Top Banner
Integral Forms and Trigonometric Integrals MATH 166 Fall 2011 Integral forms that you need to know Let k be a real number, r a rational number and a> 0 be a positive real number. 1. k du = ku + C 2. u r du = u r+1 r +1 + C, r ̸= 1 ln |u| + C, r = 1 3. e u du = e u + C 4. a u du = a u ln a + C, a ̸=1 5. sin u du = cos u + C 6. cos u du = sin u + C 7. sec 2 u du = tan u + C 8. csc 2 u du = cot u + C 9. sec u tan u du = sec u + C 10. csc u cot u du = csc u + C 11. tan u du = ln | cos u| + C 12. cot u du = ln | sin u| + C 13. du a 2 u 2 = sin 1 u a + C 14. du a 2 + u 2 = 1 a tan 1 u a + C 15. du u u 2 a 2 = 1 a sec 1 |u| a + C 16. sinh u du = cosh u + C 17. cosh u du = sinh u + C Taken from pp. 383-384 in Calculus, 9th ed. by Varberg, Purcell and Rigdon. 1
19

Integral Forms and Trigonometric Integrals

Dec 26, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Integral Forms and Trigonometric Integrals

Integral Forms and Trigonometric Integrals

MATH 166

Fall 2011

Integral forms that you need to know

Let k be a real number, r a rational number and a > 0 be a positive real number.

1.

k du = ku+ C

2.

ur du =

ur+1

r + 1+ C, r ̸= −1

ln |u|+ C, r = −1

3.

eu du = eu + C

4.

au du =au

ln a+ C, a ̸= 1

5.

sin u du = − cosu+ C

6.

cosu du = sin u+ C

7.

sec2 u du = tanu+ C

8.

csc2 u du = − cot u+ C

9.

sec u tanu du = sec u+ C

10.

csc u cotu du = − csc u+ C

11.

tan u du = − ln | cosu|+ C

12.

cot u du = ln | sin u|+ C

13.

du√a2 − u2

= sin−1

(u

a

)

+ C

14.

du

a2 + u2=

1

atan−1

(u

a

)

+ C

15.

du

u√u2 − a2

=1

asec−1

(

|u|a

)

+ C

16.

sinh u du = cosh u+ C

17.

cosh u du = sinh u+ C

Taken from pp. 383-384 in Calculus, 9th ed. by Varberg, Purcell and Rigdon.

1

Page 2: Integral Forms and Trigonometric Integrals

Integration by parts∫

u dv = uv −∫

v du

∫ b

au dv = [uv]ba −

∫ b

av du.

Look for a product of functions such that the derivative of one and the inte-gral of another is a basic form.

Simple radicals

Look for n

√ax+ b:

u = (ax+ b)1/n

un = ax+ b ⇔ x = (un − b)/a

nun−1 du = a dx

Trigonometric substitution√a2 − x2 x = a sin t −π/2 ≤ t ≤ π/2√a2 + x2 x = a tan t −π/2 < t < π/2√x2 − a2 x = a sec t 0 ≤ t ≤ π, t ̸= π/2

Can drop absolute value bars.Use sin−1, tan−1, sec−1 or triangles to back-substitute.

sec x dx = ln |sec x+ tanx|+ C∫

csc x dx = ln |csc x− cotx|+ C

Completing the square

x2 +Bx + C = x2 + 2(B/2)x+ (B/2)2 +[

C − (B/2)2]

= (x+ B/2)2 +[

C −B2/4]

3

Page 3: Integral Forms and Trigonometric Integrals

Rational functions

Let p(x), q(x) be polynomials.∫

p(x)

q(x)dx

0. Do long division to ensure that the degree of p(x) is less than the degreeof q(x).

1. Factor q(x) into linear and (unfactorable) quadratic terms.

2. Each term of the factorization of q(x) gives a cluster of terms.

• The term (x− a)n gives rise to the cluster of terms:

A1

x− a+

A2

(x− a)2+ · · ·+

An

(x− a)n.

• The term (x2 + bx+ c)m gives rise to the cluster of terms:

B1x+ C1

x2 + bx+ c+

B2x+ C2

(x2 + bx+ c)2+ · · ·+

Bmx+ Cm

(x2 + bx+ c)m.

3. Solve for the unknown coefficients to get a Partial Fraction Decomposi-tion.

4. Integrate using∫

dx

x− a= ln |x− a| + C

2x+ b

x2 + bx+ cdx = ln |x2 + bx+ c|+ C

dx

(x+ d)2 + a2=

1

atan−1

(

x+ d

a

)

+ C.

4

Page 4: Integral Forms and Trigonometric Integrals
Page 5: Integral Forms and Trigonometric Integrals
Page 6: Integral Forms and Trigonometric Integrals
Page 7: Integral Forms and Trigonometric Integrals
Page 8: Integral Forms and Trigonometric Integrals
Page 9: Integral Forms and Trigonometric Integrals
Page 10: Integral Forms and Trigonometric Integrals
Page 11: Integral Forms and Trigonometric Integrals
Page 12: Integral Forms and Trigonometric Integrals
Page 13: Integral Forms and Trigonometric Integrals
Page 14: Integral Forms and Trigonometric Integrals
Page 15: Integral Forms and Trigonometric Integrals
Page 16: Integral Forms and Trigonometric Integrals
Page 17: Integral Forms and Trigonometric Integrals
Page 18: Integral Forms and Trigonometric Integrals
Page 19: Integral Forms and Trigonometric Integrals