Top Banner
Institut für Kernphysik Bosen 2010 30th August 2010 Andreas Thomas Polarised Targets for Photoproduction Experiments
36

Institut für Kernphysik

Feb 24, 2016

Download

Documents

Shereen Hussein

Institut für Kernphysik. Polarised Targets for Photoproduction Experiments. Bosen 2010 30th August 2010 Andreas Thomas. Disentangle broad , overlapping resonances , Measure meson threshold production , quark mass ratios , - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Institut  für Kernphysik

Institut für Kernphysik

Bosen 201030th August 2010

Andreas Thomas

Polarised Targets for Photoproduction Experiments

Page 2: Institut  für Kernphysik

Polarisation Observables

Disentangle broad, overlapping resonances,Measure meson threshold production, quark mass ratios,Determine fundamental properties: Spin Polarisibiltities,

GDH sumrule.

BeamTarget

s

ppp

g ggg

EGP

PTPFHP

ddP

PPP

z

y

x

unpol

circlinlinunpol

- -

- - - -

- -

4,

4

2,0 Target

Beam

S÷øö

çèæ

W

÷øö

çèæ -+÷

øö

çèæ

Page 3: Institut  für Kernphysik

Polarised Target

Polarisation = Orientation of Spins in a magnetic field

+- NN

NNP Ideally: All spins in field directionP=100%

Page 4: Institut  für Kernphysik

P=100% in reality not so easy to realise:Complicated interplay between

Polarising force ~ magnetic field Band

Depolarising force ~ thermal motion of spin particles(temperature T – relaxation)

B = 10-5 Tesla (earth magnetic field)T = 25° Celsius (room temperature)

B = 5 Tesla (superconducting magnets)T = -273° Celsius (refrigerators)

P = 10-12%

B = 1 Tesla (superconducting magnets)T = 37° Celsius (body temperature)

P = 100%DNP (particle physics)

P = 10-8% MRI (medicine)

Examples:

Page 5: Institut  für Kernphysik

Thermal equilibriumBoltzmann distribution

kTB

NNNNP tanh

+-

-+

-+

kTE

eEN

EEN-

+)(

)(

Trick: Transfer of the high electron polarization to the nucleon via -wave irradiation (DNP)

electron proton

Magnetic moment in magnetic field: mBgBE o --

B=0T B=0T B=2.5TB=2.5T

E GHzhE

e 70

MHzp 106

B [Tesla]

T [mK] e- [%] p [%] d [%]

2,5 100 99,8 0,51 0,101000 93,3 0,25 0,05

5,0 100 100,0 5,09 1,051000 99,8 1,28 0,11

Page 6: Institut  für Kernphysik

Model: Solid State Effect (SSE)

ssIIISIZSZ HHHHHH ++++

k

kee BSg j

jpp BIg

Zeemann

small660

pp

eegg

small distance e-

big (~r-3)

Dipol-Dipol :

- -

ki ik

ikkikikiikppeeIS

r

rSrISIrggH

,2

3 ))((3

Mixing of the energylevels 210-BBl

3r

SB kel

We

Wp

Wp

Wep+

Wep-

Magnetic Dipole transition allows Spin flip (m=+-1) of electrons or protons.Probability to pump forbidden transitions Wep+ or Wep- ~ 2

P| > + | >

P| > + | >

P| > + | >

P| > + | >

Page 7: Institut  für Kernphysik

He3/He4 Roots4000m3/h

Vacuum system

Mikrowaves70GHz

Dynamic Nuclear

Polarization

NMR-Apparatus

106MHz

Polarisation meas.

Components of the polarized target

for the Crystal Ball detector

Horizontal He3/He4 Dilutionrefrigerator

(30mKelvin)with internalHolding coil

SuperconductingPolarization magnet

5Tesla

Targetmaterial

H-ButanolD-Butanol

Similar to Bonn Target [C.Bradtke et al., NIM A436, 430 (1999)]

Page 8: Institut  für Kernphysik

Polarized Target for Crystal Ball

Tagged CW photon beam 4p- detector

Frozen spin target (30 mKelvin achieved)Pproton ~ 95%Pdeuteron~70%All directions of polarization

sec105 7 g

New 3He4He-Dilution refrigerator(in collaboration with JINR Dubna)

Page 9: Institut  für Kernphysik

Cryogenics

Evaporation cooling

2 Precooling stages:

Separator (4.2Kelvin pot)

Evaporator (1.5Kelvin)

Dilution circuit(0.03Kelvin)

3He4He-Dilution refrigerator

Page 10: Institut  für Kernphysik

Alignment thermal radiation shieldsHigh temperature heat exchanger

Alignment still and evaporator

Impressions from the technical realisation

Page 11: Institut  für Kernphysik

Transverse

And

Longitudinal

Internal

Holding coil

1.3 Kelvin

1Tesla at 46A

achieved

Mainz/Dubna Dilution refrigerator

Separator (4.2Kelvin)

Evaporator (1.5Kelvin)

Mixing chamber(0.03K)

Still (0.7K)

Page 12: Institut  für Kernphysik

Holding Coil

Coil has to be as thin aspossible to allow lowenergetic particlesto punch through.

Subcooled Superconductor

F54-1.35(0.20)TV

jcrit

BT

@4.2Kelvin

@1.3Kelvin

Page 13: Institut  für Kernphysik

• Copper/scandium wire with 54 Nb-Ti filaments embedded in it.

• Cu:Sc=1.35:1• Alloy composition:

Nb47wt.%Ti• Diameter=0.222mm• It achieves currents up

to 50A at 4.2K and 1T.

Page 14: Institut  für Kernphysik

Coil winding by TBM Mainz (Herr Kappel) Glueing by TBV Mainz (Herr Kauth)

Page 15: Institut  für Kernphysik

Simulation and Optimisation Transverse Field

cos)(JIdeal case for dipole magnet:

4-layer dipole:N1=N2=138

N3=N4=78

Page 16: Institut  für Kernphysik

Production

Page 17: Institut  für Kernphysik
Page 18: Institut  für Kernphysik

150mm

4-layer dipole:N1=N2=138

N3=N4=78

Page 19: Institut  für Kernphysik

High Field 1T

Threshold Production

Transverse Field

Page 20: Institut  für Kernphysik

Polarizingmagnet

He4(liq)

Page 21: Institut  für Kernphysik

Rotation of the Holding Field1) Bz=2.5Tesla

2) Bz=0.5Tesla

Superconducting 2.5Tesla Magnet for polarising in z-direction

Page 22: Institut  für Kernphysik

Rotation of the Holding Field

2) Bz=0.5Tesla

3) By=0.5Tesla

Superconducting 2.5Tesla Magnet for polarising in z-direction

Page 23: Institut  für Kernphysik

Rotation of the Holding Field

4) Bz=0.0Tesla

By=0.5Tesla

Superconducting 2.5Tesla Magnet for polarising in z-direction

Page 24: Institut  für Kernphysik

410## -protonsradicals

Free electrons Radicals in material by chemical or radiative doping

Saturated electrons of target material not polarized (Pauli principle)

Butanol Ammonia LiD30mm

HHHHHOCCCCH

HHHH------

N

H

H

HN

O

CH3

CH3CH3

CH3

Tempo

Target material

Dilution factor (e.g. fButanol=10/74)determines quality of target material.

Typically 1023 pol. protons

Page 25: Institut  für Kernphysik

2cm

HHHHHOCCCCH

HHHH------

Butanol

Target material

Page 26: Institut  für Kernphysik

Cryostat

Polarizingmagnet

Crystal BallFrozen Spin Target Waltz

1. External magnet 2.5 T2. Polarize with microwaves3. Internal holding coil 0.7 T4. Remove external magnet5. Move CB detector in. 6. Data taking.7. Repolarization

Polarizingmagnet

MicrowavesMicrowaves

Page 27: Institut  für Kernphysik
Page 28: Institut  für Kernphysik

New Frozen Spin Target offers all directions of polarization.

Data taking with CBall TAPS detector system started February 2010.

Spin observables with focus to P11(1440), S11(1535), and D33(1700) resonance regions. Complete Experiment.

First Measurement of 4 Vector Spin Polarisabilities and T inp-threshold region planned.

Conclusions

Outlook

Production of an internal polarising coil avoids FST waltz. FoM better.

R&D for polarised active szintillator target for threshold production.

Page 29: Institut  für Kernphysik
Page 30: Institut  für Kernphysik
Page 31: Institut  für Kernphysik

Loading of the target material

Page 32: Institut  für Kernphysik

Microwave system70 GHz

Diploma Martinez 2003

NMR system106 MHz

Diploma Frömmgen 2009

Page 33: Institut  für Kernphysik

Testrun in December 2009

Thermal Equilibrium-Signal0.5% Polarisation2.5Tesla,1KelvinTo be improved:HF-Lab Mainz (F.Fichtner)and Bochum

Enhanced Signal at 70% Polarisationafter spin rotation

Transverse polarised target ready for data taking run in February

TE

dynTEdyn AU

AUPP

Page 34: Institut  für Kernphysik

Vacuum

C4H10O – 60%30mm

3He/4He – 6%

Page 35: Institut  für Kernphysik

Holding Coil

Page 36: Institut  für Kernphysik

1.- Longitudinal PT: a) Helicity Dependence E of Meson Photoproduction b) Measurement of the G in single pion production

2.- Transverse PT: a) Transverse asymmetries T and F in h-photoproduction in the S11(1535) regionb) Spin observables in ph photoproduction in the D33(1700) region

Double Polarised Experiments

Excitation Spectrum

Fundamental Properties

1.- Long. and trans. PT: Spin Polarisibilities

2.- Transverse PT: Transverse asymmetries T and F in p-photoproduction in the threshold region mu - md