption processes [2]. DCM is based on the Monte-Carlosolution of a set of the Boltzmann-Uehling-Uhlenbeck relativistic kinetic equations which aretreated exactly for the collision term (including cascade-cascade interactions) but in anapproximate way for the mean-field evolution.

We keep the scalar nuclear potential of the initial state, defined in the Thomas-Fermiapproximation, and change only the nuclear potential depth according to a number of knocked-out nucleons. This allows one to take into account nuclear binding and Pauli principle [1].

This approximation is rather good for hadron-nucleus or peripheral nucleus-nucleus collisionswhere there is no large disturbance of the mean field but it is less justified for violent centralcollisions of heavy ions.

At energies higher than about 10 GeV, the Quark-Gluon String Model (QGSM) is used [3]. Thismodel for hadron collisions is based on the 1/NC expansion of the amplitude for binary processeswhere Nc is a number of quark colors. Different terms of the 1/NC expansion correspond todifferent diagrams which can be classified through their topological properties. Every diagramdefines how many strings are created in a hadronic collision and which quark-antiquark or quark-diquark pairs form these strings. The relative contributions of different diagrams can be estimatedwithin the Regge theory, and all QGSM parameters for hadron-hadron case were found from theRegge-like analysis of experimental data. The break-up of strings via creation of quark-antiquarkand diquark-antidiquark pairs is described by means of the Field-Feynman method [4] usingphenomenological functions for the fragmentation of quarks, antiquarks and diquarks intohadrons. This hadronic input is used for QGSM of nuclear collisions which, in its turn, is basedon the modified non-Markovian relativistic kinetic equation having a structure close to theBoltzmann-Uehling-Uhlenbeck kinetic equation but accounting of the finite formation time fornewly created hadrons (or string evolution) [3].

The above noted two energy extremes were bridged by the QGSM extention downward in thebeam energy [5]. Thus, QGSM is applied really to nuclear interactions in the whole energy rangeabove 600 MeV.

One should note that QGSM considers two lowest SU(3) multiplets in mesonic, baryonic andantibaryonic sectors, so interactions between almost 70 hadrons are treated on the same footing.This is a great advantage of this approach and quite important for the proper consideration of bothabundancy of hadrons, their decays and even properties of excited residual nuclei [3, 5].

Coalescence stage: By the end of the cascade stage, nucleons which are close each to other in themomentum space can coalesce to form a complex particle. In our treatment following [1], thiscoalescence is made for every nuclear event looking for a possible formation of fast d, t, 3Henuclei and a particles.

Pre-equilibrium decay stage: A residual nucleus resulting from the cascade stage is not inequilibrium state, as a rule. Further evolution of this nucleus towards equilibrium is described interms of the pre-equilibrium model based on the Monte-Carlo solution of the correspondingmaster-equation [6]. Transition matrix elements are estimated from interaction cross sections.

310

Page 312: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Complex particle emission and anisotropy of angular distributions for pre-equiiibrium particlesare taken into account. The initial state is given by the cascade stage calculation results [1, 6].

Equilibrium decay stage: After cascade and pre-equilibrium stages of the reaction we have anensemble of excited thermalized nuclei which undergo a slower disintegration.

For excited light (with A< 16) nuclei, even a relatively small excitation energy may becomparable with their total binding energy. In this case, the principal mechanism of de-excitationis the explosive decay of the excited nucleus into several smaller clusters. To describe this processthe Fermi model [7] is used. All final-state fragments are assumed to be in their ground or lowexcited states. We have slightly modified this model [8] by including fragment excited statesstable with respect to the nucleon emission as well as long-lived unstable nuclei 5He, 5Li, 8Be,9Be, which decay at the final stage of nuclear expansion. The number of channels considered wasabout 103 for 16O nucleus and 2 * 102 for 12C.

At relatively small excitation energy E* < 2 MeV/nucleon) the intermediate and heavy nuclei (A >16) suffer successive particle evaporation or undergo fission. For description of these process weuse a version of evaporation-fission models developed in [8, 9, 10]. The standard Weisskopfevaporation scheme was modified to take into account, among with light particles (nucleons, d, t,a), the heavier ejectiles up to 18O in ground and particle-stable excited states [8].

The process of fission competes with particle emission. Following the Bohr-Wheeler statisticalapproach it was assumed that the partial width for the compound nucleus fission is proportional tothe level density at the saddle point psp(E) and entering here the height of the fission barrier was isdetermined by the Myers-Swiatecki prescription [11]. Approximation of psp(E) were checked bythe analysis of nuclear fissibility and Tn/Tr branching ratios. The influence of the shell structureon the level densities is disregarded since in the analyzed reactions we are usually dealing with abroad distribution in excitation energy and isotope content of thermalized nuclei, therefore theshell effects are expected to be washed out.

At high excitation energy the main de-excitation mechanism of the excited nuclei is a many-particle break-up or multifragmentation. For simulating nuclear disintegration into manyfragments we use statistical multifragmentation model (SMM) described in [8, 10, 12] where alldetails and parameter values can be found. The break-up channels are simulated by the Monte-Carlo method according to their statistical weights. After break-up of the system, the fragmentspropagate independently in their mutual Coulomb fields and undergo secondary decays. The de-excitation of large (Af > 16) fragments is described by the above mentioned evaporation-fissionmodel and, for smaller fragments, by the Fermi break-up model. The correct description of themultifragmentation process is quite important for calculating the fragment production already atexcitation energies more than E'/A ~ 2 -3 MeV.

References:

[1] V.D.Toneev, K.K.Gudima, Nucl. Phys. A400 (1983) 173c.[2] P. Danielewicz, G.F. Bertsch, Nucl. Phys. A533 (1991) 172.[3] N.S.Amelin, K.K.Gudima, V.D.Toneev, "Nuclear Equation of State, Part B: QCD and the

Formation of the Quark-Gluon Plasma", Eds. W.Greiner, H.Stocker, Plenum Press, 1989,p.473; V.D. Toneev, N.S. Amelin, K.K. Gudima, S.Yu. Sivoklokov. Nucl. Phys. A519(1990) 463c; N.S. Amelin, E.F. Staubo, L.S. Csernai et al. Phys. Lett. B261 (1991) 352;Phys.Rev. C44 (1991) 1541; Phys.Rev.Let. 67 (1991) 1523.

[4] R.D. Field, R.P. Feynman, Nucl. Phys. B136 (1978) 1.[5] N.S. Amelin, K.K. Gudima, S.Yu. Sivoklokov, V.D. Toneev, Sov. Jour, of Nucl. Phys. 52

(1990) 272; V.D. Toneev, K.K. Gudima, Preprint GSI-93-52, Darmstadt, 1993.[6] K.K. Gudima, G.A. Ososkov, V.D. Toneev, Sov. Journ. of Nuclear Phys. 21 (1975) 260;

K.K. Gudima, S.G. Mashnik, V.D. Toneev, Nucl. Phys. A401 (1983) 329.[7] E. Fermi, Progr. Theor. Phys. 5 (1950) 570.[8] A.S. Botvina, A.S. Iljinov, I.N. Mishustin et al., Nucl.Phys. A475 (1987) 663.[9] G.D. Adeev, A.S. Botvina, A.S. Iljinov, M.V. Mebel, N.I. Pischasov and O.I. Serduk,

Preprint INR, 816/93, Moscow, 1993.

311

Page 313: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

[10] J.P. Bondorf, A.S. Botvina, A.S. Iljinov, I.N. Mishustin and K. Sneppen. Physics Reports257(1995) 133-221.

[11] W.D. Myers and W.J. Swiatecki, Nucl. Phys. 81 (1966) 1.[12] A.S. Botvina, A.S. Iljinov and I.N. Mishustin, Nucl.Phys. A507 (1990) 649.

312

Page 314: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

12 CASCADE

Code Information Questionnaire

I. General Questions:

1. Name of the code

CASCADE

2. Name of the participant

Yu.N.Shubin, A.Yu.Konobeyev, V.P.Lunev

3. Responsible author of the code

V.S.Barashenkov

4. Reference for the code

Ref.fl]

5. Is a manual available?

Yes.

6. What nuclear reaction models are contained?

Intranuclear cascade model with explicit consideration of the time coordinate described inRef.[2], evaporation model, fission model.

7. Range of targets allowed

Unrestricted.

S. Range of projectiles allowed

Unrestricted.

9. Incident energy regime permitted

Up to 1 TeV.

VI.2. Specific Questions:

1. How are reaction cross-sections generated in the entrance channel?

Reaction cross-sections are obtained using the experimental and evaluated data from Ref.[3].

2. What nuclear density distribution is used and how do these enter the calculation?

Nuclear distribution obtained from experimental electron-nuclei scattering data is used.

3. Is the Fermi energy calculated in a local density approximation?

Yes.

4. What nuclear radius parameterization is used'?

313

Page 315: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

5. For INC models:

5.a. What nucleon nucleon cross-sections are used? Are energy and isospin dependent?

Nucleon-nucleon cross-sections are energy and isospin dependent.

5.b. How is Pauli exclusion handled in the INC?

5.c. How are nuclear density effects treated?

Nonuniform nuclear density distribution is taken into account directly by the method described inRef.[2].

5.d. How are ejectile binding energies handled?

Using corrected Cameron formula.

5.e. Is any nucleon-cluster scattering considered?

No.

5.f. Are ejectiles subject to surface refraction/reflection angular distributions?

5.g. What channels other than neutron and proton are treated e.g. alpha, deuterons, tritons, pi,K, p, etc.?

Pions and muons are considered for cascade stage, deuterons, tritons, He-3, alpha and more heavyfragments are treated for equilibrium stage of reaction.

5.h. How is the transition made to the next phase of the calculation?

5.i. What criteria for p-h excitation? is the next phase precompound or compound'?

The next phase is compound.

6. If there is a precompound phase, describe the PE model used, parameters, i.e. partial statedensities, transition rates?

No PE phase.

7. What physics are used for the final de-excitation stage ?

Level density are calculated using Fermi gas model.The inverse cross-sections are calculated via the "sharp cut-off model.

8. Is there any limit as to the number of nucleons from target for which yields may becalculated?

No.

9. Any other comments on aspects not covered in the above questions?

10. References to the literature or reports discussing these codes as implemented'?

[1] V.S.Barashenkov et al., Preprint of JINR, R2-85-173, 1985.[2] V.S.Barashenkov et al., Nucl. Phys. A338 (1980) 413.[3] V.S.Barashenkov, Preprint of JINR, R2-89-770, 1989.

314

Page 316: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

13 DISCA

Code Information Questionnaire

I. General Questions:

1. Name of the code

DISCA

2. First name of the participant

Yu.N.Shubin, A.Yu.Konobeyev, V.P.Lunev

3. Responsible author of the code

A.Yu.Konobeyev, V.P.Lunev, Yu.N.Shubin

4. Reference for the code

Report IPPE, 1996, is under preparation

5. Is a manual available?

A manual is given in comments to the code listing

6. What nuclear reaction models are contained?

Modified intranuclear cascade model, evaporation model

7. Range of targets allowed

~10<A<209

8. Range of projectiles allowed

Neutrons, protons, alpha-particles

9. Incident energy regime permitted

<1 GeV

VI.2. Specific Questions:

1. How are reaction cross-sections generated in the entrance channel?

Reaction cross-sections are calculated. Total cross-sections are obtained via relation Pi(R+l)'/2,where R is the radius of the outer zone, 1 is the wavelength of the incident particle.

2. What nuclear density distribution is used and how do these enter the calculation?

Ten concentric nucleus zone with the constant density are considered. The radius of the outerzone is estimated under condition that the nuclear density is equal 0.01 x density in the nucleuscenter.

3. Is the Fermi energy calculated in a local density approximation?

Yes.

315

Page 317: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

4. What nuclear radius parameterization is used'?

R0=1.2fin.

5. For INC models:

5.a. What nucleon nucleon cross-sections are used? Are energy and isospin dependent?

Nucleon-nucleon cross-sections from Refs.[l,2] are used in calculations. Cross-sections areenergy and isospin dependent.

5.b. How is Pauli exclusion handled in the INC?

It is described in Ref.[3].

5.c. How are nuclear density effects treated?

SeeQ.l,Q.2

5.d. How are ejectile binding energies handled?

Using experimental nuclide masses and the Myers-Swiatecki formula.

5.e. Is any nucleon-cluster scattering considered?

Yes, the nucleon-alpha interaction is simulated. Also quasi pick-up model is used to describealpha-emission.

5.f. Are ejectiles subject to surface refraction/reflection angular distributions?

Yes, both effects are treated.

5.g. What channels other than neutron and proton are treated e.g. alpha, deuterons, tritons, pi,K, p, etc.?

On the cascade reaction stage: alpha; on the evaporation stage: deuteron, triton, He-3, alpha.

5.h. How is the transition made to the next phase of the calculation?

No specific "cut-off energy is considered.

5.i. What criteria for p-h excitation? is the next phase precompound or compound'?

The next phase is compound.

6. If there is a precompound phase, describe the PE model used, parameters, i.e. partial!state densities, transition rates?

No PE phase. See Q.9.

7. What physics are used for the final de-excitation stage ?

Level density are calculated using Fermi gas model. At the low excitation energies the "constanttemperature" model is adopted. The inverse cross-sections are calculated via the optical model.

8. Is there any limit as to the number of nucleons from target for which yields may becalculated?

No.

316

Page 318: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

9. Any other comments on aspects not covered in the above questions?

The preequilibrium phase described by PE models is not considered.The reason is the inclusion in the INC algorithm of new pinciple:restriction on the orbital momenta of interacting nucleons (see Ref.[4]). It compensate thedeficiencies of the usual INC model and allows, as shown in Ref.[4], use the model to predictangular and energy distributions of secondary particles in the whole energy range wherepreequilibrium models are applicable.

10. References to the literature or reports discussing these codes as implemented'?

See e.g. Refs.[4-7].

[1] K.Chen et al., Phys. Rev. 166 (1968) 949.[2] H.W.Bertini, Report ORNL-3383, 1963; ORNL-3786, 1966.[3] V.S.Barashenkov, V.D.Toneyev, Interaction of High Energy Particles and Atomic Nuclei

with Nuclei (Vzaimodeystviya Vysokoenergeticheskikh Chastits i Atomnykh Yader sYadrami, Moscow, 1972) [Engl. transl.: FTD-ID (RS) T-1069-77, July 1977]

[4] Yu.N.Shubin, V.P.Lunev, A.Yu.Konobeyev, Yu.A.Korovin, Proc. Spec. Meet, onIntermediate Energy Nuclear Data: Models and Codes, Issy-Les-Moulineaux, France, 30May-1 June 1994, OECD/OCDE, Paris, p.35.

[5] A.Yu.Konobeyev, Yu.A.Korovin, Nucl. Instr. Meth., B82 (1993) 103.[6] V.V.Artisyuk, A.Yu.Konobeyev, Yu.A.Korovin, Kerntechnik, 58 (1993) 174.[7] A.Yu.Konobeyev, Yu.A.Korovin, J. Nucl. Mat., 195 (1992) 286; 186 (1992) 117.

317

Page 319: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

14 ALICE 92

Code Information Questionnaire

I. General Questions:

1. Name of the code

ALICE 92

2. Name of the participant

M. Blann

3. Responsible author of the code

M. Blann

4. Reference of the code

UCRL-JC-109052, Lawrence Livermore National Laboratory report, November 1991.

5. Is a manual available?

Yes

6. What nuclear reaction models are contained?

Precompound decayhybridangular distributions from N-N scatteringangular distributions from systematics

EvaporationWeisskopf-Ewing

Fission modelBohr-Wheeler, options for fission barriers

7. Range of targets allowed

300 v

8. Range of projectiles allowed

300 y

9. Incident energy regime permitted

0-1000 MeV

(300 MeV excitation maximum)

II. Specific Questions:

1. How are reaction cross-sections generated in the entrance channel?

Optical model for Z < 2, parabolic model Z > 2.318

Page 320: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

2. What nuclear density distribution is used, and how does it enter the calculation?

Fermi density distribution for precompound decay uses Thomas-Fermi local densityapproximation.

3. Is the Fermi energy calculated in a local density approximation?

Yes, in geometry dependent hybrid model.

4. What nuclear radius parameterization is used?

Fermi density distribution with parameters based on Myers droplet model.Central density radius = 1.18A"3 (l.-(l./1.18A"3)2) range parameter Z = 0.55.This is used for precompound local density calculation.

For reaction, inverse cross sections, optical parameters are used as given in Phys. Rev. C28(1983) 1975.

5. For INC models

6. If there is a precompound phase, describe the PE model used, parameters, i.e., partial statedensities, transition rates?

Precompound decay model used: hybrid model with parameters given in Phys. Rev. C28 (1983)1475. Hybrid model is described in Phys. Rev. Lett. 27 (1971) 337 partial state densities areEricson-Williams exciton densities; transition rates from Pauli corrected n-n scattering or fromimaginary optical potential. No adjustable parameters. Multiple P.E. decay is treated,no clusters treated in PE phasenon-relativistic kinematics/phase spaceAngular distributions may be calculated from N-N scattering kinematics or using Kallbachsystematics; inverse cross sections may be selected either from optical model or from classicalsharp cutoff model.

Are clusters multiple PE decay, relativistic kinematics used?

Multiple PE decay

How are angular distributions computed?

N-N scattering kinematics as per Goldberger, or systematics. Latter option, due to Kalbach, usedin this submission

Source of inverse cross-sections?

See 4.7. What physics are used for the final de-excitation state: evaporation model, Fermi breakup?

Weisskopf-Ewing model with n, p, d, a in exit channel is used in standard version of ALICE.Other versions allow 23 ejectiles per nuclide. A fermi gas level density is used with default a =A/9. Inverse cross sections are generated from the nuclear optical model. Parameters for opticalmodel are given in Phys. Rev. C28 (1983) 1475. Excitations up to 300 MeV in standard release.Exclusive product yields are produced, but emission spectra are inclusive.

Describe parameters used: level densities, inverse cross-sections or transmission coefficient,choice of optical model parameters if relevant (or reference to source), range of excitationsallowed, inclusive or exclusive results?

319

Page 321: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

8. Is there any limit as to the number of nucleons from target for which yields may becalculated?

Yields may be calculated for neutron numbers up to 22 fewer and proton numbers up to 9 fewerthan the CN.

9. Any other comments on aspects not considered in the above questions?

The precompound calculation is invalid above incident energies around 270 MeV/nucleon sinceno pion physics is entered into N-N kinematics, and Ericson partial state densities should notwork in this case.

10. References to the literature or reports discussing these codes as implemented?

See reference in question #6 and LLNL Report UCRL-JC-109052, November 21, 1991.

320

Page 322: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

15 ALICE-IPPE

Code Information Questionnaire

I. General Questions:

1. Name of the code

ALICE-IPPE

2. Name of the participant

Yu. N. Shubin, A.Yu. Konobeyev, V. P. Lunev

3. Responsible author of the code

M.Blann, V. P. Lunev, A.Yu. Konobeyev, Yu. N. Shubin

4. Reference of the code

Reports UCID-19614, UCID-20169,

IAEA Report INDC(CCP)-385, Vienna 1995

5. Is a manual available?

The manual is under preparation.

6. What nuclear reaction models are contained?

The precompound decay:

Hybrid and geometry dependent form with parameters given in Phys.Rev. C28 (1983)1475.

Hybrid model is described in Phys.Rev.Lett. 27(1971)337.Partial level densities are Williams exciton densities.Transition rates from Pauli corrected N-N scattering or from imaginary optical potentials.Prequilibrium emission of clusters unifying knock-out and pick-up coalescence models.Angular distribution may be calculated from Kalbach systematics or from N-N scatteringkinematics.Nonrelativistic kinematics.

The evaporation model:

Weisskopf-Ewing.Fission model:

Bohr-Wheeler, options for fission barriers.

7. Range of targets allowed

Approximately A > 20.

8. Range of projectiles allowed

Unrestricted

9. Incident energy regime permitted

0 - 300 MeV.

321

Page 323: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

VI.2. Specific Questions:

1. How are reaction cross-sections generated in the entrance channel?

Reaction cross section for neutron, proton, deuteron and alpha particles from optical model orfrom sharp cutoff systematic Phys. Rev. C21 (1980) 1770. For heavier charged particle, opticalmodel with parabolic potential is used.

2. What nuclear density distribution is used, and how does it enter thecalculation?

Density distribution in Fermi form.

3. Is the Fermi energy calculated in a local density approximation?

The Fermi energy calculated in a local density approximation in geometry dependent hybridmodel.

4. What nuclear radius parametrization is used?

Fermy density distribution with parameters based on Myers droplet model

Fermi density distribution for GDH model:

d(Rl) = ds/( 1 +exp((Rl-C)/0.55) (1)

radius for partial wave L: Rl = lam(L+l/2), ds - saturation density for nuclear matter.Charge radius C = 1.18 A** 1/3(1-1/(1.18 A**l/3)**2) + lam fm.For hybrid model, nuclear density is obtained by integrating (1) from 0 to C+2.75 fm

5. For INC models

6. If there is a precompound phase, describe the PE model used, parameters, i.e., partial statedensities, transition rates?

Nonrelativistic kinematics.

The hybrid or geometry dependent hybrid model is used.For partial state density, William's state density is adopted with the equidistant model parameterA/13.Angular distributions from Kalbach systematic, Phys. Rev. C37, (1988) 2350 or from N-Nscattering kinematics.Nonrelativistic kinematics.

7. What physics are used for the final de-excitation state: evaporation model, Fermi breakup?

For final de-excitation stage evaporation model is used. Weisskopf-Ewing model with n, p, d,alpha, 3He, 3H and gamma in exit channel is used in the code. Level density of unified superfluidmodel with vibrational and rotational phenomenological enhancement and damping of thecollective effects is used.Inverse reaction cross sections are generated from the nuclear optical model, sharp cutoffapproximation and parabolic approximation. Parameters for optical model given in Phys.Rev.C28,(1983)1475.Free N-N cross section from new Kalbach systematic, Phys. Rev. C41 (1990) 1651.

8. Is there any limit as to number of nucleons from target for which yields may be calculated?

Yields may be calculated for neutron number 22 fewer and proton numbers 9 fewer than CN.

9. Any others comments

322

Page 324: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

The precompound calculation is invalid above incident energies around 270 MeV since no pionphysics is entered into N-N kinematics.

10. References to the literature or reports discussing these code.

Main description of the code in:

Reports UCID-19614, UCID-20169

Main improvements of these code discussed in:

Izv.Acad.Nauk Ser. Phys. 49 (1985) 962.Report IAEA INDC(CCP)-385, Vienna 1995Acta Physica Slovaca 45 (1995) 705-716

323

Page 325: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

16 ARELCode Information Questionnaire

I. General Questions

1. Name of the code

AREL

2. First name of the participant

M. Gloris

3. Responsible author of the code

M. Blann

4. Reference of the code

LLNL report UCRL-88540/Phys. Rev. C28 (1983) 1475, however, without the relativisticextension (further references as for the widely known code ALICE).

5. Is a manual available?

No, but there are preceeding instructions given in the code itself.

6. What nuclear reaction models are contained?

Precompound decay: geometry-dependent hybrid modelEvaporation: Weisskopf-EwingFission model: Bohr-Wheeler

7. Range of targets allowed

No restrictions.

8. Range of projectiles allowed

No restrictions.

9. Incident energy regime permitted

Up to 900 MeV.

II. Specific Questions

1. How are reaction cross-sections generated in the entrance channel?

According to systematics given in S. Pearlstein, Astrophys. J. 346 (1989) 1049.

2. What nuclear density distribution is used and how does these enter the calculation?

Fermi density distribution for precompound decay uses Thomas-Fermi local densityapproximation.

3. Is the Fermi energy calculated in a local density approximation?

324

Page 326: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Yes.

4. What nuclear radius parametrization is used?

Fermi density distribution with parameters based on Myers droplet model.

5. For INC models

Not implemented.

6. If there is a precompound phase, describe the PE model used, parameters, i.e., partial statedensities, transition rates?

Precompound decay model is the geometry dependent hybrid model as described in references(see 1.4.); partial state densities are Ericson-Williams exciton densities; transition rates fromPauli-corrected N-N scattering.

Are clusters treated multiple PE decay, relativistic kinematics used?

Multiple P.E. decay is treated without any clusters; relativistic kinematics/phase space.

How are angular distributions computed?

Via systematics expressions of Kalbach or N-N scattering kinematics can be used.

Source of inverse cross-sections?

Optical model scaled to the Pearlstein calculated reaction cross section (see II. 1.).

7. What physics are used for the final de-excitation state?

Weisskopf-Ewing statistics is applied in evaporation phase with n, p and in exit channel.

Describe parameters used: level densities, inverse cross-sections or transmission coefficient,choice of optical model parameters if relevant (or reference to source), range of excitationsallowed, inclusive or exclusive results?

A fermi gas level density is used with default a = A/9; inverse cross sections are generated fromoptical model (parameters are given in Phys. Rev. C28 (1983) 1475) and scaled to the Pearlsteincalculated reaction cross section.

8. Is there any limit as to the number of nucleons from target for which yields may becalculated?

Yes, yields may only be calculated for residual nuclei with neutron numbers up to 22 fewer andproton numbers up to 9 fewer than the CN.

9. Any other comments on aspects not considered in the above questions?

AREL is yet another version of the widely used ALICE code. It differs from these versionsmainly in the relativistic kinematics/phase space and in the incident energy regime permitted.

Some efforts were undertaken to produce well shaped excitation functions which was achieved byslightly adjusting incident energies as well as using a constant energy binning of 0.5 MeV overthe whole energy range.

Nevertheless, it must be emphasized that the enhancement to use incident particle energies up to900 MeV is simply achieved by enlarging array dimensions in the code - no new physical effectsas for example pion production are considered.

325

Page 327: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Above questions are mostly answered with respect to the options used in this exercise. There are alot of possible other options (as well as other code variants are existing), however, it is notpossible to combine these options with each other because this results in most cases in a crashwhile running the program.

10. References to the literature or reports discussing these codes as implemented?

T. Schiekel et al, Nucl. Instr. Meth. Res. (1996), in press

326

Page 328: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

17 HMS-ALICE

Code Infromation Questionnaire

I. General Questions:

1. Name of the code:

HMS-ALICE

2. Name of the participant

M. Blann

3. Responsible author of the code

M. Blann

4. Reference of the code

UCRL-JC-109052, Lawrence Livermore National Laboratory, November 1991, & UCRL-JC-123495, February 1996

5. Is a manual available?

YES

6. What nuclear reaction models are contained?

Precompound decay

HMS (Hybrid Monte Carlo Simulation)angular distributions from systematicsEvaporationWeisskopf-EwingFission ModelBohr-Wheeler, options for fission barriers

7. Range of targets allowed

300H-> X

110

S. Range of projectiles allowed

300h-> X

110

9. Incident energy regime permitted

0-1000 MeV

II. Specific Questions

1. How are reaction cross-sections generated in the entrance channel?

Optical model for Z.=BE2, parabolic model Z>2.

327

Page 329: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

2. What nuclear density distribution is used, and how does it enter the calculation?

Fermi density distribution for precompound decay uses Thomas-Fermi local densityapproximation.

3. Is the Fermi energy calculated in a local density approximation?

Yes, in geometry dependent version of HMS; in this exercise only the result averaged over thenuclear volume is used.

4. What nuclear radius parameterization is used?

Fermi density distribution with parameters based on Myers droplet model.Central density radius = 1.18A"3 (l.-(l./1.18Al/3 f) range parameter Z=0.55.This is used for precompound local density calculation.For reaction, inverse sections, optional parameters are used as given in Phys. Rev. C28 (1983)1975.

5. For INC models

6. If there is a precompound phase, describe the PE model used, parameters, i.e., partial statedensities, transition rates?

Precompound decay model used: HMS model with parameters given in Phys. Rev. C28 (1983)1475 for the Hybrid model. Partial state densities are Ericson exciton densities used only for 2and 3 exciton cases. Transition rates from Pauli corrected n-n scattering. No adjustableparameters.

Multiple P.E. decay is treated, with no limit on number of Precompound nucleons other than thatdue to to nature.

no clusters treated in PE phase

relativistic kinematics/phase space

Angular distributions may be calculated using Kallbach systematics; inverse cross sections maybe selected either from optional model or from classical sharp cutoff model.

Are clusters multiple PE decay, relativistic kinematics used?

Multiple PE decay, no limit on number of nucleons; relativisitic kinematics

How are angular distributions computed?

Kalbach systematics presently only available for HMS option used in this submission.

Source of inverse corss-sections?

See 4.

7. What physics are used for the final de-excitation state: evaporation model, Fermi breakup?

Weisskopf-Ewing model with n.p,d,alpha in exit channel is used in standard version of ALICE.

Other versions allow 23 ejectiles per nuclide.

A fermi gas level density is used with default a = A/9or

328

Page 330: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

the shell corrected model of Kataria and Ramamurthy may be used. The latter was used in V andCo target results of this work. The Gilbert-Cameron model is also an option in all recent ALICEcodes.Inverse cross sections are generated from the nuclear optical model.Paramaters for optical model are given in Phys.Rev.C28 (1983) 1475.Excitations up to 600 MeV in HMS- Alice may be treated.

Describe parameters used: level densities, inverse cross-sections or tranmission coefficient, choiceof optical model parameters if relevant (or reference to source), range of excitations allowed,inclusive or exclusive results?

S. Is there any limit as to the number of nucleons from target for which yields may becalculated?

Yields may be calculated for neutron numbers up to 22 fewer and proton numbers up to 9 fewerthan the CN.

9. Any other comments on aspects not considered in the above questions?

The precompound calculation starts to become questionable above around 400 MeV/nucleonsince no pion physics is entered into N-N kinematics. Later versions should include pionphysics,nd be applicable to 1 GeV

10. Referencs to the literature or reports discussing these codes as implemented?

See reference in question #6 and LLNL Report UCRL-JC-109052, November 21, 1991, alsoLLNL Report UCRL-JC-123495- February, 1996.

329

Page 331: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

18 PEQAG2

Code Information Questionnaire

I. General Questions:

1. Name of the code

PEQAG2 (extended)

2. Name of the participant

Emil Betak

3. Responsible author of the code

Emil Betak

4. Reference of the code

a) Betak, Report INDC(CSR)-016/LJ (IAEA Vienna 1989);b) Betak: Report FU SAV 89/5 (Inst. Phys. Bratislava 1989)

(this is an update of IAEA report)

5. Is a manual available?

Yes

6. What nuclear reaction models are contained?

Precompound decay in exciton master equation

7. Range of targets allowed

Recommended A > 40

8. Range of projectiles allowed

n, p, d, t, he-3, alpha, gamma, heavy ions

9. Incident energy regime permitted

Excitation energy of composite system < 500 - 800 MeV, but recommended < 150 - 200 MeV.

II. Specific Questions:

1. How are reaction cross-sections generated in the entrance channel?

Reaction cross sections in the entrance channel may be supplied on the input. Default (which hasbeen used for this intercomparison) is the formula by Chatterjee, Gupta, and Murthy (set ofpapers, 1980-1981).

2. What nuclear density distribution is used, and how does it enter the calculation?

No dependence on nuclear matter density.

3. Is the Fermi energy calculated in a local density approximation?

Fermi energy approximated by fixed value of 40 MeV.

330

Page 332: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

4. What nuclear radius parameterization is used?

Nuclear radius enters just the reaction c.s. (see item 1).

5. For INC models

Not INC model.

6. If there is a precompound phase, describe the PE model used, parameters, i.e., partial statedensities, transition rates?

Precompound phase throughout all the reaction chain.Equidistant-spacing model (Williams-like formula) with correction to finite depth of nuclearpotential.g = A/13, no pairing.Using |M|**2, parameterized in its form which depends on the excitation energy per exciton (seeKalbach).

UsedK'= 100MeV**3.

Are clusters multiple PE decay, relativistic kinematics used?

No clusters, only non-relativistic kinematics.

How are angular distributions computed?

No angular distributions.

Source of inverse cross-sections?

"Approximated using closed formulae according to A. Chatterjee et al., Pramana 16 (1981), 391;Nucl. Phys. Solid State Phys. Symp, Delhi 1980; private comm. (1981)."

7. What physics are used for the final de-excitation state: evaporation model, Fermi breakup?

De-excitation stage done fully in precompound manner (exciton master equations, see above).

Describe parameters used: level densities, inverse cross-sections or transmission coefficient,choice of optical model parameters if relevant (or reference to source), range of excitationsallowed, inclusive or exclusive results?

Results can be obtained both inclusive and exclusive. In the present intercomparison, only theinclusive spectra are sent (the exclusive ones may be supplied in a short time).

8. Is there any limit as to the number of nucleons from target for which yields may becalculated?

Dimensions of arrays set to 6 subsequent nucleons (which can be interspaced by gammas inarbitrary amount and order).

9. Any other comments on aspects not considered in the above questions?

I do not think so.

10. References to the literature or reports discussing these codes as implemented?

a) Previous intercomparisons.

b) Gruppelaar et al.: Riv. N. Cim. 9 (1986)No. 7. c)

Betak: Varenna lectures 1988 and 1991;331

Page 333: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Betak, Dobes: Phys. Lett. BL30 (1983) 350;

Gvelbaretal.: J. Phys. Gi7(1991) 113;

Betak et a!.: Phys. Rev. C46 (1992) 945.

332

Page 334: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

19 FKK-GNASH

Code Information Questionnaire

I. General Questions:

1. Name of the code

FKK-GNASH

2. Name of the participant

M.B. Chadwick and P.G. Young

3. Responsible author of the code

Mark Chadwick - pre-equilibrium partPhilip Young - Hauser Feshbach part

4. Reference of the code

M. B. Chadwick and P. G. Young, LA-UR-93-104

5. Is a manual available?

Yes. Full details of the present calculations, as well as a description of the FKK codes which linkinto GNASH are given in "FKK-GNASH Calculations of (p,xn) and (p,xp) Reactions on 9 0Zrand 2 0 8 Pb for NEA Code Intercomparison", M. B. Chadwick and P. G. Young, Los AlamosReport LA-UR-93-104 (1993).

A description of the GNASH code is presented in "Comprehensive Nuclear Model Calculations:Introduction to the Theory and Use of the GNASH Code", P. G. Young, E. D. Arthur, and M. B.Chadwick, Los Alamos Report LA-12343-MS (1992).

6. What nuclear reaction models are contained?

Precompound decay: Quantum mechanical multi-step (FKK)

Evaporation: Hauser Feshbach

7. Range of targets allowed

Approximately A > 20

8. Range of projectiles allowed

Neutrons or protons, so far

9. Incident energy regime permitted

Approximately E < 200 MeV

II. Specific Questions:

1. How are reaction cross-sections generated in the entrance channel?

Using a spherical or deformed optical potential, with codes ECIS or STAT89.

2. What nuclear density distribution is used, and how does it enter the calculation?

333

Page 335: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Does not explicitly enter the calculation, but it does implicitly due to its dependence on nucleonbound wave functions that are used.

3. Is the Fermi energy calculated in a local density approximation?

N/A

4. What nuclear radius parameterization is used?

r=1 .2A 1 / 3 fm

5. For INC models

6. If there is a precompound phase, describe the PE model used, parameters, i.e., partial statedensities, transition rates?

The quantum mechanical FKK theory has been used to calculate the emission of a preequilibriumneutron or proton. Two distinct mechanisms can take place: Multistep Compound emission(MSC), in which the preequilibrium cascade passes through bound states until emission occurs;and Multistep Direct emission (MSD), in which at least one of the particles remains in thecontinuum during the cascade. MSC emission can only occur for incident energies below about50 MeV, and is usually not important above 30 MeV. Therefore, in the present calculations wehave only included MSC in the 25 MeV incident energy cases. MSD is important at all theenergies considered. The phenomenon of crossover transitions from the MSD to MSCpreequilibrium chain is included in the calculations.

Partial level densities for the MSD calculations were taken from the Williams formula with finitehole depth restrictions,

(1)

where g = A/14, A is the pairing energy of Dilg and A p n - (p^ + h^ + p - 3h)/4g is the Pauli-blocking factor. B is the average neutron and proton binding energy, and ep the Fermi-energywhich we take to be 35 MeV. The theta-function is unity if its argument is positive, and zerootherwise. The spin distribution of p-h states is taken to be a Gaussian with spin cut-off a 2 =0.24nA^3. j n the MSC calculations, a Williams-type formula similar to the above was used, butwith the further restriction that the particle excitations remain bound.

In the FKK formalism the total MSD cross section is given as a sum of the various MSDpreequilibrium stage contributions, and the cross section for each of the multistep processes isgiven in terms of a convolution of 1-step processes. Thus, MSD 1-step cross sections are requiredat both the incident energy of interest, and at all lower incident energies. In practice, this is doneby calculating 1-step cross sections at five lower incident energies in addition to the incidentenergy of interest, and interpolating the results for other incident energies. We calculate the formfactor for the various transitions with DWUCK4 using a Yukawa potential of range 1 frn, andstrength VQ, for lplh excitations. With a CRAY computer we have no difficulty in averaging alarge sample of microscopic lplh DWUCK4 cross sections (typically, for each energy calculated,we average twenty-seven microscopic DWBA cross sections). When calculating the form factors,unbound-state wavefunctions were obtained from optical-potential scattering states, and bound-

334

Page 336: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

states from a real Wood-Saxon potential well with radius parameter 1. 2 frn and diffuseness 0.6fm. We apply a Gaussian smoothing to our calculated MSD cross sections of width 2 MeV, toremove artificial fluctuations which would not arise if we used deformed Nilsson single-particlestates. We have found an approximate energy dependence of the residual interaction strength VQ 2

ul/Ejn c and therefore incorporate this energy dependence into our multistep calculations. VQ isthe only free parameter entering the MSD calculations, and is extracted in the following way:

1. For the 80 and 160 MeV incident energies, the first-stage MSD preequilibrium processeswere assumed to exhaust the reaction cross section, allowing VQ to be uniquelydetermined. It is important to note that we do not vary VQ SO that the MSD reactionsaccount for all the observed preequilibrium emission, as has been done in all previousMSD analyses by other authors. We find that for these high incident energies, such aprocedure leads to a violation of unitary, since the integrated neutron and proton MSDthen exceeds the reaction cross section. Instead, we find that multiple preequilibriumprocesses (described below) account for much of the observed high-emission energydata.

2. For the 25 and 45 MeV incident energies, the above procedure cannot be used sincepreequilibrium processes no longer account for the whole reaction cross section, andprimary Hauser-Feshbach emissions important. However, multiple preequilibriumeffects are not very important at these low energies, and so VQ can be obtained bymatching the MSD emission to the difference between the high energy differential data,and the calculated MSD.

Are clusters multiple PE decay, relativistic kinematics used?

While the FKK theory was used to describe preequilibrium emission of a first emitted neutron orproton, further preequilibrium emissions ("multiple preequilibrium") was included using anexciton model.

How are angular distributions computed?

The angular distributions are obtained theoretically from the FKK and Hauser-Feshbach theories.Since the preequilibrium multiple emission corss section was calculated from the exciton model,we assumed that its angular distribution is equal to that of the MSD 2-step.

Source of inverse cross-sections?

7. What physics is used for the final de-excitation state: evaporation model, Fermi breakup?

The full angular-momentum dependent version of the Hauser-Feshbach model in the GNASHcode is incorporated into FKK-GNASH. Before performing the analysis, trial calculations wereperformed with 160 MeV protons incident on 90Zr and 2 0 8 Pb to determine the reactionsequences that make significant (s greater than ~ 1 mb) contributions to the proton and neutronemission spectra. The decay sequence used in the p-""Zr calculation includes neutron, proton,and g-ray decay for Nb isotopes from 9^Nb through 8^Nb, for z r isotopes from 9^Zr through85Zr, for Y isotopes from 8 9Y through 8 3Y, for Sr isotopes from 88Sr through 82Sr, and for Rbisotopes from 8 'Rb through 82Rb. Additionally, alpha-particle emission was included for theprimary channel. In the case of the p-208Pb calculation, neutron and g-ray decay are included forBi isotopes from 2 0 9 Bi through 192Bi and for Pb isotopes from 2 0 8 Pb through 1 9 6Pb.Additionally, proton and deuteron emission are allowed for the primary channel, and protonemission is permitted for the 2^8Bi and 2^8Pb compound nuclei. No other reactions producesignificant contributions to the neutron or proton emission spectra.

For the p-9^Zr calculations, the standard Gilbert and Cameron level density model was used,together with default Gilbert and Cameron values for the level density parameters. Level densitiesfor the p-2^8Pb calculations were obtained from the Ignatyuk. For both the 9^Zr and 2^8Pbcalculations, estimates of gamma-ray competition were made using gamma-ray strength functionsfrom the model of Kopecky and Uhl. Although GNASH includes a double-humped fission barrier

335

Page 337: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

model, competition from fission was not included in the p-208pj, analysis because it is estimatedto contribute less than 5% of the reaction cross section at the highest energy considered.

Describe parameters used: level densities, inverse cross-sections or transmission coefficient,choice of optical model parameters if relevant (or reference to source), range of excitationsallowed, inclusive or exclusive results?

S. Is there any limit as to the number of nucleons from target for which yields may be

calculated?

No

9. Any other comments on aspects not conserved in the above questions?

10. References to the literature or reports discussing these codes as implemented?

See references in answer to Q.5. In addition, see "Feshbach-Kerman-Koonin Analysis of

Reactions: P-Q Transitions and Reduced Importance of Multistep Compound Emission", M. B.

Chadwick and P. G. Young, Phys. Rev. C47, 2255 (1993).

336

Page 338: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

20 MINGUS

Code Information Questionnaire

I. General Questions:

1. Name of the code:

MINGUS95

2. Name of the first participant:

A.J. Koning

3. Responsible author of the code:

A.J. Koning

4. Reference for the code:

- A.J. Koning, O. Bersillon and J.-P. Delaroche, "Quantum-mechanical direct, pre-equilibriumand equilibrium spectra up to 200 MeV", proceedings of the International Conference on NuclearData for Science and Technology, 1072-1074, ed. J.K. Dickens, May 9-13 1994, Gatlinburg,Tennessee USA

- A.J. Koning, O. Bersillon and J.-P. Delaroche, "Nuclear model calculations below 200 MeVand evaluation prospects", proceedings of the NEA Specialist Meeting on Intermediate EnergyNuclear Data: Models and Codes, 87-105, May 30-June 1 1994, Issy-les-Moulineaux, France

- A.J. Koning and H. Gruppelaar, "Nuclear Data Hybrid Nuclear Systems", contribution to theInternational Conference GLOBAL '95 - Evaluation of Emerging Nuclear Fuel Cycle System,855-862, Versailles, France, September 11-14 1995.

5. Is a manual available?

No

6. What nuclear models are contained?

Direct reactions + Quantum-mechanical multi-step + Hauser-Feshbach

7. Range of targets allowed:

A= 12-260

8. Range of projectiles allowed:

n, p, d, t, h, a

9. Incident energy range permitted:

5 - 200 MeV

II. Specific questions:

1. How are reaction cross-sections generated in the entrance channel?

They are calculated with an optical model using the code ECIS95.

337

Page 339: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

2. What nuclear density distribution is used, and how does it enter the calculation?

3. Is the Fermi energy calculated in a local density approximation?

4. What nuclear radius parameterization is used?

5. For INC models

6. Precompound phase?

The precompound phase of the reaction is calculated with the Feshbach-Kerman-Koonin multi-step direct and multi-step compound models. For the particle-hole state density, the Betak-Dobesformula is used (i.e. the Williams formula including finite depth of the hole). The multi-stepdirect model model involves microscopic DWBA cross sections. Contributions from 5 steps areincluded. The multiple MSD method of Chadwick et al. is used for multiple pre-equilibriumemission. Angular distributions follow directly from our quantum-mechanical approach.

7. Evaporation phase?

The first evaporation stage is treated with the Hauser-Feshbach model and the latter stages withthe Weisskopf-Ewing model. The transmission coefficients and inverse reaction cross sections arecalculated with the optical model using ECIS95.

8. Is there any limit as to the number of nucleons from target for which yields may becalculated?

No

9. Other comments?

Our contribution is limited to 59Co, Fe(nat), Zr(nat) and 197Au and to energies below 200 MeV.

Optical models used:

S9Co, ZT and l97Au:: neutrons - Walter-Guss: 0 - 90 MeV; Madland: 90 -200 MeVprotons - Becchetti-Greenlees: 0 - 90 MeV; Madland: 50 -200 MeVdeuterons- Lohr-Haeberli: 0 -200 MeVtritons -Becchetti-Greenlees: 0-200 MeVhelium-3 - Becchetti-Greenlees: 0 -200 MeValpha's -MacFarlane: 0-200 MeV

Fe: neutrons - Pedroni et al.: 0 -120 MeV; Madland: 120-200 MeVprotons - Vuillier-Delaroche : 0 -200 MeVdeuterons- Lohr-Haeberli: 0 -200 MeVtritons -Becchetti-Greenlees: 0-200 MeVhelium-3 - Becchetti-Greenlees: 0 -200 MeValpha's -MacFarlane: 0-200 MeV

Furthermore: '"Zr - direct reaction cross sections for 24 discrete levels included

56Fe - direct reaction cross sections for 23 discrete levels included

10. References?

See General question no. 4

338

Page 340: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

21 QMD + SDM

Code Information Questionnaire

I. General Questions:

1. Name of the code

QMDRELP + SDMRELP

2. Name of the participant

S. Chiba and O. Iwamoto

3. Responsible author of the code

K. Niita et al.

4. Reference of the code

Phys. Rev. C52 (1995) 2620

5. Is a manual available?

No

6. What nuclear reaction models are contained?

Quantum Molecular Dynamics + Weisskopf-Ewing + Nakahara's fission model

7. Range of targets allowed

no limitation

8. Range of projectiles allowed

no limitation

9. Incident energy regime permitted

<= 5 GeV

II. Specific Questions:

1. How are reaction cross-sections generated in the entrance channel?

based on the impact-parameter dependent transparency

2. What nuclear density distribution is used, and how does it enter the calculation?3. Is the Fermi energy calculated in a local density approximation?4. What nuclear radius parameterization is used?

All three items (2 - 4) are determined in a self-consistent manner by the Newtonian equation ofmotion (no antisymmetrization is carried out)

5. For INC models

339

Page 341: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

5.a. What nucleon nucleon cross-sections are used? Are energy and isospin dependent?

Cugnon type parametrization + resonance model (see reference)

5.b. How is Pauli exclusion handled in the INC?

as the VUU theory, i.e., based on the occupation probability of the r- and p-phase space.

5.c. How are nuclear density effects treated?

There is no density dependence in the N-N cross sections.

5.d. How are ejectile binding energies handled?

Based on the Newtonian equation of motion in the self-consistent mean field.

5.e. Is any nucieon-cluster scattering considered?

no

5.f. Are ejectiles subject to surface refraction/reflection angular distributions?

yes

S.g. What channels other than neutron and proton are treated e.g. alpha, deuterons, tritons, pi,K, p, etc.?

pi, through delta(1232) and N*(1440)

5.h. How is the transition made to the next phase of the calculation?

based on the cluster-chaining method

5.i. What criteria for p-h excitation? is the next phase precompound or compound'?

compound

6. If there is a precompound phase, describe the PE model used, parameters, i.e., partial statedensities, transition rates?

Are clusters multiple PE decay, relativistic kinematics used?

How are angular distributions computed?

Source of inverse cross-sections?

no precompound phase is included explicitely

7. What physics are used for the final de-excitation state: evaporation model, Fermi breakup?

Describe parameters used: level densities, inverse cross-sections or transmission coefficient,choice of optical model parameters if relevant (or reference to source), range of excitationsallowed, inclusive or exclusive results?

Weisskopf-Ewing evaporation model, with a simplified inverse reaction cross sectionLevel density parameter a=A/8.

8. Is there any limit as to the number of nucleons from target for which yields may becalculated?

340

Page 342: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

no limitation

9. Any other comments on aspects not conserved in the above questions?

10. References to the literature or reports discussing these codes as implemented?

Phys. Rev. C52(1995)2800,Phys. Rev. C53(1996)1824,Phys. Rev. C54 (1996) 285,Phys. Rev. C, December 1996 (in press).

341

Page 343: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

22 SPALL (modified)/YIELD

Code Information Questionnaire

I. General Questions:

1. Name of the code

SPALL (modified) / Yield

2. Name of the participant

R. Michel, M. Gloris

3. Responsible author of the code

The responsible authors for the semi-empirical model [1] used are R. Silberberg and C.H. Tsao.

Two code versions of the model were used here.

The first one is SPALL (modified). It contains the semi-empirical model of Silberberg and Tsaoin its original form [1] as coded in the code SPALL by J.T. Routti and J.V. Sandberg [2]. TheSPALL version [2] was modified by M. Liipke [3] for application up to the target element bariumso that SPALL (modified) considers all changes and recent developments of the semi-empiricalmodel described in refs. [4].

The second one is a more recent version of the semi-empirical model of Silberberg and Tsao [5]in form of the YIELD code [6]. It was used for the target element gold exclusively. For the othertarget elements it widely gives the same results as SPALL (modified).

4. Reference of the code

see references below.

5. Is a manual available?

Descriptions of SPALL (modified) can be found in refs. [2, 3] and in the comments in the codes.All modifications to SPALL are documented in the code.

The YIELD code is a set of FORTRAN subroutines which contains a description how to call andto use it. For details on the recent developments one has to read ref. [5].

6. What nuclear reaction models are contained?

semi-empirical model of spallation and fragmentation

7. Range of targets allowed

no restrictions

8. 9 Projectiles and energy regime

protons with energies greater than 100 MeV

II. Specific Questions:

1. How are reaction cross-sections generated in the entrance channel?

does not apply342

Page 344: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

2. What nuclear density distribution is used, and how does it enter the calculation?

does not apply

3. Is the Fermi energy calculated in a local density approximation?

does not apply

4. What nuclear radius parameterization is used? does not apply

5. For INC models

6. If there is a precompound phase, describe the PE model used, parameters, i.e., partial statedensities, transition rates? does not apply

Are clusters multiple PE decay, relativistic kinematics used? does not applyHow are angular distributions computed? does not applySource of inverse cross-sections? does not apply

7. What physics are used for the final de-excitation state: evaporation model? does not apply

Describe parameters used: level densities, inverse cross-sections or transmission coefficient,choice of optical model parameters if relevant (or reference to source), range of excitationsallowed, inclusive or exclusive results? does not apply

8. Is there any limit as to the number of nucleons from target for which yields may becalculated?

residual nuclides Z > 3 can be calculated

9. Any other comments on aspects not conserved in the above questions?

The semi-empirical model of Silberberg and Tsao [1,3] was developed from the initial approachfor spallation reactions by Rudstam [7] by improving the coverage of further reaction modesrelevant at medium energies. Several semi-empirical models or formulae were developed[1,3,7,8,9]. Common to these approaches is that excitation functions are parameterizedconsidering the assumed or observed dependences of the cross sections on particle energy, targetmass and atomic number and product mass and atomic numbers. The partially large numbers ofparameters are determined by fitting methods from existing experimental cross sections. Giventhe large experimental uncertainties and discrepancies in the early measurements, problems withpredictions of cross sections by semi-empirical formulas not necessarily reflect problems of themodels but rather those of the underlying experimental data bases.

The most recent version of the Silberberg and Tsao semi-empirical model, the YIELD code, is aset of subroutines to calculate proton-nucleus partial cross sections for the production of residualnuclide Z > 3 at energies greater than 100 MeV, including that of charge exchange. It is extremelysimple to use by calling

CALL YIELD(IZ,IA,JZ,JA,E,Q)

where IZ and IA are the interger charge and mass of the target nucleus; JZ and JA that of theproduct nucleus; E the energy in MeV; and Q is the cross section value in mb. As stated by theauthors [6], the program is designed to be helpful, not as a substitute for measurement. It can beimproved when more measurements are available.

10. References to the literature or reports discussing these codes as implemented?

[1] R. Silberberg, C.H. Tsao, Astrophys. J. 220 (1973) 315; ibid 335.[2] J.T. Routti, J.V. Sandberg, Comp. Phys. Comm. 23 (1981) 411

343

Page 345: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

[3] R. Silberberg, C.H. Tsao, Astrophys. J. 220 (1973) 315; ibid 335; Silberberg, R., Tsao, C.H.,Shapiro, M.M., in Shen, B.S.P., Merker, M., Editors, Spallation Nuclear Reactions and theirApplications, D. Reidel Publ. Comp., Dordrecht, 1976, p. 49; C.H. Tsao, R. Silberberg, Proc.16th Intern. Cosmic Ray Conf. (Kyoto) Vol. 2 (1979) 202; R. Silberberg, C.H. Tsao, J.R.Letaw, Ap. J. Suppl. Ser. 58 (1985) 873; R. Silberberg, C.H. Tsao, J.R. Letaw, 20th Int.Cosmic Ray Conf. (Moscow) Vol. 2 (1987) 133; R. Silberberg, C.H. Tsao, J.H. Adams, J.R.Letaw, AIP Conf. Proc. 186, High Energy Radiation Background in Space (Sanibel Island,Florida 1987) American Inst. Phys., New York, 1989; and references therein.

[4] M. Liipke, thesis, University Hannover (1993)[5] L. Sihver, C.H. Tsao, R. Silberberg, T. Kanai, A.F. Barghouty, Phys. Rev. C47 (1993) 1225.[6] C.H. Tsao ([email protected]), YIELD set of routines, priv. comm. to K.

Summerer(1992).[7] G. Rudstam, Z. Naturf. 21a (1966) 1027[8] K. Siimmerer, W. Brilchle, D.J. Morissey, M. SchSdel, B. Szweryn, Yang Weifang, Phys.

Rev. C42 (1991) 2546.[9] W.R. Webber, J.C. Kish, D.A. Schrier, Phys. Rev. C41 (1991) 530, 533, 547, 566.

344

Page 346: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

APPENDIX IVNEA/NSC/DOC(95)8

OECDNuclear Energy Agency

Nuclear Science Committee

Specifications for anInternational Codes and Model Intercomparison for

Intermediate Energy Activation Yields

Rolf Michel

Center for Radiation Protection and RadioecologyUniversity Hannover, Germany

email: michel @ mbox.zsr.uni-hannover.de

Pierre Nagel

NEA Data Bank, Issy-les-Moulineaux, Franceemail: [email protected]

30 May 1995

345

Page 347: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

I. Introduction

A number of applications (Accelerator based transmutation, medical therapy,...) are beginning to requirereliable nuclear data at energies above those needed for traditional fission reactors. These include - butare by no means limited to - data for nuclear reactions induced by neutrons and protons with energies ofup to 1-2 GeV. Experiments to measure these data are costly and there are limited facilities availablewith which to make these measurements. It will therefore be important to rely upon nuclear modelling toprovide these data.

A first exercise designed to assess the predictive power of current nuclear models consisted of aninternational code comparison in the intermediate energy regime for the calculation of thin target doubledifferential cross sections, for which Zr-90 and Pb-208 were chosen. The results of this exercise werepublished in 1994 IM. A follow-up specialists' meeting 121, recommended that the next step, which is thepresent activity, should be a model and code intercomparison aimed at the calculation of isotope yields.The exercise should not be limited to isotopes near to the target, but should include a wide range ofmasses and atomic numbers so as to test also spallation, fragmentation and heavy cluster emission.

It is most fortunate that experiments of interest for this intercomparison are currently being undertaken atthe SATURNE accelerator laboratory. These data will help in providing reference data for the comparisonof the physical models.

The comparison would involve two complementary types of calculations: The basic modelling of nuclearreaction processes on one hand and the spallation processes on the other. In this exercise it is proposedto begin with calculations of basic microscopic nuclear reactions using thin targets for proton-inducedreactions covering a large mass and energy range.

It is noticed that at high energies the models for neutron and proton reactions are quite similar. Thusthere is no need to consider neutron-induced reactions in this exercise separately. The latter statementapplies to the expectable quality of model calculations. It does, however, not imply that cross sections ofproton- and neutron-induced reactions must necessarily be equal for a given target/product combination.Moreover, there is a practical aspect in not considering neutron-induced reactions, since there are nodata at energies above 50 MeV which could be used for comparison. Though it is realised that pion-induced reactions are important at higher energies, it was decided not to consider pion-induced reactions.The experimental data base is by no means comparable with that for proton-induced reactions.

It is planned to analyze the results of this model and code intercomparison for intermediate energyactivation yields towards the end of 1995.

II. Choice of reactions

This intercomparison will be made of calculations of thin target activation yields for incident protons withenergies from thresholds up to 5 GeV. The choice of targets is restricted since a sufficiently large numberof consistent experimental data has to be available. Targets were chosen in order to cover a large massrange and at the same time the different types of materials which are important for a technologicalapplication. The target elements oxygen, aluminum, iron, zirconium and gold have been selected for thispurpose. Cobalt was further selected with some (p,xn) and (p.pxn) reactions in order to test the behaviourof models when calculating nuclide production near closed shells.

Oxygen is a main constituent of ambient air and shielding concrete, aluminum is a structural material, themost often used target element for monitoring purposes and one of the best investigated target nuclei.Iron and Zirconium are structural materials which, moreover, are well investigated experimentally. Goldwas chosen instead of lead, to represent the heavy target elements which will be used in the spallationtarget since - in spite of ongoing activities - the experimental situation for lead is still much worse than forgold. It also might be easier in this step of the exercise to use a non-magic target nuclide.

3 4 6

Page 348: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

It was further decided that target elements of natural isotopic composition should be used, since theavailability of experimental production cross sections is strongly dominated by data for targets of naturalisotopic composition.

Participants in the intercomparison should provide results for all targets and the entire energy regime ifthis it practical. If data are given by a participant for a reduced energy range only, it will be assumed thatthe respective code is not applicable in the omitted energy ranges.

It is encouraged that for each target element as many product nuclides as possible, which can becalculated simultaneously by a given code, should be submitted. The target/product combinations givenin table 1 just represent probably a maximum set of data required for estimating the capabilities of aparticular code. This list was produced considering the availability of experimental data for comparison aswell as the desired coverage of different reaction modes. In Table 1 there are nuclides not enclosed inparentheses and nuclides enclosed in parentheses. The intercomparison will be performed on thenuclides not enclosed in parentheses. For these nuclides, reliable experimental data are available.Since many experimental data contain contributions from radioactive precursors, a maximum set ofprecursor nuclides is listed in table 1 (nuclides in parentheses). Calculational results on as many aspossible of these precursors are requested. The theoretical cross sections for the comparison withexperimental results will be computed from the submitted calculated cross sections either at the NEAData Bank or at the University Hannover.

Again it will be assumed that a model or code is not able to calculate a given target/product combination ifno data are submitted for it. If this is not the case it should be clearly stated in a letter accompanying theresults.

For the target elements from iron to gold it is desirable to have results for as many products as possiblein order to compare isobaric, isotopic and isotonic yields for different parts of the mass yield curvesamong the different codes, even if it is not possible from the available experimental data to make asystematic survey. A comparison among systematic calculated data alone already allows to distinguishdifferences in the treatment of particular reaction modes.

Proton induced reaction have been chosen for the intercomparison, since just a few experimental dataexist for neutron induced activation yields at medium energies. The existing neutron data do not allow asystematic and comprehensive intercomparison.

The results will in any case be representative for the understanding of neutron induced reactions whichare due to the same reaction mechanisms for endoenergetic reactions.

347

Page 349: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Table 1

Target/product combinations for which production cross sections shall be calculated for proton-induced reactionsfrom thresholds up to 5 GeV. For the nuclides not in parentheses detailed experimental data are available forcomparison. Intercomparison between experimental and calculated data will be made for these nuclides only. Crosssections for the production of nuclides in parentheses are needed to calculate the contributions from radioactiveprogenitors which are contained in the experimental data.

target product nuclides

0-16 Be-7, Be-10, C-11.C-14

AI-27 H-3, He-3, He-4, Be-7, Be-10, Na-22 (Mg-22), Na-24 (Ne-26), (Si-26)

Fe(nat) H-3, He-3, He-4, Be-7, Be-10, Ne-20 (all mass 20 nuclides), Ne-21 (all mass 21 nuclides),Ne-22 (F-22), Na-22 (Mg-22), Na-24 (Ne-24), Mg-28 (Na-28), AI-26 (Si-26), CI-36, Ar-36 (K-36,Ca-36), Ar-38 (all mass 38 nuclides), Sc-46, V-48 (Cr-48), Cr-51 (Mn-51, Fe-51), Mn-52m+g(Fe-52), Mn-53 (Fe-53, Co-53), Mn-54, Fe-55 (Co-55, Ni-55), Co-56

Co-59 Co-56, Co-57, Co-58, Ni-56, Ni-57

Zr(nat) Be-7, Na-22 (Mg-22), Sc-46, V-48, (Cr-48)), Cr-51 (Mn-51, Fe-51), Mn-54, Co-56 (Ni-56),Co-58, Co-60, Zn-65 (Ga-65, Ge-65), Ga-67 (Ge-67, As-67), Ge-69 (As-69, Se-69), As-71 (Se-71, Br-71, Kr-71) As-74, Se-75 (Br-75, Kr-75, Rb-75), Br-77 (Kr-77, Rb-77, Sr-77), Kr-78 (Br-78, Rb-78), Kr-79 (Rb-79, Sr-79), Kr-80 (Br-80, Rb-80, Sr-80, Y-80), Kr-81 (Rb-81, Sr-81, Y-81, Zr-81), Kr-82 (Br-82, Rb-82, Sr-82, Y-82, Zr-82), Kr-83 (all mass 83 nuclides), Kr-84 (Br-84, Se-84, Rb-84), Kr-85 (Se-85, Br-85), Kr-86 (Se-86, Br-86, Rb-86), Rb-83 (Sr-83, Y-83, Zr-83), Rb-84, Rb-86, Sr-82 (Y-82, Zr-82), Sr-83 (Y-83, Zr-83), Sr-85 (Y-85, Zr-85, Nb-85), Y-86(Zr-86, Nb-86), Y-86m, Y-87 (Zr-87, Nb-87), Y-87m, Y-88 (Zr-88, Nb-88), Zr-86 (Nb-86), Zr-88(Nb-88), Zr-89 (Nb-89), Zr-95 (Y-95), Nb-90, Nb-92m, Nb-95, Nb-95m, Nb-96

Au-197 Be-7, Na-22 (Mg-22), Na-24 (Ne-24), Sc-46, V-48 (Cr-48), Mn-54, Fe-59 (Mn-59), Co-56 (Ni-56), Co-58, Co-60, Zn-65 (Ga-65, Ge-65), As-74, Se-75 (Br-75, Kr-75, Rb-75), Rb-83 (Sr-83,Y-83, Zr-83), Rb-84, Rb-86, Sr-85 (Y-85, Zr-85, Nb-85), Y-87 (Zr-87, Nb-87), Y-88 (Zr-88, Nb-88), Zr-88 (Nb-88), Zr-89 (Nb-89), Zr-95 (Y-95), Nb-95 (Rb-95, Sr-95, Y-95, Zr-95), Tc-96,Ru-103 (Nb-103, Mo-103, Tc-103), Rh-102, Ag-105 (Cd-105, ln-105), Ag-110m, Ag-110,Sn-113 (Sb-113, Te-113, 1-113, Xe-113), Te-121 (1-121, Xe-121, Cs-121, Ba-121), Te-121m,Te-121m+g, Xe-127 (Cs-127, Ba-127, La-127), Ba-131 (La-131, Ce-131), Ce-139 (Pr-139, Nd-139, Pm-139, Sm-139), Eu-145 (Gd-145), Eu-147 (Gd-147, Tb-147), Eu-148, Eu-149 (Gd-149,Tb-149, Dy-149, Ho-149), Gd-146 (Tb-146), Gd-147 (Tb-147, Dy-147), Gd-149 (Tb-149, Dy-149, Ho-149), Gd-151 (Tb-151, Dy-151, Ho-151), Gd-153 (Tb-153, Dy-153, Ho-153), Tb-149(Dy-149, Ho-149), Tb-151 (Dy-151, Ho-151), Tb-153 (Dy-153, Ho-153), Tm-165 (Y-165, Lu-165, Hf-165),Tm-166(Y-166, Lu-166, Hf-166, Ta-166, W-166), Tm-167 (Y-167, Hf-167, Ta-167), Tm-168, Yb-166 (lu-166, Hf-166, Ta-166), Yb-169 (Lu-169, Hf-169, Ta-169) , Lu-169 (Hf-169, Ta-169), Lu-170 (Hf-170, Ta-170), Lu-171 (Hf-171, Ta-171), Lu-172 (Hf-172, Ta-172),Lu-173 (Hf-173, Ta-173), Hf-172 (Ta-172, W-172, Re-172), Hf-173 (Ta-173, W-173), Hf-175(Ta-175, Re-175, Os-175), Re-181 (Os-181, lr-181), Re-182 (Os-182, lr-182, Pt-182), Re-183(Os-183, lr-183, Pt-183, Au-183), Os-182 (lr-182, Pt-182, Au-182, Hg-182), Os-185 (lr-185, Pt-185, Au-185, Hg-185), Os-191 (Re-191), lr-185 (Pt-185, Au-185, Hg-185), lr-186 (Pt-186, Au-186, Hg-186), lr-187 (Pt-187, Au-187, Hg-187), lr-188 (Pt-188, Au-188, Hg-188), lr-189 (Pt-189, Au-189, Hg-189), lr-190, lr-192, Pt-188 (Au-188, Hg-188), Pt-191 (Au-191, Hg-191),Au-193 (Hg-193), Au-194 (Hg-194), Au-195 (Hg-195), Au-196, Hg-193, Hg-194, Hg-195,Hg-195m, Hg-197, Hg-197m

348

Page 350: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

III. Contributions

Participants must provide information which will allow the identification of the physics and methods usedin codes of this exercise. A list of requested information is included in this document and additionalcomments are invited on special features of codes used, which are not covered in the questionnaire.

On reception of the contributions, they will be first checked to ensure that there has been nomisunderstanding on what was requested. If there is a question, the participant will be contacted. If not, adraft summary report will be prepared and sent to participants for comments. When these have beenconsidered (if received within the deadlines set), the OECD/NEA NSC will issue a report summarizingthis intercomparison of codes. It is hoped that this will aid in identifying codes which are adequate invarious energy regimes, and in giving an estimate of their reliability and range of applicability.

Participants who use codes which cover only part of the requested data may also contribute to thatsubset of the exercise. Both code users and authors of codes are encouraged to participate in theintercomparison. Authors are additionally invited to provide their code and documentation to the NEAData Bank's Computer Program Services.

Time schedule

Draft specification for comments 17th December 1994Deadline for comments 15th February 1995Final specifications distribution 30 May 1995Deadline for contributions 1 st November 1995Draft analysis completed 1 st May 1996Final report 1 st September 1996

IV Exercises for Code Intercomparison

We request the cross sections for the production of residual nuclides by proton-induced reactions in unitsof mb for energies from 0 MeV to 5 GeV for target element/product nuclide combinations given in table 1.In addition we request for each target element the total reaction cross section from 0 MeV to 5 GeV.

Energies should be chosen in sufficiently small steps to represent any structure in the cross sections, i.e.1 MeV steps below 25 MeV and progressively larger steps at higher energies. Please indicate alsowhether the data are given as points or as histograms.

The following list of energies in MeV can be taken as an example:1 MeV steps below 25 MeV, 2 MeV steps up to 50 MeV, then: 60, 70, 80, 90, 100, 120, 140, 160, 180,200 , 250, 300, 350, 400, 450, 500, 600, 700, 800, 900., 1000, 1200, 1400, 1600, 1800, 2000, 2600,3000, 4000, 5000 MeV.

For energies up to 200 MeV mostly experimental excitation functions are available which are equallydense in energies. For energies above 200 MeV most experimental data exist at 300, 400, 600, 800,1200, 1600 and 2600 MeV. Therefore, these latter energies should be explicitly included in the mediumenergy exercise.

If it is not possible to cover the entire exercise or to choose a coarser energy grid, acontributor should doas much as he/she can. Energies should be chosen, then, in a way that also the limitations (at low or highenergies) become clear by the intercomparison. If targets and/or products are not covered in a particularexercise, the reasons should be made clear in the accompanying letter in order that the analyses doesnot blame the model or code.

If random number generated results are submitted, please indicate the statistical sampling uncertaintiesat each cross section or for each cross section type for a representative energy.

349

Page 351: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

If the entire energy region cannot be covered by the particular code or model, we request the coverage ofall possible energies. If not all target element/product nuclide combinations can be covered by thecalculations, as many as possible combinations should be given.

V Preferred format for contributions

In order to avoid unnecessary retyping of the calculations, participants should send their results onMS-DOS diskettes or preferably electronic mail, if possible, in the order indicated by the above table 1 byincreasing energy.

The cross sections should be given separately for each target element/product nuclide combination, andfor the reaction cross section. A one line header should precede the data for each of the data sets. Ifpossible, a simple three column format should be chosen giving in each line: energy in MeV, crosssection in mb, uncertainty of the cross section in mb, e.g. from statistical considerations in Monte Carlocodes.. A format of 3(E10.3,1 x) would be preferred. A zero for the energy shall be the last entry for oneitem.

An example is given below:

<reaction>0.100E+01 O.xxxE+xx O.xxxE+xx0.500E+04 O.xxxE+xx O.xxxE+xx0.0

<reaction>:

"Fe-000(xxp,xxn)Co-056" if natural isotopic composition is used"Au-195(xxp,xxn)Co-056" else"Fe-OOO(RCS)" reaction cross section of protons on iron

The yields of an isomeric state should be indicated by an "m" behind the mass number of the productnuclide.

If no free choice of the output format is possible submit the standard ASCII output with a shortdescription. The required data will be extracted by the NEA Data Bank or by the university Hannover.

350

Page 352: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

VI. Code Information Questionnaire

Please supply the following information only if not already done for the previous exercise or indicate newfeatures if the code is different version.

VI.1. General Questions:

1. Name of the code2. First name of the participant3. Responsible author of the code4. Reference for the code5. Is a manual available? Yes No (may be needed for the

analysis)6. What nuclear reaction models are contained?

- intranuclear cascade- Precompound decay

- exiton closed form- exiton master equation- hybrid- Quantum mechanical multi-step- angular distributions from N-N scattering- angular distributions from systematics

- evaporation- Weisskopf-Ewing- Hauser Feshbach

- Fermi statistics- Fission model:

7. Range of targets allowed8. Range of projectiles allowed9. Incident energy regime permitted

VI.2. Specific Questions:

1. How are reaction cross-sections generated in the entrance channel?2. What nuclear density distribution is used and how do these enter the calculation?3. Is the Fermi energy calculated in a local density approximation?4. What nuclear radius parameterization is used'?5. For INC models:5.a. What nucleon nucleon cross-sections are used? Are energy and isospin dependent?5.b. How is Pauli exclusion handled in the INC?5.c. How are nuclear density effects treated?5.d. How are ejectile binding energies handled?5.e. Is any nucleon-cluster scattering considered?5.f. Are ejectiles subject to surface refraction/reflection angular distributions?5.g. What channels other than neutron and proton are treated e.g. alpha, deuterons, tritons, pi, K, p, etc.?5.h. How is the transition made to the next phase of the calculation?5.i. What criteria for p-h excitation? is the next phase precompound or compound'?6. If there is a precompound phase, describe the PE model used, parameters, i.e. partial! state densities,

transition rates? Are clusters treated multiple PE decay, relativistic kinematics used? How are angulardistributions computed? Source of inverse cross-sections?

7. What physics are used for the final de-excitation stage: evaporation model, Fermi breakup? Describeparameters used: level densities inverse cross-sections or transmission coefficient, choice of optical modelparameters if relevant (or reference to source),range of excitations allowed, inclusive or exclusive results?

8. Is there any limit as to the number of nucleons from target for which yields may be calculated?9. Any other comments on aspects not covered in the above questions?10. References to the literature or reports discussing these codes as implemented'?

3 5 1

Page 353: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

VII References

1 M. Blann, H. Gruppelaar, P. Nagel, J. Rodens, International Code Comparison for Intermediate EnergyNuclear Data, NEA/OECD, 1994

2 Intermediate Energy Nuclear Data: Models and Codes, Proceedings of a Specialists' meeting, Issy-les-Moulineaux (France), 30 May -1 June 1994, OECD, Paris, 1994.

VIII Summary of comments received on the draft specifications

Response to comments by Rolf Michel are in italics.

There were some major and often made comments :

1 .the terms "cummulative" and "independent" gave rise to misunderstanding of the tasks to be performed.

In the revision I try to make clear this point. What we want is simple (t=0) cross sections. However, since weneed for comparison with existing experimental data also the cross sections for radioactive precursors, Iincluded a maximum set of precursors in table 1. I do not think that all of them will be important and do notsuppose that we shall get data for all of them. For Monte Carlo Codes it should be possible to extract all theinformation.

2.1t was proposed that the calculation of cummulative production cross sections should be made by one personand program.

/ think that this is a good proposal. We could make the calculations at Hannover, since we have suchprograms available.

3.It was feared that there are too many energy points and consequently too much computer time would beneeded.

/ agree that this is a problem. However, it is a general problem when dealing with activation and nuclideproduction at medium energies for applications. We have found that the quality of a code cannot be judgedfrom calculations at single energy points. It is of fundamental importance to see agreements ordisagreements as functions of energy. Usually, we have experimental data for comparison from threshold to 2.6or 3 GeV for the energies indicated in the specifications, i.e.

"1 MeV steps below 25 MeV, 2 MeV steps up to 50 MeV, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900., 1000, 1200, 1400, 1600, 1800, 2000, 2600, 3000,4000, 5000 MeV. For energies above 200 MeV most experimental data exist at 300, 400, 600, 800,1200, 1600 and 2600 MeV. Therefore, these energies should be explicitly included in the exercise."

Therefore, I would like to have as many of these energies as possible. I made a remark in the specificationson priorities. Since not all codes are applicable to all energies, this will anyway reduce the number of

calculations for the individual contributor to this exercise.

352

Page 354: INTERNATIONAL CODES AND MODEL INTERCOMPARISON ...

Further comments were:

l.To consider some reactions on Co-59 or Ni, since (p,xn) and (p,pxn) reactions near the closed shells Z=28and N=28 can provide information on the quality of calculations of multiple cascade/precompound emissionand of level densities calculation near closed shells.

/ added the target nucleus Co-59 with only a few products to table I.

2.1t was pointed out that the time schedule might be too tight.

/ made a proposal for a longer time schedule in the draft.

3.There was a remark on metastable products, fearing that just a few models may be able to give results here. Itwas proposed that one should ask for cross sections for the m+g production also.

If there is asked for metastable products in table 1, then there are just data on the metastable nuclideavailable. Well knowing that we will just get spurious results of cross sections for metastable products, Iadded them to table 1 because I am really curious whether somebody can do it.

4.There was a remark stressing to include pion-induced reactions.

/ do not think that the experimental data base for pion-induced reactions is so extensive that we can makean adequate intercomparison at present. I, therefore, made just a comment on this in the specifications.

5.There was a comment that there are differences in the treatment of neutron- and proton-induced reactionson heavy target elements and that neutron-induced reactions would be desirable too.

In view of the fact that there are practically no medium energy neutron-induced activation yields available, 1do not see any chance to do an intercomparison for them.

353