Top Banner
Interest points CSE P 576 Larry Zitnick ([email protected] ) Many slides courtesy of Steve Seitz
35
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

Interest points

CSE P 576Larry Zitnick ([email protected])Many slides courtesy of Steve Seitz

Page 2: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

How can we find corresponding points?

Page 3: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

Not always easy

NASA Mars Rover images

Page 4: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

NASA Mars Rover imageswith SIFT feature matchesFigure by Noah Snavely

Answer below (look for tiny colored squares…)

Page 5: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

Where do humans fixate?

Called “fixation points”, and a “saccade” is the process of moving between fixation points.

Slowly trace the outline of the above object.

Page 6: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

Where do humans fixate?

Called “fixation points”, and a “saccade” is the process of moving between fixation points.

Slowly trace the outline of the above object.

Page 7: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

Where do humans fixate?

Result of one subject “me”.

Page 8: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

Where do humans fixate?

"Eye Movements and Vision" by A. L. Yarbus; Plenum Press, New York; 1967

Top down or bottom up?

Page 9: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

Want uniquenessLook for image regions that are unusual

• Lead to unambiguous matches in other images

How to define “unusual”?

Page 10: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

Local measures of uniquenessSuppose we only consider a small window of pixels

• What defines whether a feature is a good or bad candidate?

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

Page 11: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

Feature detection

“flat” region:no change in all directions

“edge”: no change along the edge direction

“corner”:significant change in all directions

Local measure of feature uniqueness• How does the window change when you shift by a small amount?

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

Page 12: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

Let’s look at the gradient distributions

Page 13: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

Principle Component Analysis

Principal component is the direction of highest variance.

How to compute PCA components:

1. Subtract off the mean for each data point.2. Compute the covariance matrix.3. Compute eigenvectors and eigenvalues.4. The components are the eigenvectors

ranked by the eigenvalues.

Next, highest component is the direction with highest variance orthogonal to the previous components.

Both eigenvalues are large!

Page 14: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

Simple example

Detect peaks and threshold to find corners.

Page 15: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

The mathTo compute the eigenvalues:

1. Compute the covariance matrix.

2. Compute eigenvalues.

Typically Gaussian weights

Page 16: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

The Harris operator- is a variant of the “Harris operator” for feature detection

• Very similar to - but less expensive (no square root)

• Called the “Harris Corner Detector” or “Harris Operator”• Lots of other detectors, this is one of the most popular

Actually used in original paper:

Page 17: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

The Harris operator

Harris operator

Page 18: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

Harris detector example

Page 19: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

f value (red high, blue low)

Page 20: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

Threshold (f > value)

Page 21: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

Find local maxima of f

Page 22: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

Harris features (in red)

Page 23: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

How can we find correspondences?

Page 24: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

How can we find correspondences?

Similarity transform

Page 25: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

Scale and rotation?

Let’s look at scale first:

What is the “best” scale?

Page 26: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

Scale

The Laplacian has a maximal response when the difference between the “inside” and “outside” of the filter is greatest.

Page 27: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

Scale

Why Gaussian?

It is invariant to scale change, i.e., and has several other nice properties. Lindeberg, 1994

In practice, the Laplacian is approximated using a Difference of Gaussian (DoG).

Page 28: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

DoG example

σ = 1

σ = 66

Page 29: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

Scale

In practice the image is downsampled for larger sigmas.

Lowe, 2004.

Page 30: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

RotationHow to compute the rotation?

Create edge orientation histogram and find peak.

Page 31: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

Other interest point detectors

Harris Laplace

Scale & Affine Invariant Interest Point DetectorsK. MIKOLAJCZYK and C. SCHMID, IJCV 2004

Page 32: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

Other interest point detectors

Affine invariant

Scale & Affine Invariant Interest Point DetectorsK. MIKOLAJCZYK and C. SCHMID, IJCV 2004

Page 33: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

Computationally efficient

Approximate Gaussian filters using box filters:

SURF: Speeded Up Robust FeaturesHerbert Bay, Tinne Tuytelaars, and Luc Van Gool, ECCV 2006

Page 34: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

Computationally efficient Corner detection by sampling pixels based on decision tree

Machine learning for high-speed corner detectionEdward Rosten and Tom Drummond, ECCV 2006

Page 35: Interest points CSE P 576 Larry Zitnick (larryz@microsoft.com)larryz@microsoft.com Many slides courtesy of Steve Seitz.

How well do they work in practice?

Let’s go to the videos…