Top Banner
Integer-Forcing Source Coding Or Ordentlich (MIT) Joint work with Uri Erez (TAU) July 6th, 2016 Wireless and Number Theory Workshop York, England Or Ordentlich Integer-Forcing Source Coding
93

Integer-Forcing Source Coding - York

Jun 11, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Integer-Forcing Source Coding - York

Integer-Forcing Source Coding

Or Ordentlich (MIT)Joint work with Uri Erez (TAU)

July 6th, 2016Wireless and Number Theory Workshop

York, England

Or Ordentlich Integer-Forcing Source Coding

Page 2: Integer-Forcing Source Coding - York

The Communication Problem

Or Ordentlich Integer-Forcing Source Coding

Page 3: Integer-Forcing Source Coding - York

The Communication Problem

Source coding: representing an information source with minimum # bitsChannel coding: sending i.i.d. Bernoulli(1/2) bits over a noisy channel

Or Ordentlich Integer-Forcing Source Coding

Page 4: Integer-Forcing Source Coding - York

The Communication Problem

Source coding: representing an information source with minimum # bitsChannel coding: sending i.i.d. Bernoulli(1/2) bits over a noisy channel

Shannon

For i.i.d. information source and discrete memoryless channels there is noloss (asymptotically) in solving the source and channel coding separately

Or Ordentlich Integer-Forcing Source Coding

Page 5: Integer-Forcing Source Coding - York

The Communication Problem

Source coding: representing an information source with minimum # bitsChannel coding: sending i.i.d. Bernoulli(1/2) bits over a noisy channel

Most talks in the workshop deal with channel codingThis talk is about source coding

Or Ordentlich Integer-Forcing Source Coding

Page 6: Integer-Forcing Source Coding - York

The Communication Problem

Source coding: representing an information source with minimum # bitsChannel coding: sending i.i.d. Bernoulli(1/2) bits over a noisy channel

watch out!

Channel coding: large rate is goodSource coding: small rate is good

Or Ordentlich Integer-Forcing Source Coding

Page 7: Integer-Forcing Source Coding - York

Lossy Compression

Many information sources of interest are analog in natureaudio, video, pictures, EM waves

Or Ordentlich Integer-Forcing Source Coding

Page 8: Integer-Forcing Source Coding - York

Lossy Compression

Many information sources of interest are analog in natureaudio, video, pictures, EM waves

There are many good reasons to represent them digitallyResilience to noise/aging, cheap storage, fast access, efficient processing....

Or Ordentlich Integer-Forcing Source Coding

Page 9: Integer-Forcing Source Coding - York

Lossy Compression

Many information sources of interest are analog in natureaudio, video, pictures, EM waves

There are many good reasons to represent them digitallyResilience to noise/aging, cheap storage, fast access, efficient processing....

Analog-to-Digital Conversion

Continuous-to-discrete (sampling)Can represent any band-limited signal by a discrete sequence(Nyquist’s Theorem)

Quantization of samples to a finite-alphabet (w.l.o.g. bits)Storage is finite, so average number of bits/sample is limited

Or Ordentlich Integer-Forcing Source Coding

Page 10: Integer-Forcing Source Coding - York

Lossy Compression

Many information sources of interest are analog in natureaudio, video, pictures, EM waves

There are many good reasons to represent them digitallyResilience to noise/aging, cheap storage, fast access, efficient processing....

Analog-to-Digital Conversion

Continuous-to-discrete (sampling)Can represent any band-limited signal by a discrete sequence(Nyquist’s Theorem)

Quantization of samples to a finite-alphabet (w.l.o.g. bits)Storage is finite, so average number of bits/sample is limited

Something is always lost in the conversion from analog-to-digital

Or Ordentlich Integer-Forcing Source Coding

Page 11: Integer-Forcing Source Coding - York

Lossy Compression

Many information sources of interest are analog in natureaudio, video, pictures, EM waves

There are many good reasons to represent them digitallyResilience to noise/aging, cheap storage, fast access, efficient processing....

Analog-to-Digital Conversion

Continuous-to-discrete (sampling)Can represent any band-limited signal by a discrete sequence(Nyquist’s Theorem)

Quantization of samples to a finite-alphabet (w.l.o.g. bits)Storage is finite, so average number of bits/sample is limited

Something is always lost in the conversion from analog-to-digital

The more bits we allocate for storing the signal, the smaller the loss

Or Ordentlich Integer-Forcing Source Coding

Page 12: Integer-Forcing Source Coding - York

Rate-Distortion Theory

We can restrict attention to discrete signals

Let x [k], k = 1, . . . , n, be the discrete-time sampled signal

Or Ordentlich Integer-Forcing Source Coding

Page 13: Integer-Forcing Source Coding - York

Rate-Distortion Theory

We can restrict attention to discrete signals

Let x [k], k = 1, . . . , n, be the discrete-time sampled signal

Assume further we have nR bits for storing x = (x [1], . . . , x [n])

Or Ordentlich Integer-Forcing Source Coding

Page 14: Integer-Forcing Source Coding - York

Rate-Distortion Theory

We can restrict attention to discrete signals

Let x [k], k = 1, . . . , n, be the discrete-time sampled signal

Assume further we have nR bits for storing x = (x [1], . . . , x [n])

This is done using two functions:

Encoder: E : Rn 7→ {1, . . . , 2nR}Decoder: D : {1, . . . , 2nR} 7→ Rn

Or Ordentlich Integer-Forcing Source Coding

Page 15: Integer-Forcing Source Coding - York

Rate-Distortion Theory

We can restrict attention to discrete signals

Let x [k], k = 1, . . . , n, be the discrete-time sampled signal

Assume further we have nR bits for storing x = (x [1], . . . , x [n])

This is done using two functions:

Encoder: E : Rn 7→ {1, . . . , 2nR}Decoder: D : {1, . . . , 2nR} 7→ Rn

We would like x and x , D (E (x)) to be as close as possible

Or Ordentlich Integer-Forcing Source Coding

Page 16: Integer-Forcing Source Coding - York

Rate-Distortion Theory

We can restrict attention to discrete signals

Let x [k], k = 1, . . . , n, be the discrete-time sampled signal

Assume further we have nR bits for storing x = (x [1], . . . , x [n])

This is done using two functions:

Encoder: E : Rn 7→ {1, . . . , 2nR}Decoder: D : {1, . . . , 2nR} 7→ Rn

We would like x and x , D (E (x)) to be as close as possible

Need to specify distortion metric. We will use squared loss

D ,1

n

n∑

k=1

(x [k]− x [k])2

Or Ordentlich Integer-Forcing Source Coding

Page 17: Integer-Forcing Source Coding - York

Rate-Distortion Theory

We can restrict attention to discrete signals

Let x [k], k = 1, . . . , n, be the discrete-time sampled signal

Assume further we have nR bits for storing x = (x [1], . . . , x [n])

This is done using two functions:

Encoder: E : Rn 7→ {1, . . . , 2nR}Decoder: D : {1, . . . , 2nR} 7→ Rn

We would like x and x , D (E (x)) to be as close as possible

Need to specify distortion metric. We will use squared loss

D ,1

n

n∑

k=1

(x [k]− x [k])2

Goal: design E and D to minimize D

Or Ordentlich Integer-Forcing Source Coding

Page 18: Integer-Forcing Source Coding - York

Rate-Distortion Theory

When designing E and D the signal x is not known

Or Ordentlich Integer-Forcing Source Coding

Page 19: Integer-Forcing Source Coding - York

Rate-Distortion Theory

When designing E and D the signal x is not known

Need to assume distribution x ∼ P and design w.r.t. P

Or Ordentlich Integer-Forcing Source Coding

Page 20: Integer-Forcing Source Coding - York

Rate-Distortion Theory

When designing E and D the signal x is not known

Need to assume distribution x ∼ P and design w.r.t. P

Goal is to minimize

D =1

nEx∼P

n∑

k=1

(x [n]− x [n])2

where x = D (E (x)).

Or Ordentlich Integer-Forcing Source Coding

Page 21: Integer-Forcing Source Coding - York

Rate-Distortion Theory

When designing E and D the signal x is not known

Need to assume distribution x ∼ P and design w.r.t. P

Goal is to minimize

D =1

nEx∼P

n∑

k=1

(x [n]− x [n])2

where x = D (E (x)).

Common assumption: x is a random vector with i.i.d. entries

Or Ordentlich Integer-Forcing Source Coding

Page 22: Integer-Forcing Source Coding - York

Rate-Distortion Theory

When designing E and D the signal x is not known

Need to assume distribution x ∼ P and design w.r.t. P

Goal is to minimize

D =1

nEx∼P

n∑

k=1

(x [n]− x [n])2

where x = D (E (x)).

Common assumption: x [n] ∼ N (0, σ2) i.i.d.

Or Ordentlich Integer-Forcing Source Coding

Page 23: Integer-Forcing Source Coding - York

Rate-Distortion Theory

When designing E and D the signal x is not known

Need to assume distribution x ∼ P and design w.r.t. P

Goal is to minimize

D =1

nEx∼P

n∑

k=1

(x [n]− x [n])2

where x = D (E (x)).

Common assumption: x [n] ∼ N (0, σ2) i.i.d.

Rate-distortion theorem (Shannon)

The minimum number of bits/sample for attaining avg. distortion D is

R(D) =1

2log

(σ2

D

)

Or Ordentlich Integer-Forcing Source Coding

Page 24: Integer-Forcing Source Coding - York

Scalar Uniform Quantization 1

Achieving optimal R(D) requires n → ∞

Or Ordentlich Integer-Forcing Source Coding

Page 25: Integer-Forcing Source Coding - York

Scalar Uniform Quantization 1

Achieving optimal R(D) requires n → ∞In practice, delay and computational complexity are limited

Or Ordentlich Integer-Forcing Source Coding

Page 26: Integer-Forcing Source Coding - York

Scalar Uniform Quantization 1

Achieving optimal R(D) requires n → ∞In practice, delay and computational complexity are limited

Ideally, we would like to work with n = 1This is also the case for Analog-to-Digital Convertors (ADC)

Or Ordentlich Integer-Forcing Source Coding

Page 27: Integer-Forcing Source Coding - York

Scalar Uniform Quantization 1

Achieving optimal R(D) requires n → ∞In practice, delay and computational complexity are limited

Ideally, we would like to work with n = 1This is also the case for Analog-to-Digital Convertors (ADC)

Simplest choice is a uniform scalar quantizer

Or Ordentlich Integer-Forcing Source Coding

Page 28: Integer-Forcing Source Coding - York

Scalar Uniform Quantization 1

Achieving optimal R(D) requires n → ∞In practice, delay and computational complexity are limited

Ideally, we would like to work with n = 1This is also the case for Analog-to-Digital Convertors (ADC)

Simplest choice is a uniform scalar quantizer

Q(x) =

(∆− 1)/2 if ∆/2 < x

round(x) if −∆/2 ≤ x ≤ ∆/2

−(∆− 1)/2 if x < −∆/2

Or Ordentlich Integer-Forcing Source Coding

Page 29: Integer-Forcing Source Coding - York

Scalar Uniform Quantization 1

Achieving optimal R(D) requires n → ∞In practice, delay and computational complexity are limited

Ideally, we would like to work with n = 1This is also the case for Analog-to-Digital Convertors (ADC)

Simplest choice is a uniform scalar quantizer

Q(x):

x1 2

1

3

1

· · · 2R

Or Ordentlich Integer-Forcing Source Coding

Page 30: Integer-Forcing Source Coding - York

Scalar Uniform Quantization 1

Achieving optimal R(D) requires n → ∞In practice, delay and computational complexity are limited

Ideally, we would like to work with n = 1This is also the case for Analog-to-Digital Convertors (ADC)

Simplest choice is a uniform scalar quantizer

Q(x):

x1 2

1

3

1

· · · 2ROVERLOADOVERLOAD

No Overload Region

∆ = 2R

Or Ordentlich Integer-Forcing Source Coding

Page 31: Integer-Forcing Source Coding - York

Scalar Uniform Quantization 1

Achieving optimal R(D) requires n → ∞In practice, delay and computational complexity are limited

Ideally, we would like to work with n = 1This is also the case for Analog-to-Digital Convertors (ADC)

Simplest choice is a uniform scalar quantizer

Q(x):

x1 2

1

3

1

· · · 2ROVERLOADOVERLOAD

No Overload Region

∆ = 2R

Dynamic range= [−∆/2,∆/2]Overload probability= Pr(|X | > ∆/2) = 2erfc(∆/(2σ))

Or Ordentlich Integer-Forcing Source Coding

Page 32: Integer-Forcing Source Coding - York

Dithered quantization

The quantization error e = Q(x)− x is a deterministic function of x

Or Ordentlich Integer-Forcing Source Coding

Page 33: Integer-Forcing Source Coding - York

Dithered quantization

The quantization error e = Q(x)− x is a deterministic function of x

complicates performance analysis

Or Ordentlich Integer-Forcing Source Coding

Page 34: Integer-Forcing Source Coding - York

Dithered quantization

The quantization error e = Q(x)− x is a deterministic function of x

complicates performance analysis

This can be mitigated by adding randomization to the quantizer

Or Ordentlich Integer-Forcing Source Coding

Page 35: Integer-Forcing Source Coding - York

Dithered quantization

The quantization error e = Q(x)− x is a deterministic function of x

complicates performance analysis

This can be mitigated by adding randomization to the quantizer

In practice, this randomization is seldom needed

Or Ordentlich Integer-Forcing Source Coding

Page 36: Integer-Forcing Source Coding - York

Dithered quantization

The quantization error e = Q(x)− x is a deterministic function of x

complicates performance analysis

This can be mitigated by adding randomization to the quantizer

In practice, this randomization is seldom needed

Let u ∼ Uniform(−1

2 ,12

), u |= x

Or Ordentlich Integer-Forcing Source Coding

Page 37: Integer-Forcing Source Coding - York

Dithered quantization

The quantization error e = Q(x)− x is a deterministic function of x

complicates performance analysis

This can be mitigated by adding randomization to the quantizer

In practice, this randomization is seldom needed

Let u ∼ Uniform(−1

2 ,12

), u |= x

Set x = Q(x + u)− u

Or Ordentlich Integer-Forcing Source Coding

Page 38: Integer-Forcing Source Coding - York

Dithered quantization

The quantization error e = Q(x)− x is a deterministic function of x

complicates performance analysis

This can be mitigated by adding randomization to the quantizer

In practice, this randomization is seldom needed

Let u ∼ Uniform(−1

2 ,12

), u |= x

Set x = Q(x + u)− u

Assuming no overload, we have

e = x − x = Q(x + u)− (x + u) = round(x + u)− (x + u)

Or Ordentlich Integer-Forcing Source Coding

Page 39: Integer-Forcing Source Coding - York

Dithered quantization

The quantization error e = Q(x)− x is a deterministic function of x

complicates performance analysis

This can be mitigated by adding randomization to the quantizer

In practice, this randomization is seldom needed

Let u ∼ Uniform(−1

2 ,12

), u |= x

Set x = Q(x + u)− u

Assuming no overload, we have

e = x − x = Q(x + u)− (x + u) = round(x + u)− (x + u)

It is easy to see that round(x + u)− (x + u) is Uniform(−1

2 ,12

)and |= x

Or Ordentlich Integer-Forcing Source Coding

Page 40: Integer-Forcing Source Coding - York

Scalar Uniform Quantization 2

Q(x):

x1 2

√12d

3

√12d

· · · 2R

Or Ordentlich Integer-Forcing Source Coding

Page 41: Integer-Forcing Source Coding - York

Scalar Uniform Quantization 2

Q(x):

x1 2

√12d

3

√12d

· · · 2R

Under no overload + dithered quantization

Xn Q(·) Xn

Or Ordentlich Integer-Forcing Source Coding

Page 42: Integer-Forcing Source Coding - York

Scalar Uniform Quantization 2

Q(x):

x1 2

√12d

3

√12d

· · · 2R

Under no overload + dithered quantization

Xn Xn

Nn ∼ Uniform

(−

√12d2 ,

√12d2

)

E

(Xn − Xn

)2= d

Or Ordentlich Integer-Forcing Source Coding

Page 43: Integer-Forcing Source Coding - York

Scalar Uniform Quantization 2

Q(x):

x1 2

√12d

3

√12d

· · · 2ROVERLOADOVERLOAD

No Overload Region

∆ = 2R√12d

Under no overload + dithered quantization

Xn Xn

Nn ∼ Uniform

(−

√12d2 ,

√12d2

)

E

(Xn − Xn

)2= d

Pr(OL) = 2erfc

(∆

)≤ e

− ∆2

8σ2 = e−32·2

2

(

R−

12 log

(

σ2

d

)

)

Or Ordentlich Integer-Forcing Source Coding

Page 44: Integer-Forcing Source Coding - York

Scalar Uniform Quantization 2

Q(x):

x1 2

√12d

3

√12d

· · · 2ROVERLOADOVERLOAD

No Overload Region

∆ = 2R√12d

Under no overload + dithered quantization

Xn Xn

Nn ∼ Uniform

(−

√12d2 ,

√12d2

)

E

(Xn − Xn

)2= d

Pr(OL) = 2erfc

(∆

)≤ e

− ∆2

8σ2 = e−32·22δ

Or Ordentlich Integer-Forcing Source Coding

Page 45: Integer-Forcing Source Coding - York

Scalar Uniform Quantization 2

Conclusion:

For x ∼ N (0, σ2), a scalar uniform quantizer with rate

R = δ +1

2log

(σ2

d

)

︸ ︷︷ ︸Shannon

achieves distortion ≈ d whenever overload does not occur, and

Pr(OL) ≤ e−3222δ

Or Ordentlich Integer-Forcing Source Coding

Page 46: Integer-Forcing Source Coding - York

Scalar Uniform Quantization 2

Conclusion:

For x ∼ N (0, σ2), a scalar uniform quantizer with rate

R = δ +1

2log

(σ2

d

)

︸ ︷︷ ︸Shannon

achieves distortion ≈ d whenever overload does not occur, and

Pr(OL) ≤ e−3222δ

Main Goal:

Can we get close-to-optimal performance using scalar quantizers also whenthe source is a Gaussian vector x ∼ N (0,Kxx)?

Or Ordentlich Integer-Forcing Source Coding

Page 47: Integer-Forcing Source Coding - York

Quantization of Gaussian Vectors

[

src1src2

]

∼ N(

0,

[

σ2 ρσ2

ρσ2 σ2

])

src1 E1R

src2 E2R

D ( ˆsrc1, d)( ˆsrc2, d)

Or Ordentlich Integer-Forcing Source Coding

Page 48: Integer-Forcing Source Coding - York

Quantization of Gaussian Vectors

[

src1src2

]

∼ N(

0,

[

σ2 ρσ2

ρσ2 σ2

])

src1 E1R

src2 E2R

D ( ˆsrc1, d)( ˆsrc2, d)

Naive Approach (typically used in practice)

Ignore correlation and use scalar quantizers with ∆ ∝ σ so that with highprobability both src1, src2 ∈ [−∆

2 ,∆2 ]

⇒ R ∝ 12 log

(σ2

d

)

Or Ordentlich Integer-Forcing Source Coding

Page 49: Integer-Forcing Source Coding - York

Quantization of Gaussian Vectors

[

src1src2

]

∼ N(

0,

[

σ2 00 σ2

])

src1 E1R

src2 E2R

D ( ˆsrc1, d)( ˆsrc2, d)

Naive Approach (typically used in practice)

Ignore correlation and use scalar quantizers with ∆ ∝ σ so that with highprobability both src1, src2 ∈ [−∆

2 ,∆2 ]

⇒ R ∝ 12 log

(σ2

d

)

Or Ordentlich Integer-Forcing Source Coding

Page 50: Integer-Forcing Source Coding - York

Quantization of Gaussian Vectors

[

src1src2

]

∼ N(

0,

[

σ2 ρσ2

ρσ2 σ2

])

src1 E1R

src2 E2R

D ( ˆsrc1, d)( ˆsrc2, d)

Naive Approach (typically used in practice)

Ignore correlation and use scalar quantizers with ∆ ∝ σ so that with highprobability both src1, src2 ∈ [−∆

2 ,∆2 ]

⇒ R ∝ 12 log

(σ2

d

)

Fundamental IT Limits (Berger-Tung, Wagner et al)

With unlimited delay and computational complexity, it is possible toachieve∗ R ≈ 1

2 · 12 log det

(I+ 1

dKxx

)

Or Ordentlich Integer-Forcing Source Coding

Page 51: Integer-Forcing Source Coding - York

Goal 1 - Universal Quantization

[

x1

x2

]

∼ N (0,Kxx )

x1 E1R

x2 E2R

D (x1, d)(x2, d)

Or Ordentlich Integer-Forcing Source Coding

Page 52: Integer-Forcing Source Coding - York

Goal 1 - Universal Quantization

[

x1

x2

]

∼ N (0,Kxx )

x1 E1R

x2 E2R

D (x1, d)(x2, d)

Goal:

Simple, identical, universal, non-cooperating quantizers E1, E2Simple decoder D that can depend on Kxx

Good performance for all Kxx with the same log det(I+ 1

dKxx

)

Or Ordentlich Integer-Forcing Source Coding

Page 53: Integer-Forcing Source Coding - York

Goal 1 - Universal Quantization

[

x1

x2

]

∼ N (0,Kxx )

x1 E1R

x2 E2R

D (x1, d)(x2, d)

Goal:

Simple, identical, universal, non-cooperating quantizers E1, E2Simple decoder D that can depend on Kxx

Good performance for all Kxx with the same log det(I+ 1

dKxx

)

Extreme cases:

K1xx =

[1 00 1

], K2

xx =

[a 00 0

], and K3

xx =

[b b

b b

]

Or Ordentlich Integer-Forcing Source Coding

Page 54: Integer-Forcing Source Coding - York

Goal 1 - Universal Quantization

[

x1

x2

]

∼ N (0,Kxx )

x1

x2

P

E1R

E2R

D (x1, d)(x2, d)

Goal:

Simple, identical, universal, non-cooperating quantizers E1, E2Simple decoder D that can depend on Kxx

Good performance for all Kxx with the same log det(I+ 1

dKxx

)

Extreme cases:

K1xx =

[1 00 1

], K2

xx =

[a 00 0

], and K3

xx =

[b b

b b

]

Willing to apply a universal linear transformation before quantization

Or Ordentlich Integer-Forcing Source Coding

Page 55: Integer-Forcing Source Coding - York

Goal 2 - Distributed Lossy Compression

x1 E1R1

...

xK EKRK

D(x1, d1)

...(xK , dK )

Or Ordentlich Integer-Forcing Source Coding

Page 56: Integer-Forcing Source Coding - York

Goal 2 - Distributed Lossy Compression

x1 E1R1

...

xK EKRK

D(x1, d1)

...(xK , dK )

Fundamental limits understood in some cases

Inner and outer bounds known

Or Ordentlich Integer-Forcing Source Coding

Page 57: Integer-Forcing Source Coding - York

Goal 2 - Distributed Lossy Compression

x1 E1R1

...

xK EKRK

D(x1, d1)

...(xK , dK )

Fundamental limits understood in some cases

Inner and outer bounds known

Some applications require

Extremely simple encoders/decoder

n = 1

Or Ordentlich Integer-Forcing Source Coding

Page 58: Integer-Forcing Source Coding - York

Goal 2 -Distributed Lossy Compression

x1

...xK

∼ N (0,Kxx )

x1 E1R

...

xK EKR

D(x1, d)

...(xK , d)

We restrict attention to:

Gaussian sources x ∼ N (0,Kxx )

One-shot compression - block length is 1

Symmetric rates R1 = · · · = RK = R

Symmetric distortions d1 = · · · = dK = d

MSE distortion measure: E (xk − xk)2 ≤ d

Or Ordentlich Integer-Forcing Source Coding

Page 59: Integer-Forcing Source Coding - York

Goal and Means

Goal

Simple encoders: uniform scalar quantizers

Decoupled decoding

Performance close to best known inner bounds (Berger-Tung)

Or Ordentlich Integer-Forcing Source Coding

Page 60: Integer-Forcing Source Coding - York

Goal and Means

Goal

Simple encoders: uniform scalar quantizers

Decoupled decoding

Performance close to best known inner bounds (Berger-Tung)

Binning:

Well understood for large blocklengths, less for short blocks

Requires sophisticated joint decoding techniques

Or Ordentlich Integer-Forcing Source Coding

Page 61: Integer-Forcing Source Coding - York

Goal and Means

Goal

Simple encoders: uniform scalar quantizers

Decoupled decoding

Performance close to best known inner bounds (Berger-Tung)

Binning:

Well understood for large blocklengths, less for short blocks

Requires sophisticated joint decoding techniques

Scalar Modulo

A simple 1-D binning operation

Allows for efficient decoding using integer-forcing

Or Ordentlich Integer-Forcing Source Coding

Page 62: Integer-Forcing Source Coding - York

Integer-Forcing Source Coding: Overview

Basic Idea: Rather than solving the problem

x1 E1R

...

xK EKR

Dx1...xK

Or Ordentlich Integer-Forcing Source Coding

Page 63: Integer-Forcing Source Coding - York

Integer-Forcing Source Coding: Overview

First solve

x1 E1R

...

xK EKR

D

∑K

m=1 a1mxm...

∑K

m=1 aKmxm

and then invert equations to get x1, . . . , xK

Or Ordentlich Integer-Forcing Source Coding

Page 64: Integer-Forcing Source Coding - York

Integer-Forcing Source Coding: Overview

First solve

x1 E1R

...

xK EKR

D

∑K

m=1 a1mxm...

∑K

m=1 aKmxm

and then invert equations to get x1, . . . , xK

Problem reduces to simultaneous distributed compression of K linearcombinations

Can be efficiently solved with small rates for certain choices ofcoefficients

Equation coefficients can be chosen to optimize performance

Or Ordentlich Integer-Forcing Source Coding

Page 65: Integer-Forcing Source Coding - York

Distributed Compression of Integer Linear Combination

x1 E1R

...

xK EKR

D aTx

Or Ordentlich Integer-Forcing Source Coding

Page 66: Integer-Forcing Source Coding - York

Distributed Compression of Integer Linear Combination

Scalar Quantization

xi Q(·) xi

0√12d

xixi

High resolution/dithered quantization:

xi = xi + ui

where ui ∼ Uniform

([−

√12d2 ,

√12d2

)), ui |= xi

E(xi − xi )2 = d

Or Ordentlich Integer-Forcing Source Coding

Page 67: Integer-Forcing Source Coding - York

Distributed Compression of Integer Linear Combination

Modulo Scalar Quantization

xi Q(·) mod∆ x∗i

−3∆ −2∆ −∆ 0 ∆ 2∆ 3∆

√12d

xixi

x∗i

∆ = 2R√12d =⇒ Compression rate is R

High resolution/dithered quantization:

x∗i = [xi + ui ]∗

Or Ordentlich Integer-Forcing Source Coding

Page 68: Integer-Forcing Source Coding - York

Distributed Compression of Integer Linear Combination

Encoders

Each encoder is a modulo scalar quantizer with rate R : produces x∗k

Or Ordentlich Integer-Forcing Source Coding

Page 69: Integer-Forcing Source Coding - York

Distributed Compression of Integer Linear Combination

Encoders

Each encoder is a modulo scalar quantizer with rate R : produces x∗k

Simple modulo property

For any set of integers a1, . . . , aK and real numbers x1, . . . , xK[K∑

k=1

ak xk

]∗

=

[K∑

k=1

ak x∗k

]∗

Or Ordentlich Integer-Forcing Source Coding

Page 70: Integer-Forcing Source Coding - York

Distributed Compression of Integer Linear Combination

Encoders

Each encoder is a modulo scalar quantizer with rate R : produces x∗k

Simple modulo property

For any set of integers a1, . . . , aK and real numbers x1, . . . , xK[K∑

k=1

ak xk

]∗

=

[K∑

k=1

ak x∗k

]∗

Decoder

Gets: x∗1 , . . . , x∗K

Outputs:

aTx =

[K∑

k=1

ak x∗k

]∗

=

[K∑

k=1

ak xk

]∗

=[aT (x+ u)

]∗

Or Ordentlich Integer-Forcing Source Coding

Page 71: Integer-Forcing Source Coding - York

Compression of Integer Linear Combination - Pe

aTx =[aT (x+ u)

]∗

aTx =

{aTx+ aTu if aT (x+ u) ∈

[−∆

2 ,∆2

)

error otherwise

Pe is small if ∆√

Var(aT (x+u))is large

∆ grows exponentially with R

Or Ordentlich Integer-Forcing Source Coding

Page 72: Integer-Forcing Source Coding - York

Compression of Integer Linear Combination - Pe

aTx =[aT (x+ u)

]∗

aTx =

{aTx+ aTu if aT (x+ u) ∈

[−∆

2 ,∆2

)

error otherwise

Pe is small if ∆√

Var(aT (x+u))is large

∆ grows exponentially with R

Pe ≤ 2 exp

{−3

222

(

R− 12log

(

aT (Kxx+dI)ad

))}

Or Ordentlich Integer-Forcing Source Coding

Page 73: Integer-Forcing Source Coding - York

Compression of Integer Linear Combination - Pe

aTx =[aT (x+ u)

]∗

aTx =

{aTx+ aTu if aT (x+ u) ∈

[−∆

2 ,∆2

)

error otherwise

Pe is small if ∆√

Var(aT (x+u))is large

∆ grows exponentially with R

Pe ≤ 2 exp

{−3

222

(

R− 12log

(

aT (Kxx+dI)ad

))}

For a with small Var(aT (x+ u)

)we can take small R

Or Ordentlich Integer-Forcing Source Coding

Page 74: Integer-Forcing Source Coding - York

Integer-Forcing Source Coding

x1 E1R

...

xK EKR

D

∑K

m=1 a1mxm...

∑K

m=1 aKmxm

Need to estimate K linearly independent integer linear combinations

If all combinations estimated without error, can compute

x = A−1Ax = A−1(Ax+ Au) = x+ u

Or Ordentlich Integer-Forcing Source Coding

Page 75: Integer-Forcing Source Coding - York

Integer-Forcing Source Coding

x1 E1R

...

xK EKR

D

∑K

m=1 a1mxm...

∑K

m=1 aKmxm

Need to estimate K linearly independent integer linear combinations

If all combinations estimated without error, can compute

x = A−1Ax = A−1(Ax+ Au) = x+ u

Pe ≤ 2K exp

−3

222

(

R− 12log

(

maxm=1,...,K aTm(Kxx+dI)am

d

))

Or Ordentlich Integer-Forcing Source Coding

Page 76: Integer-Forcing Source Coding - York

Integer-Forcing Source Coding - Performance

Let

RIF(A, d) ,1

2log

(max

m=1,...,KaTm

(I+

1

dKxx

)am

)

Or Ordentlich Integer-Forcing Source Coding

Page 77: Integer-Forcing Source Coding - York

Integer-Forcing Source Coding - Performance

Let

RIF(A, d) ,1

2log

(max

m=1,...,KaTm

(I+

1

dKxx

)am

)

Theorem

Let R = RIF(A, d) + δ. IF source coding produces estimates with averageMSE distortion d for all x1, . . . , xK with probability > 1− 2K exp

{−3

222δ}

Or Ordentlich Integer-Forcing Source Coding

Page 78: Integer-Forcing Source Coding - York

Integer-Forcing Source Coding - Performance

Let

RIF(A, d) ,1

2log

(max

m=1,...,KaTm

(I+

1

dKxx

)am

)

Theorem

Let R = RIF(A, d) + δ. IF source coding produces estimates with averageMSE distortion d for all x1, . . . , xK with probability > 1− 2K exp

{−3

222δ}

Can minimize compression rate by minimizing RIF(A, d) w.r.t. A

Or Ordentlich Integer-Forcing Source Coding

Page 79: Integer-Forcing Source Coding - York

Integer-Forcing Source Coding: Example

x ∼ N (0,Kxx), Kxx = I+ SNRHHT , SNR = 20dB and H ∈ R8×2

−20 −10 0 10 20 30 400

2

4

6

8

10

E(R

)[b

its]

(1/d)[dB]

Naive Compression Symmetric Successive Wyner−Ziv CodingR

IF(d)

Berger−Tung Benchmark

Or Ordentlich Integer-Forcing Source Coding

Page 80: Integer-Forcing Source Coding - York

Back to Motivation 1

How close is RIF(d) to the optimal performance?

Usually very close to the performance of the Berger-Tung inner bound.

But... the gap can be arbitrarily large.

Or Ordentlich Integer-Forcing Source Coding

Page 81: Integer-Forcing Source Coding - York

Back to Motivation 1

How close is RIF(d) to the optimal performance?

Usually very close to the performance of the Berger-Tung inner bound.

But... the gap can be arbitrarily large.

However, if we change the setting...

this obstacle can be overcome.

Or Ordentlich Integer-Forcing Source Coding

Page 82: Integer-Forcing Source Coding - York

Back to Motivation 1

How close is RIF(d) to the optimal performance?

Usually very close to the performance of the Berger-Tung inner bound.

But... the gap can be arbitrarily large.

[

x1

x2

]

∼ N (0,Kxx )

x1 E1R

x2 E2R

D (x1, d)(x2, d)

Or Ordentlich Integer-Forcing Source Coding

Page 83: Integer-Forcing Source Coding - York

Back to Motivation 1

How close is RIF(d) to the optimal performance?

Usually very close to the performance of the Berger-Tung inner bound.

But... the gap can be arbitrarily large.

[

x1

x2

]

∼ N (0,Kxx )

x1

x2

P

E1R

E2R

D (x1, d)(x2, d)

Or Ordentlich Integer-Forcing Source Coding

Page 84: Integer-Forcing Source Coding - York

Back to Motivation 1

How close is RIF(d) to the optimal performance?

Usually very close to the performance of the Berger-Tung inner bound.

But... the gap can be arbitrarily large.

[

x1

x2

]

∼ N (0,Kxx )

x1

x2

P

E1R

E2R

D (x1, d)(x2, d)

Requirements

Universal precoding matrix P (does not depend on Kxx)

RIF(d) ≤ const + 12K log det(I+ 1

dKxx) for all Kxx

Or Ordentlich Integer-Forcing Source Coding

Page 85: Integer-Forcing Source Coding - York

Back to Motivation 1

How close is RIF(d) to the optimal performance?

Usually very close to the performance of the Berger-Tung inner bound.

But... the gap can be arbitrarily large.

[

x1

x2

]

∼ N (0,Kxx )

x1

x2

P

E1R

E2R

D (x1, d)(x2, d)

Requirements

Universal precoding matrix P (does not depend on Kxx)

RIF(d) ≤ const + 12K log det(I+ 1

dKxx) for all Kxx

Price of universality - need to jointly encode K realizations

Or Ordentlich Integer-Forcing Source Coding

Page 86: Integer-Forcing Source Coding - York

Space-Time Source Coding

x11

x12

x21

x22

P

IF enc 1R

IF enc 2R

IF enc 3R

IF enc 4R

IF

Decoder

(x11 , d

)(x12 , d

)(x21 , d

)(x22 , d

)

Or Ordentlich Integer-Forcing Source Coding

Page 87: Integer-Forcing Source Coding - York

Space-Time Source Coding - Performance Guarantees

Let P be a generating matrix of a “perfect” linear dispersion space-timecode, with minimum det δmin(CST

∞ )

Theorem

For any source with covariance matrix Kxx, the rate-distortion function ofspace-time integer-forcing source coding with precoding matrix P isbounded by

RIF(d) <1

2Klog det

(I+

1

dKxx

)+ Γ

(K , δmin(CST

∞ ))

where Γ(K , δmin(CST

∞ )), 2K 2 log(2K 2) + K log 1

δmin(CST∞

)

Remark: For K = 2 the golden-code precoding matrix has δmin(CST∞ ) = 1/5

Or Ordentlich Integer-Forcing Source Coding

Page 88: Integer-Forcing Source Coding - York

Example

K1xx =

[1 00 1

], K2

xx =

[a 00 0

], and K3

xx =

[b b

b b

]

12K log

(I+ 1

dK1

xx

)= 1

2K log(I+ 1

dK2

xx

)= 1

2K log(I+ 1

dK3

xx

)

Or Ordentlich Integer-Forcing Source Coding

Page 89: Integer-Forcing Source Coding - York

Example

K1xx =

[1 00 1

], K2

xx =

[a 00 0

], and K3

xx =

[b b

b b

]

12K log

(I+ 1

dK1

xx

)= 1

2K log(I+ 1

dK2

xx

)= 1

2K log(I+ 1

dK3

xx

)

−10 0 10 20 30 400

1

2

3

4

5

6

7

R[b

its]

(1/d)[dB]

R1IF(d)

R2IF(d)

R3IF(d)

12K logdet

(

I + 1dKxx

)

Or Ordentlich Integer-Forcing Source Coding

Page 90: Integer-Forcing Source Coding - York

Further Applications of Integer-Forcing Source Coding:

Or Ordentlich Integer-Forcing Source Coding

Page 91: Integer-Forcing Source Coding - York

Further Applications of Integer-Forcing Source Coding:

Compress-and-forward for relay networks (C-RAN)

Or Ordentlich Integer-Forcing Source Coding

Page 92: Integer-Forcing Source Coding - York

Further Applications of Integer-Forcing Source Coding:

Compress-and-forward for relay networks (C-RAN)

Analog-to-digital converters

Or Ordentlich Integer-Forcing Source Coding

Page 93: Integer-Forcing Source Coding - York

Thanks for your attention!

Or Ordentlich Integer-Forcing Source Coding