Top Banner
12/11/20 Institute for Ship Structural Design and Analysis Sören Ehlers Prof. DSc. (Tech) / Institutsleiter M-10
53

Institute for Ship Structural Design and Analysis

May 27, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Institute for Ship Structural Design and Analysis

12/11/20

Institute for Ship Structural Design and Analysis

Sören EhlersProf. DSc. (Tech) / Institutsleiter

M-10

Page 2: Institute for Ship Structural Design and Analysis

Institute for Ship Structural Design and Analysis (M-10)

212/11/20

Sören Ehlers: Design and analysis of ships and offshore structures

Teaching• Fundamentals of engineering

design• Ship structural design I, II and III• Introduction to ship structural

analysis• Arctic technology

Research• Analytical, numerical and experimental

structural analysis• Structural analysis and design under extreme

conditions• Fatigue of Ships and Offshore structures• Design of Ships and Structures for polar regions• Structural optimisation

Page 3: Institute for Ship Structural Design and Analysis

Marine Technology Students at TUHH

Teaching in the current situation:§ Teaching is primarily online with live or

pre-recorded presentations

312/11/20

Registered students 2020:§ Quite a drop in recent years§ New Master students: 8§ New Bachelor students: 18§ Total registered students: 71

§ General trend is a decreasing amount of students in mechanical engineering§ Especially for Marine Technology I feel that we fail to communicate the

diversity and cutting-edge technology we deal with. Often the one associates naval architecture with steel and iron work of heavy labor at a yard alone

Page 4: Institute for Ship Structural Design and Analysis

Research Areas

412/11/20

Fatigue/fracture mechanics• Detail design• New cutting and welding methods• New materials• Production and in-service

influences on fatigue and fracture behavior

Ice loads• Ice-structure interaction • Ice-pressure-distribution• Thin sections• Friction testing

Nonlinear Waves under Solid Ice• Nonlinear wave propagation• Dispersion of waves• Swell conditions• Ice breakup mechanism

Numerical Simulations• Component design• Structural optimization• Fatigue assessment• Material models• Simulation of collision and

grounding

Page 5: Institute for Ship Structural Design and Analysis

Research Areas

512/11/20

Residual stresses and laser scanning• Hole-drilling rosette method• Weld surface geometry scanning• Plate deformation

Ship structural design for ice loads• Ice-structure interaction • Ice-pressure-distribution• Thin sections• Friction testing

Structural behavior• Design of ships and equipment• Collision and grounding• Production and in-service

influences on structural strength• Influence of corrosion

Ship acoustics• Sound sources• Sound propagation through

structures• Sound radiation into water

Page 6: Institute for Ship Structural Design and Analysis

Fatigue strength andresidual stresses

Page 7: Institute for Ship Structural Design and Analysis

Motivation§ Vielseitige Schadensfälle für Schiffe und

Offshore Strukturen 1

§ Oft kombinierte Schäden 2

§ Ein Großteil der Schäden sind auf schlechtes design und operative Fehler zurückzuführen 2

§ Materialwahl kann Schäden beeinflussen 3

11.12.20 7

Ref.: 1 A. Dehghani, F. Aslani, A review on defects in steel offshore structures and developed strengthening techniques. Structures, 20 (2019) 635-657. https://doi.org/10.1016/j.istruc.2019.06.0022 S.J. Price, R.B. Figueira, Corrosion Protection Systems and Fatigue Corrosion in Offshore Wind Structures: Current Status and Future Perspectives. Coatings, 7 (2017). https://doi.org/10.3390/coatings70200253 V. Igwemezie, A. Mehmanparast, A. Kolios, Materials selection for XL wind turbine support structures: A corrosion-fatigue perspective. Marine Structures, 61 (2018) 381-397. https://doi.org/10.1016/j.marstruc.2018.06.008

Image © Structural Integrity Associates, Inc.

Dokumentierte Schäden in Offshore Strukturen 1

Page 8: Institute for Ship Structural Design and Analysis

Post-weld improvement and retrofitting§ TIG-dressing as a repair

method up to 2.3 mm crack depth without reduction in fatigue strength 1

§ Recent results on TIG-dressing and grinding support and assessment based on a slope m = 4 2,3

§ Higher fatigue strength improvement for weld profiling than for burr grinding and disc grinding 2

§ Highest improvement for combination of grinding and peening 3

11.12.20 8

0 5 10 15 20 25Numbers of specimens in data series n

0

5

10

15

20

Slop

e m

r = -0.02 p = 0.92

S700 R=0.1 (Pedersen et al., 2009 )A36 R=0 (Mendez et al., 2017)A36 R=0 (Mendez et al., 2017)Low carbon micro alloyed R=0.1(Haagensen, 1993)S420 R=0 (Miki et al., 1999)S355 R=0.5 A (Huther et al., 2001)S355 R=0.5 B (Huther et al., 2001)S355 R=0.5 C (Huther et al., 2001)S355 R=0.5 D (Huther et al., 2001)DH36 R=0.1 (Polezhayeva et al., 2009)DH36 R=0.1 (Gao et al., 2015)S355 R=0.1 (Zhang and Maddox, 2009)Grade A R=0.1 (Rutherford et al., 2006)S700 R=0.2 (Lieurade et al., 2005)S275 R=0 (Hansen et al., 2007)304L R=0.1 (Baptista et al., 2007)S31803 R=0.1 (Baptista et al., 2007)

S31803 R=0.1 (Baptista et al., 2007)Grade 43A R=-1 (Booth, 1981)Grade 43A R=0.5 (Booth, 1981)

Grade 43A R=0 (Knight, 1976)

Grade 43A R=0 (Knight, 1976)Grade 43A R=0 (Knight, 1976)Supereiso70 R=0 (Knight, 1976)Supereiso70 R=0 (Knight, 1976)Supereiso70 R=0 (Knight, 1976)BS15 R=-1 (Gurney, 1968)S355 R=0 (Braun et al., 2020)F51 R=0 (Braun et al., 2020)S690 R=0 (Braun et al., 2020)S900 R=0 (Braun et al., 2018)SUS316L R=0.1 (Iwata et al., 2006)m=3Median of m=3.90

!" = 3.9

Ref.: 1 Al-Karawi et al., Fatigue crack repair in welded structures via tungsten inert gas remelting and high frequency mechanical impact. Journal of Constructional Steel Research, 172 (2020). https://doi.org/10.1016/j.jcsr.2020.1062002 Braun & Wang, A review of fatigue test data on weld toe grinding and weld profiling. International Journal of Fatigue, submitted for publication (2020) 3 Ahola et al., Fatigue strength assessment of ground fillet-welded joints using 4R method. International Journal of Fatigue, 142 (2021). https://doi.org/10.1016/j.ijfatigue.2020.105916

Page 9: Institute for Ship Structural Design and Analysis

Weld geometry assessment

11.12.20 9

0 20 40 60 80 100 120 140 160Weld Length [mm]

0.5

1

1.5

Radiu

s [m

m] Weld 1 Weld 2 Weld 3 Weld 4

0 20 40 60 80 100 120 140 160Weld Length [mm]

120140160

Angle

[°]

0 20 40 60 80 100 120 140 160Weld Length [mm]

6

8

10

Leg

Leng

th [m

m]

0 20 40 60 80 100 120 140 160Weld Length [mm]

1.5

2

2.5

K t,b [-

]

0 20 40 60 80 100 120 140 160Weld Length [mm]

22.5

33.5

K t,t [-

]

1 2 3 4 GlobalWeld Number

0

0.5

1

Radiu

s [m

m]

1 2 3 4 GlobalWeld Number

0

100

Angle

[°]

1 2 3 4 GlobalWeld Number

0

5

10

Leg

Leng

th [m

m]

1 2 3 4 GlobalWeld Number

0

2

4

K t,b [-

]

1 2 3 4 GlobalWeld Number

0

2

4

K t,t [-

]

(b)

Local ExtremeGlobal Extreme

Mode ValueCrit. Value

(a)

0 20 40 60 80 100 120 140 160Weld Length [mm]

0.5

1

1.5

Radiu

s [m

m] Weld 1 Weld 2 Weld 3 Weld 4

0 20 40 60 80 100 120 140 160Weld Length [mm]

120140160

Angle

[°]

0 20 40 60 80 100 120 140 160Weld Length [mm]

6

8

10

Leg

Leng

th [m

m]

0 20 40 60 80 100 120 140 160Weld Length [mm]

1.5

2

2.5

K t,b [-

]

0 20 40 60 80 100 120 140 160Weld Length [mm]

22.5

33.5

K t,t [-

]

1 2 3 4 GlobalWeld Number

0

0.5

1

Radiu

s [m

m]

1 2 3 4 GlobalWeld Number

0

100

Angle

[°]

1 2 3 4 GlobalWeld Number

0

5

10

Leg

Leng

th [m

m]

1 2 3 4 GlobalWeld Number

0

2

4

K t,b [-

]

1 2 3 4 GlobalWeld Number

0

2

4

K t,t [-

]

(b)

Local ExtremeGlobal Extreme

Mode ValueCrit. Value

(a)

Ref.: Renken et al. (2020). An algorithm for statistical evaluation of weld toe geometries using laser triangulation, under preparation.

Page 10: Institute for Ship Structural Design and Analysis

Weld geometry assessment

11.12.20 10

§ IIW Round Robin study on weld geometry measurement systems & algorithm

§ First results published 1§ Higher measurement effort leads to more locations that do not fulfil

ISO5817 requirements 2

Ref.: 1 Schubnell et al. (2020). Influence of the optical measurement technique and evaluation approach on the determination of local weld geometry parameters for different weld types. Welding in the World, 64(2), 301-316. https://doi.org/10.1007/s40194-019-00830-02 Renken et al. (2020). An algorithm for statistical evaluation of weld toe geometries using laser triangulation, under preparation.

Page 11: Institute for Ship Structural Design and Analysis

Fatigue strength assessment considering residual stresses

11.12.20 11

§ Gesamtlebensdauer-Wöhlerlinien§ deutlicher Eigenspannungseinfluss

Lastwechsel Ngesamt

Nen

nspa

nnun

gssc

hwin

gbre

ite [M

Pa]

Lastwechsel NgesamtN

enns

pann

ungs

schw

ingb

reite

[MPa

]Schweißzustand spannungsarm geglüht

R = 0 (Schweißzustand)R = -1 (Schweißzustand)R = -3 (Schweißzustand)R = -∞ (Schweißzustand)

R = 0 (spannungsarm)R = -1 (spannungsarm)R = -3 (spannungsarm)R = -∞ (spannungsarm)

Ref.: N. Friedrich, Experimental investigation on the influence of welding residual stresses on fatigue for two different weld geometries. Fatigue Fract Eng M, 43 (2020) 2715-2730. https://doi.org/10.1111/ffe.13339

Page 12: Institute for Ship Structural Design and Analysis

(1) transiente thermische AnalyseLast: einheitliche Temperatur auf

Nahtquerschnitt

Ergebnis: Temperaturverteilung über der Zeit

(2) elastisch-plastische StrukturrechnungLast: Temperauren aus (1)

Ergebnis: Eigenspannung und Verzug

1300°C

Vereinfachter FE-Simulationsansatz

Schweißsimulation

Temperatur [°C]

keine

Kalibrierung

Page 13: Institute for Ship Structural Design and Analysis

1

2

3

4

5

6

l = 375 mm

b =

150 m

m<t = 10 mm>

Schweißsimulation• angewendet auf fiktive Kleinprobe mit

Kreuzstoß• angenommener Werkstoff: S355

Querrichtung(zur Naht)

Page 14: Institute for Ship Structural Design and Analysis

Schweißsimulation

330 mm

55 mm

Quereigenspannung [MPa]

Querrichtung

(zur Naht)

Page 15: Institute for Ship Structural Design and Analysis

Eigenspannungsmessung

Eigenspannungsmessungen:• Röntgendiffraktometrie

(ifs TU-Braunschweig)• Messtiefe bis ~ 5 μm• auf 3 Proben

Page 16: Institute for Ship Structural Design and Analysis

Eigenspannungsmessungen:• Bohrlochverfahren• Auswertung unter Annahme

konstanter Eigenspannungen bis 1 mm Tiefe

Eigenspannungsmessung

(gleiche Farbe ≙ gleiche Probe)

Page 17: Institute for Ship Structural Design and Analysis

Überlagerung mit äußerer Last

" = $!"#$!$%

= %

σt

Span

nung

am

N

ahtü

berg

ang

[MPa

]

" =-1 " =-∞

F

Nennspannungsschwingbreite [MPa]

F

$!"#

$!$%

mit Eigenspannungenohne Eigenspannungen

mit Eigenspannungenohne Eigenspannungen

mit Eigenspannungenohne Eigenspannungen

Page 18: Institute for Ship Structural Design and Analysis

Schwingversuche – Risserkennung

Fzyklisch

Fzyklisch

Riss

0.09

-0.15

-0.12

-0.09

-0.03

0.03

0.12

0.15

-0.06

0.00

0.06

[%]

Deh

nung

Schweißnaht

Risserkennung mittels digitaler Bildkorrelation

0.90

0.50

0.55

0.60

0.70

0.80

0.95

1.00

0.65

0.75

0.85

Schweißnaht

Deh

nung

Schweißnaht

Versuchsbeginn

Page 19: Institute for Ship Structural Design and Analysis

7. Schwingversuche – Risserkennung

Page 20: Institute for Ship Structural Design and Analysis

Schwingversuche – Risserkennung

Page 21: Institute for Ship Structural Design and Analysis

Ice-structure interaction andtemperature effects

Page 22: Institute for Ship Structural Design and Analysis

Collision scenario

2211.12.20

Service

TankSide

TankDoublebottom

Container ship comparable to ship„FORESIGHT”

that transited the Northern Sea Route in 2009

Ice class: FSICR IA

Length: 134.4 m

Beam: 22.5 m

Draught: 8.08 m

Engine: 8400.0 kW

Ship speed (acc. POLARIS):

1.543 m/s (3 kn)

Wind and Current speeds:

0 m/s

Source: Victor (distributed via shipspotting.com)

Ice Floe:

• Diameter d = 8.5 m• Thickness t = 0.8 m (acc. FSICR)

• Total mass for a circular plate:à "!"!#$ = "%$"& +"'()*" = 82.6 +

Ship:

Page 23: Institute for Ship Structural Design and Analysis

Heat transferHow cold could a ship structure can actually become in winter?

2311.12.20

T∞,water

T∞,cargohold

T∞,air

T∞,tank,db

T∞,service

T∞,tank2

T∞,tank1

T∞,tank3

T∞,tank4

Service = -59°CTank1 = -54°CTank2 = -31°CTank3 = -18°CTank4 = -12°C

Averaged temperatureover the height of thecollision area ≈ -20°C

• In the rules and guidelines of the classificationsocieties -60 °C can be found as the lowesttemperature for material tests on steels used inshipbuilding. This value corresponds well withdifferent temperature measurements whereextreme values below -50 °C were measured in thearea of the Northern Sea Route.

• In contrast, liquid seawater cannot become colderthan -2 °C

Ref.: Kubiczek et al. (2019). Simulation of temperature distribution in ship structures for the determination of temperature- dependent material properties, 12th European LS-DYNA Conference Koblenz.

Page 24: Institute for Ship Structural Design and Analysis

Temperature dependent material properties and the effect on the structural response in case of collision

2411/12/2020

à neglecting the structural temperature leads to a conservative overestimation of thepermanent deflection.

à consideration of extreme values leads to an underestimation of the permanent deflectionbecause the structure is assumed to be too stiff.

0.700.750.800.850.900.951.001.05

20°C -20°C -60°Cmaterial temperature

max Force [-] perm. deflection [-]

-10%

-22%

+1% +3%

0100200300400500600700

0.00 0.10 0.20 0.30 0.40

eng.

str

ess

[N/m

m²]

eng. strain [-]

20°C -20°C -60°C

Page 25: Institute for Ship Structural Design and Analysis

Measurement locations on board Polarstern

§ Strain gauges and temperature sensors in void space 100

§ Strain gauges on F-Deck (10800 aB)§ Strain gauges and temperature

sensors in void space 92

Page 26: Institute for Ship Structural Design and Analysis

Temperature measurements

§ Temperature measurementon steel structure withPT1000 sensors every 5 minutes

Data provided by the ship's weather station:

§ Measurement of watertemperature 5m belowwaterline

§ Measurement of airtemperature 29m abovewaterline

Page 27: Institute for Ship Structural Design and Analysis

Temperature measurements

15

20

25

30

35

40

31.7 1.8 2.8 3.8 4.8 5.8 6.8 7.8

tem

pera

ture

[°C]

date [-]

V92_p1 V92_p2 V92_p3 V92_p4 ambient_air ambient_water

Ship in drydock Ship in water

Page 28: Institute for Ship Structural Design and Analysis

Ship: R.V. PolarsternCruise-No.: PS 122/1Date: 20.09.2019 –15.12.2019Port: Tromsö – Arctic Ocean

Source: http://www.awi.de date [-] in 2019

tem

pera

ture

[°C]

Source: https://dship.awi.de/

Temperature measurements

Page 29: Institute for Ship Structural Design and Analysis

Research approach

§ Two steels

§ Three weld details

§ Two methods

11.12.20 29

Development of fatigue assessment methods that take

temperature effects into account based on micro-structural support effect

hypothesis

Extension of SED and stress averaging

approach

S–N curve independent of temperature

∆"

#

FE modelling

Material tests to relate DBTT and FTT

Charpy tests

$

Charpy transition curve

%&

Fatigue tests

S–N curve (RT)

∆"

#

S–N curve (-20 °C)

Statistical assessment of fatigue test results

∆"

$Regression curve

Comparison with state-of-the-art methods

Conclusions and recommendations for

further work

Low temperature S–N curve

∆"

#Design curve

Temperature modification factor

Page 30: Institute for Ship Structural Design and Analysis

Results for SED method and comparison with state-of-the-art methods

11.12.20 30

104 105 106 107

Cycles to failure Nf

0.01

0.1

1

5

Aver

aged

stra

in en

ergy

den

sity

W [N

mm

/mm

3 ]

0.0580.1050.192

S235 S500WT RTWT -20 °CWT -50 °CWR RTWR -20 °CWR -50 °C

Rc(T)run out

104 105 106 107

Experimental cycles to failure Nf

104

105

106

107

Pred

icted

cycle

s to

failu

re N

f,pre

dfo

r Ps =

97.

7%

Conservative

Unconservative

Line of equality±2 life factor

(a) (b) (a) Weld toe failure

+ SD

- SD

Nomina

l stres

s meth

od

Structu

ral st

ress e

xtrap

olatio

n

Structu

ral st

ress li

neari

zatio

n

Xiao & Yam

ada 1

mm co

ncep

t

Efective

notch

stres

s con

cept

SED conc

ept R c

(T = RT)

SED conc

ept R c

(T)-1

0

1

2

3

Fatig

ue s

treng

th d

evia

tion

dev

= N

f,exp

- N

f,pre

d,97

.5%

RT-20°C-50°C

(b) Weld root failure

Nomina

l stres

s meth

od

Structu

ral st

ress e

xtrap

olatio

n

Structu

ral st

ress li

neari

zatio

n

Xiao & Yam

ada 1

mm co

ncep

t

Efective

notch

stres

s con

cept

SED conc

ept R c

(T = RT)

SED conc

ept R c

(T)-1

0

1

2

3RT-20°C-50°C

Page 31: Institute for Ship Structural Design and Analysis

Ice load measurementsShip: R.V. PolarsternCruise-No.: PS 122/1Date: 20.09.2019 –15.12.2019Port: Tromsö – Arctic Ocean

Source: http://www.awi.de

Frame 1

Frame 3

Frame 4

Frame 5

Frame 6

Frame 2

date [-] in 2019

stra

in[µ

m/m

]

measured shear strains during a winter storm

Page 32: Institute for Ship Structural Design and Analysis

I. Test Program large scale tests

Rigid structure Deformable structure

Page 33: Institute for Ship Structural Design and Analysis

Test setup for the deformable structures

11.12.20 33

Spacing: 350 mmFB 240 x 12

Plate thickness 10 mm

Panel 1

Panel 2 & 3

Panel 1

Panel 2

Page 34: Institute for Ship Structural Design and Analysis

Force curve of the brittle test runagainst Panel 1

Stroke 1 Stroke 2Reconstruction

Page 35: Institute for Ship Structural Design and Analysis

Deformation of the panel

Initial Post

Page 36: Institute for Ship Structural Design and Analysis

Deformation of the stiffeners

Page 37: Institute for Ship Structural Design and Analysis

Stroke 1 Stroke 2

Page 38: Institute for Ship Structural Design and Analysis

Ice-Extrusion Test simulations

11.12.20 39

D=100Cone 100

D=200Cone 200

D=800Cone 800

Page 39: Institute for Ship Structural Design and Analysis

Results Ice-Extrusion Tests

4011.12.20

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140

Forc

e [k

N]

Displacement [mm]

Konus200_G25_A20_V10_1 Dyna_Simulation

Page 40: Institute for Ship Structural Design and Analysis

Ice Pessures - Cone 200

11.12.20 41

The loaded area of the LS-Dyna simulation is currently larger than measured. Accordingly, the contact pressures (F/loaded area) are underestimated. The maximum pressures of the simulation are in the magnitude of 30 to 50 MPa. This in accordance with the TekScan results.

Page 41: Institute for Ship Structural Design and Analysis

Application to the large scale extrusiontests

Panel 1Panel 2

Panel 1

Panel 2

Page 42: Institute for Ship Structural Design and Analysis

Untersuchung der Schwingfestigkeit hybrid additivund subtraktiv gefertigterProben aus AISI 316L

M. Braun, S. Hellberg, I. Kryukov, S. Böhm, R. E. Wu, S. Ehlers, S. Sheikhi

Page 43: Institute for Ship Structural Design and Analysis

Motivation

11.12.20 44

Ref.: Scudino et al. (2015)

Ref.: Köhler et al. (2011)

Crankshaft of medium-speed four-stroke diesel engineSLM Cu-10Sn bronze propeller

Page 44: Institute for Ship Structural Design and Analysis

Hybrid additive and subtractive manufacturing

Base plateBase plate

Base plate

Lifting TableLifting TableLifting Table

Spindle

1. Powder distribution

'n' repetitions Every 'n' repetitions

Powder distribution

2. Laser processing

Metalpowder Laser

3. Milling

Back to step 1

11.12.20 45

Page 45: Institute for Ship Structural Design and Analysis

Specimen preparation§ Material: 316L

§ Renishaw AM250-System

§ 200W Ytterbium fibre laser

§ Argon atmosphere

§ Layer thickness: 40 µm

§ Specimens shape acc. to ASTM E466-15

§ Built in vertical direction

11.12.20 46

© Renishaw

Page 46: Institute for Ship Structural Design and Analysis

Test program

Condition As-built Heat-treated Machined + Heat-treated

Heat treatment

– 2h @ 650 °C(furnace cooled)

2h @ 650 °C(furnace cooled)

Machining – – 1 mm thickness reduction by turning

11.12.20 47

Page 47: Institute for Ship Structural Design and Analysis

Material characterisation

11.12.20 48

§ High strength and ductility

§ Grains partially extend over several layers

Page 48: Institute for Ship Structural Design and Analysis

Computer tomography scan

11.12.20 49

Page 49: Institute for Ship Structural Design and Analysis

Computer tomography scan

11.12.20 50

Page 50: Institute for Ship Structural Design and Analysis

Post-treatment of selective laser melted parts

11.12.20 51

Unbehandelt Bearbeitet

Rautiefe Rt 41,929 ± 0,065 5,062 ± 0,063

Mittenrauwert Ra 6,295 ± 0,041 1,024 ± 0,005

Page 51: Institute for Ship Structural Design and Analysis

Fatigue test results

11.12.20 52

Page 52: Institute for Ship Structural Design and Analysis

Effect of surface roughness

§ Surface roughness as-built:!, ≈ 6.3 µm → !- = 20 – 55 µm

§ Surface roughness machined:!, ≈ 1.0 µm → !- = 4 –16 µm

§ Estimated difference: ≈10%

11.12.20 53

0 100 200Surface roughness Rz

0.75

0.8

0.85

0.9

0.95

1

Surfa

ce fa

ctor

f SR

for R

m =

600

N/m

m2

fSR = 0.147e-0.1035Rz

+ 0.8528e0.0005721Rz

R2 > 0.99

Data by Rennert (2012)

Ref.: Rennert, R. (Ed.) (2012): FKM Richtlinie

Page 53: Institute for Ship Structural Design and Analysis

Thank you for your attention!

12/11/20