Top Banner
Dr. Gang Wang Dr. David K. Ryan Department of Chemistry University of Massachusetts Lowell 1 List Price $162 UML Bookstore $231? Internet as low as $85 ? Fifth edition 1998 Sixth ed. just out 2007 Excellent reference book
19

Instrumental Week1 CH1&5-2010.ppt - uml.edu

Jan 03, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Instrumental Week1 CH1&5-2010.ppt - uml.edu

Dr. Gang WangDr. David K. Ryan

Department of ChemistryUniversity of Massachusetts Lowell

1

List Price $162UML Bookstore $231?Internet as low as $85 ?Fifth edition 1998Sixth ed. just out 2007Excellent reference book

Page 2: Instrumental Week1 CH1&5-2010.ppt - uml.edu

3

Website

http://faculty.uml.edu/David_Ryan/84.314/Syllabus = course descriptionScheduleMaterials = Lecture Slides,  Handouts, Videos from last year

4

Skoog – Chapter 1Introduction

Basics of Instrumental AnalysisProperties Employed in Instrumental MethodsNumerical CriteriaFigures of Merit

Page 3: Instrumental Week1 CH1&5-2010.ppt - uml.edu

Nobel PrizesWilliam H. Bragg analysis of crystal structure by means of X-rays(physics) 1915

Francis W. Aston for his discovery, by means of his mass spectrograph, of isotopes (Chemistry) 1922

Friderik Pregl invention of the method of micro-analysis of organic substances (Chemistry) 1923

Arne Tiseliushis research on electrophoresis and adsorption analysis, especially for his discoveries concerning the complex nature of the serum proteins (Chemistry)

1948

Felix BlochEdward M. Purcell

development of new methods for nuclear magnetic precision measurements and discoveries (Physics) 1952

Archer J P MartinRichard L M Synge Invention of partition chromatography (Chemistry) 1952

Jaroslav Heyrovsky discovery and development of the polarographic methods of analysis (Chemistry) 1959

Rosalyn Yalow development of radioimmunoassays of peptide hormones (Physiology or Medicine) 1977

Kai M. Siegbahn contribution to the development of high-resolution electron spectroscopy (physics) 1981

Gerd BinnigHeinrich Rohrer

design of the scanning tunneling microscope (physics) 1986

Analytical Methods

Classical

Instrumental

Precipitation

Extraction

Distillation

ColorsBoiling or Melting Points

Solubilities

Odors

Optical

GravimetricVolumetric

Physical PropertiesConductivityElectrode PotentialLight Absorption or EmissionMass-to –Charge ratioFluorescence

ChromatographicElectrophoretic

Page 4: Instrumental Week1 CH1&5-2010.ppt - uml.edu

Instruments for Analysis

Page 5: Instrumental Week1 CH1&5-2010.ppt - uml.edu

Performance CharacteristicsOfInstruments

Precision

The precision of a measurement system, also called reproducibility or repeatability, is the degree to which repeated measurements under unchanged conditions show the same results.

accuracy of a measurement system is the degree of closeness of measurements of aquantity to its actual (true) value.

Page 6: Instrumental Week1 CH1&5-2010.ppt - uml.edu

BiasBias provides a measure of the systematic, or determinate, error of an analytical method.Δ = μ − τWhere μ is the population mean for the concentration of an analyteτ is the true value

SensitivitySensitivity of a method or instrument is a measure of its ability to discriminate between small differences.Two factors limit sensitivity

The slope of calibration curveReproducibility or precision of the measuring deviceS = mc + Sbl

Detection limitMinimum concentration or mass of analyte can be detected at a known confidence levelSm = Sbl + ksbl

Usually, k = 3

Page 7: Instrumental Week1 CH1&5-2010.ppt - uml.edu

Dynamic range

LOQ limit of quantitationLOL limit of linearityDynamic range should be at least a few orders of magnitude

SelectivitySelectivity refers to the degree to which the method is free from interference by other species in sample

Page 8: Instrumental Week1 CH1&5-2010.ppt - uml.edu

Calibration of instrumental methodCalibration determines the relationship between analytical response and analytical concentration.1. external‐standard calibration

No interference effectsObtain response signal as a function of known analyte concentration

Calibration of instrumental method2. Standard‐ additional methods

Adding one or more increments of standard solution to sample aliquotsSx = K1 CxST = K1 (Cx + Cs)

Cx = CsSx /(ST ‐ Sx)When ST = 0Cx = ‐Cs

Page 9: Instrumental Week1 CH1&5-2010.ppt - uml.edu

Calibration of instrumental method3. internal‐standard methodAdd a constant amount of substance to all samples, blanks, and calibration standard.Plot ratio of analytesignal and internal‐standard as a function of analyteconcentration.

Homework: P23 1-10

18

Skip the following chapters

Chapter 2 – Electrical Components and CircuitsChapter 3 – Operational Amplifiers in Chemical InstrumentationChapter 4 – Digital Electronics and Microcomputers

Page 10: Instrumental Week1 CH1&5-2010.ppt - uml.edu

19

Skoog – Chapter 5Signals and Noise

Signal to Noise RatioAll instrumental measurements involve a signalUnfortunately all signals have noise presentSometimes the noise is largeSometimes it is so small you can’t see itNoise is constant and independent, small signal large noise

S/N is very important

20Noise is often constant and independent of signal

Current measurements(a) with noise, (b) with noise averaged out

Page 11: Instrumental Week1 CH1&5-2010.ppt - uml.edu

21

Signal to Noise Ratio (S/N)Parameter describing quality of dataOften referred to as “figure of merit”

S        mean of signal               x          1‐‐‐‐ = ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ = ‐‐‐‐ = ‐‐‐‐‐‐‐N     standard deviation          s        RSD

RSD = relative standard deviationImpossible to detect a signal when S/N less than 2 or 3

22

NMR spectra forProgesteroneA) S/N = 4.3B) S/N = 43

Very little confidencein ability todeterminepeaks atlower S/N

DetectionLimit

Page 12: Instrumental Week1 CH1&5-2010.ppt - uml.edu

23

Sources of NoiseChemical noise – temp, pressure, humidity, etc.  fluctuations = uncontrolled variables

Instrumental noise – noise from instrumental components

Thermal noise (Johnson noise) – thermal motion of electrons in load resistor  Voltage fluctuation                   

vrms =   4 k T R Δf              Δf =1/3trNarrow bandwidth to decrease noise, but instrument will be slower 

24

Instrumental noiseThermal noise

vrms =    4 k T R Δf 

vrms = root mean square noise voltagek = Boltzmann constant 1.38 x 10‐23 J/KT = temperatureR = resistanceΔf = frequency bandwidth of noise

Page 13: Instrumental Week1 CH1&5-2010.ppt - uml.edu

25

Instrumental noiseShot noise – movement ofelectrons across a junction

irms =    2 i e Δf 

irms = root‐mean square current fluctuationi = average currente = charge on electronΔf = frequency bandwidth

26

Instrumental noiseFlicker noise – any noisethat is inversely proportional to signal

1/fSignificant at low frequency (<100 Hz)Environmental noise – composite ofmany noise sourcese.g. any electrical device gives offEM (electromagnetic radiation)ELF radiation = health controversyinstruments may pick up signals

Page 14: Instrumental Week1 CH1&5-2010.ppt - uml.edu

27

Environmental noise sources(note frequency dependence)

28

Improving S/Nhardware & software

HardwareGrounding & shielding – Faraday cageAnalog filtering – RC filteringModulation – convert DC signal to high frequency AC then demodulateSignal chopping – rotating wheel to differentiate e.g. IR source from heatLock‐in amplifiers

Page 15: Instrumental Week1 CH1&5-2010.ppt - uml.edu

29

PrimitiveFaradayCage forshieldinginstrumentsfrom EMRadiation –must begrounded

30

Analog Filteringor RC Filtering

Noisy data

RC filter

R

C

Filtered data

Page 16: Instrumental Week1 CH1&5-2010.ppt - uml.edu

31

Modulation

32

Signal chopping in anIR spectrophotometer

Page 17: Instrumental Week1 CH1&5-2010.ppt - uml.edu

33

34

Chopper amplifier

Page 18: Instrumental Week1 CH1&5-2010.ppt - uml.edu

35

Improving S/Nhardware & software

SoftwareEnsemble averaging – adding spectraBoxcar averaging –Digital filtering – moving window, sliding averageCorrelation methods

36

Ensembleaveragingi.e. addingor averagingsignal

Page 19: Instrumental Week1 CH1&5-2010.ppt - uml.edu

37

Boxcar averaging