Top Banner
1. Introduction Calc-alkaline plutonic rocks occur in many different con- vergent tectonic settings worldwide and include subduc- tion- and collision-related granitoids. In modern tectonic regimes, I-type granitoids as well as chemically equiva- lent volcanic rocks are produced in intra-oceanic island arcs (WHALEN 1985, KAY & KAY 1993, HARAGUCHI et al. 2003) and along the circum Pacific Andean- or Cordille- ran-type active continental margins (KAY & KAY 1993). A strong link exists between mineralogy, geochemical and isotopic composition, and the geodynamic setting of granitoids. To better constrain the geodynamic evolution of arc settings, it is important to study the petrogenesis and age relationship of these plutons. The Eastern Pontide magmatic arc in NE Turkey rep- resents one of the largest Tethyan magmatic arcs in the eastern Mediterranean region (OKAY & TÜYSÜZ 1999), and is a well-preserved example of a paleo-island arc (e.g., TOKEL 1977, AKIN 1978, EĞIN at al. 1979, ŞENGÖR & YILMAZ 1981, MANETTI et al. 1983, AKINCI 1984, GEDIK et al. 1992, ÇAMUR et al. 1996, ARSLAN et al. 1997, YILMAZ & BOZTUĞ 1996, OKAY & ŞAHINTÜRK 1997, YILMAZ et al. 1997, BOZTUĞ et al. 2003, 2006, 2007). This arc developed during the subduction of the Neo-Tethyan oceanic crust beneath the Eurasian plate during the Cretaceous. Closure of the Neo-Tethyan Ocean caused a collision between the Pontide arc and the Tauride-Anatolide platform in the Paleocene-Early Eocene (OKAY & ŞAHINTÜRK 1997). The Pontide tectonic unit (KETIN 1966) includes vari- ous intrusive and volcanic rocks, many of which are relat- ed to the convergence of Eurasia and Gondwana (Fig. 1). The crystallization ages of the intrusive bodies range from Early Cretaceous (DELALOYE et al. 1972, GILES 1974, TAN- ER 1977, GEDIKOĞLU 1979, MOORE et al. 1980, BOZTUĞ et al. 2003) through Late Cretaceous-Paleocene (DELALOYE et al. 1972, GILES 1974, TANER 1977, GEDIKOĞLU 1979, MOORE et al. 1980, Jica 1986, OKAY & ŞAHINTÜRK 1997, YILMAZ et al. 1997, YILMAZ et al. 2000, KÖPRÜBAŞI et al. 2000, BOZTUĞ et al. 2006, DOKUZ et al. 2006, KAYGUSUZ Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey) Abdullah Kaygusuz, Wolfgang Siebel, Nurdane ˙ Ilbeyli, Mehmet Arslan, Muharrem Satır, Cüneyt , Sen With 9 figures and 6 tables Abstract: Convergent plate margins are the most intense areas of granitoid magmatism on Earth. The Eastern Pontide Magmatic Belt in NE Turkey represents a paleo-arc with numerous quartz diorite to syenite intrusions, ranging in age from 142 to 56 Ma and being composed of K-feldspar, plagioclase, quartz, pyroxene, hornblende, biotite, and Fe-Ti oxides. The granitoids exhibit low- to high-K calc-alkaline, metaluminous to slightly peraluminous I-type features and contain abundant mafic magmatic en- claves (MME). They are characteristically enriched in large ion lithophile elements (LILE) and light rare earth elements (LREE) relative to high field strength elements (HFSE). Chondrite-normalized REE patterns are fractionated (La N /Lu N = 1.49–17.4) with pronounced negative Eu anomalies (Eu/Eu* = 0.46–1.77). Initial 87 Sr/ 86 Sr values are between 0.7056 and 0.7079, and ε Nd(i) values between –5.3 and 1.6. Fractional crystallization, magma mixing/mingling and crustal contamination played an important role dur- ing magma evolution. All these characteristics, combined with the low values of K 2 O/Na 2 O, Mg-number, ASI and ratios of Al 2 O 3 / (FeO T +MgO+TiO 2 ) and (Na 2 O+K 2 O)/(FeO T +MgO+TiO 2 ), suggest an origin by dehydration melting of mafic (amphibolitic) or tonalitic lower crustal source rocks. Key words: Cretaceous-Paleocene; Eastern Pontides; Sr-Nd-Pb isotopes; subduction; arc magmatism, U-Pb SHRIMP N. Jb. Miner. Abh. 187/3, 265–287 Article Published online September 2010 © 2010 E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, Germany www.schweizerbart.de DOI: 10.1127/0077-7757/2010/0178 0077-7757/10/0178 $ 5.75
23

Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey)

Apr 23, 2023

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey)

1. Introduction

Calc-alkaline plutonic rocks occur in many different con-vergent tectonic settings worldwide and include subduc-tion- and collision-related granitoids. In modern tectonic regimes, I-type granitoids as well as chemically equiva-lent volcanic rocks are produced in intra-oceanic island arcs (WHALEN 1985, KAY & KAY 1993, HARAGUCHI et al. 2003) and along the circum Pacifi c Andean- or Cordille-ran-type active continental margins (KAY & KAY 1993). A strong link exists between mineralogy, geochemical and isotopic composition, and the geodynamic setting of granitoids. To better constrain the geodynamic evolution of arc settings, it is important to study the petrogenesis and age relationship of these plutons.

The Eastern Pontide magmatic arc in NE Turkey rep-resents one of the largest Tethyan magmatic arcs in the eastern Mediterranean region (OKAY & TÜYSÜZ 1999), and is a well-preserved example of a paleo-island arc (e.g., TOKEL 1977, AKIN 1978, EĞIN at al. 1979, ŞENGÖR &

YILMAZ 1981, MANETTI et al. 1983, AKINCI 1984, GEDIK et al. 1992, ÇAMUR et al. 1996, ARSLAN et al. 1997, YILMAZ & BOZTUĞ 1996, OKAY & ŞAHINTÜRK 1997, YILMAZ et al. 1997, BOZTUĞ et al. 2003, 2006, 2007). This arc developed during the subduction of the Neo-Tethyan oceanic crust beneath the Eurasian plate during the Cretaceous. Closure of the Neo-Tethyan Ocean caused a collision between the Pontide arc and the Tauride-Anatolide platform in the Paleocene-Early Eocene (OKAY & ŞAHINTÜRK 1997).

The Pontide tectonic unit (KETIN 1966) includes vari-ous intrusive and volcanic rocks, many of which are relat-ed to the convergence of Eurasia and Gondwana (Fig. 1). The crystallization ages of the intrusive bodies range from Early Cretaceous (DELALOYE et al. 1972, GILES 1974, TAN-ER 1977, GEDIKOĞLU 1979, MOORE et al. 1980, BOZTUĞ et al. 2003) through Late Cretaceous-Paleocene (DELALOYE et al. 1972, GILES 1974, TANER 1977, GEDIKOĞLU 1979, MOORE et al. 1980, Jica 1986, OKAY & ŞAHINTÜRK 1997, YILMAZ et al. 1997, YILMAZ et al. 2000, KÖPRÜBAŞI et al. 2000, BOZTUĞ et al. 2006, DOKUZ et al. 2006, KAYGUSUZ

Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey)

Abdullah Kaygusuz, Wolfgang Siebel, Nurdane Ilbeyli, Mehmet Arslan, Muharrem Satır, Cüneyt ,Sen

With 9 fi gures and 6 tables

Abstract: Convergent plate margins are the most intense areas of granitoid magmatism on Earth. The Eastern Pontide Magmatic Belt in NE Turkey represents a paleo-arc with numerous quartz diorite to syenite intrusions, ranging in age from 142 to 56 Ma and being composed of K-feldspar, plagioclase, quartz, pyroxene, hornblende, biotite, and Fe-Ti oxides. The granitoids exhibit low- to high-K calc-alkaline, metaluminous to slightly peraluminous I-type features and contain abundant mafi c magmatic en-claves (MME). They are characteristically enriched in large ion lithophile elements (LILE) and light rare earth elements (LREE) relative to high fi eld strength elements (HFSE). Chondrite-normalized REE patterns are fractionated (LaN/LuN = 1.49–17.4) with pronounced negative Eu anomalies (Eu/Eu* = 0.46–1.77). Initial 87Sr/86Sr values are between 0.7056 and 0.7079, and εNd(i) values between –5.3 and 1.6. Fractional crystallization, magma mixing/mingling and crustal contamination played an important role dur-ing magma evolution. All these characteristics, combined with the low values of K2O/Na2O, Mg-number, ASI and ratios of Al2O3/(FeOT+MgO+TiO2) and (Na2O+K2O)/(FeOT+MgO+TiO2), suggest an origin by dehydration melting of mafi c (amphibolitic) or tonalitic lower crustal source rocks.

Key words: Cretaceous-Paleocene; Eastern Pontides; Sr-Nd-Pb isotopes; subduction; arc magmatism, U-Pb SHRIMP

N. Jb. Miner. Abh. 187/3, 265–287 ArticlePublished online September 2010

© 2010 E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, Germany www.schweizerbart.deDOI: 10.1127/0077-7757/2010/0178 0077-7757/10/0178 $ 5.75

Page 2: Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey)

266 A. Kaygusuz et al.

Fig. 1. a-d. a Tectonic map of Turkey and surroundings (modifi ed after ŞENGÖR et al. 2003). b Location map of the granitoid rocks studied in terms of geochronological methods in different parts of the eastern Pontides (modifi ed from GEDIK at al. 1992). For explanation of the numbers encircled, see Table 1. c Simplifi ed map showing the main granitoid distribution in the eastern Pontides (GÜVEN 1993). d Major structures of the eastern Pontides (modifi ed from EYÜBOĞLU 2009). NAFZ, North-Anatolian fault zone; EAFZ, East-Anatolian fault zone (numbers for the plutons are given in Table 1).

Page 3: Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey)

267Insight into magma genesis

et al. 2008, İLBEYLI 2008, KAYGUSUZ & AYDINÇAKIR 2009) to Eocene (BOZTUĞ et al. 2003, 2004, ARSLAN et al. 2004, YILMAZ-ŞAHIN 2005, TOPUZ et al. 2005, KARSLI et al. 2007) (Fig. 1b and c, Table 1). Rock-types comprise low-K to high-K calc-alkaline, metaluminous to peraluminous granites, syenites and monzonites. These rocks were formed during subduction, arc-collisional, syn-collisional and post-collisional regimes (YILMAZ & BOZTUĞ 1996, OKAY & ŞAHINTÜRK 1997, YILMAZ et al. 1997, YEĞINGIL et al. 2002, BOZTUĞ et al. 2003, TOPUZ et al. 2005, ARSLAN & ASLAN 2006, BOZTUĞ & HARLAVAN 2008, İLBEYLI 2008, KAYGUSUZ & AYDINÇAKIR 2009).

In order to employ granitoids as geodynamic tracers, their ages, geochemical and isotopic properties must be established. Most of the earlier studies in the eastern Pon-tides dealt with the general characteristics of the granites in the overall framework of the geological evolution of the region. However, research on various aspects of grani-toid rocks (such as age, tectonic setting, geochemical and isotopic evolution, and source) is rather scarce. The present paper focuses mainly on the genesis of the arc-related granitoids in the eastern Pontides. In addition to data from the literature, new U-Pb SHRIMP zircon data and Pb-isotopic whole rock data for the Torul pluton and new Nd-Sr isotopic data for the Köprübaşı intrusion are presented. This study aims to evaluate the existing data from the arc granitoids in terms of their age, magma type and to refi ne the tectono-magmatic setting of the eastern Pontides, necessary to better understand the magmatic evolution of this belt.

2. Geological setting

Based on structural and lithological differences, the east-ern Pontides are generally divided into a northern and a southern zone (Fig. 1d) (ÖZSAYAR et al. 1981, OKAY & ŞAHINTÜRK 1997). A heterogeneous Palaeozoic crystal-line basement is unconformably overlain by Late Juras-sic-Cretaceous carbonates and volcanic rocks (YILMAZ 1972, ÇOĞULU 1975, OKAY & ŞAHINTÜRK 1997, TOPUZ et al. 2004) (Fig. 1b and c, Table 1). In the southern and northern parts of the eastern Pontides, sediments and volcanic rocks dominate the Late Cretaceous series, and unconformably overlie the carbonate rocks. Mesozoic-Cenozoic plutons (Fig. 1b and c, Table 1) were emplaced from Jurassic to the Palaeocene times (OKAY & ŞAHINTÜRK 1997, YILMAZ et al. 1997). Subduction-related arc magma-tism is recorded by Late Cretaceous submarine volcano-sedimentary units and associated plutonic rocks (OKAY & ŞAHINTÜRK 1997). The Eocene rocks, mainly volcanics and rarely volcanoclastics and sediments, unconformably

overlie the Late Cretaceous series (GÜVEN 1993, YILMAZ & KORKMAZ 1999). Several granitoids (Fig. 1b and c) from this magmatic episode intrude the Eocene volcanic and volcaniclastic rocks. During the post-Eocene uplift and erosion, local basins developed which received clastic in-put (KORKMAZ et al. 1995). From the end of the Middle Eocene onward, the region remained largely above sea level, with minor volcanism and terrigeneous sedimenta-tion continuing until the present time (OKAY & ŞAHINTÜRK 1997).

Both the onset of subduction and the timing of the collision between the Pontides and the Anatolide-Tauride platform have been a matter of debate (e.g., TOKEL 1977, ROBINSON et al. 1995, OKAY & ŞAHINTÜRK 1997, BOZTUĞ et al. 2004). Contrary to many views, which consider the onset of subduction under the eastern Pontides during the Jurassic and earlier (ADAMIA et al. 1977, KAZMIN et al. 1986), ŞENGÖR & YILMAZ (1981) and GÖRÜR (1988) place the beginning of subduction into the Cenomanian-Turo-nian. OKAY & ŞAHINTÜRK (1997) interpreted Late Creta-ceous submarine volcano-sedimentary units and associ-ated plutonic rocks as the products of subduction-related arc magmatism along the İzmir-Ankara-Erzincan (IAE) Suture. The submarine character led OKAY & ŞAHINTÜRK (1997) to propose an extensional arc origin for the east-ern Pontides. The timing and mechanism of the collision between the eastern Pontides and the Anatolide-Tauride basement along the IAE Suture Zone is also interpreted differently by different researchers, based on structural considerations and the composition and timing of igneous activity. ŞENGÖR & YILMAZ (1981), YILMAZ et al. (1997), and OKAY & ŞAHINTÜRK (1997) proposed a Paleocene-Early Eocene collision, resulting in crustal thickening and regional uplift of the eastern Pontides. TOKEL (1977), AKIN (1978), and ROBINSON et al. (1995) interpreted the Mid-dle Eocene volcanics as subduction related rocks and pro-posed that the collision occurred in the Oligocene. ŞENGÖR & YILMAZ (1981) supported this interpretation, but based on structural evidence, they suggested that collision oc-curred until the Paleocene-Early Eocene. It is generally assumed that the collisional Eocene and post collisional young volcanic rocks were derived from a metasoma-tized upper mantle by partial melting after thickening of the Pontide-arc during Paleocene–Eocene and Miocene times (ARSLAN & ALIYAZICIOĞLU 2001, ARSLAN et al. 2002, TEMIZEL & ARSLAN 2009).

The eastern Pontide magmatic belt consists of numer-ous elliptical to irregular magmatic bodies. Individual bodies cover areas between c. 10 to 120 km2 and the long axes extends NE-SW (Fig. 1c). The general geologi-cal features of the plutons were described by YILMAZ & BOZTUĞ (1996), BOZTUĞ et al. (2004), YILMAZ-ŞAHIN et al.

Page 4: Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey)

268 A. Kaygusuz et al.

Table 1. Compilation of geochronological data from the eastern Pontides granitoids.

Number in Fig. 1 Method Rock type Age (Ma) Reference

1- Gökçebel-Tamdere (Dereli FT (apatite) 80.7 ± 3.2–62.4 ± 2.5 BOZTUĞ et al. (2004)Aksu-Sürmen (Dereli) K-Ar grd 78.3 ± 1.5 MOORE et al. (1980)

FT (apatite) 57.4 ± 2.4–47.8 ± 2.4 BOZTUĞ et al. (2004)2- East of Dereli K-Ar grd 71.4 ± 1.0 MOORE et al. (1980)

K-Ar grd 74.0 ± 2.0 MOORE et al. (1980)K-Ar grd 75.2 ± 1.5 MOORE et al. (1980)K-Ar grd 84.0 ± 1.6 MOORE et al. (1980)K-Ar grd 84.2 ± 3.2 MOORE et al. (1980)

3- Harşit K-Ar qd 115 ± 9 GEDIKOĞLU (1979)K-Ar grd 65 ± 3 GEDIKOĞLU (1979)K-Ar grd 94 ± 5 GEDIKOĞLU (1979)

4- Kürtün K-Ar grd 68.4 ± 3.4 JICA (1986)5- Sarıosman U-Pb (z ircon) hbmg 82.7 ± 1.5 KAYGUSUZ et al. (2009)6- Köprübaşı U-Pb (z ircon) gd 79.3 ± 1.4 KAYGUSUZ & ŞEN (unpubl. data)7- Torul Rb/Sr sg 77.9 ± 0.3 KAYGUSUZ et al. (2008)

K-Ar grd 72.1 ± 3.6 JICA (1986)U-Pb (z ircon) bhmg 80.1 ± 1.6 This s tudyU-Pb (z ircon) qmd 79.8 ± 1.2 This s tudyU-Pb (z ircon) qmz 78.8 ± 1.2 This s tudy

8- Dağbaşı U-Pb (z ircon) to 88.1 ± 1.7 KAYGUSUZ & AYDINÇAKIR (2009)U-Pb (z ircon) grd 86.0 ± 2.0 KAYGUSUZ & AYDINÇAKIR (2009)U-Pb (z ircon) mg 82.9 ± 1.3 KAYGUSUZ & AYDINÇAKIR (2009)

9- Çaykara (Kaçkar) U/(Th-Pb) gr 237 ± 5 YILMAZ (1977)U/(Th-Pb) gr 142 ± 12 YILMAZ (1977)

10- İ kizdere (Kaçkar) K-Ar grd 39.9 ± 0.3 TANER (1977)K-Ar grd 44.6 ± 0.3 TANER (1977)K-Ar grd 63.3 ± 0.4 TANER (1977)K-Ar grd 65.1 ± 0.6 TANER (1977)K-Ar grd 67.5 ± 0.4 TANER (1977)K-Ar grd 70.6 ± 0.5 TANER (1977)K-Ar grd 75.4 ± 0.5 TANER (1977)K-Ar grd 78.9 ± 0.5 TANER (1977)K-Ar grd 80.7 ± 0.6 TANER (1977)

11- İkizdere (Kaçkar) K-Ar to 128.3 ± 1.8 TANER (1977)K-Ar to 131.0 ± 2.4 TANER (1977)K-Ar to 149.5 ± 2.8 TANER (1977)K-Ar to 209.5 ± 1.3 TANER (1977)K-Ar to 211.3 ± 2.8 TANER (1977)

12- İkizdere (Kaçkar) K-Ar grd 79.3 ± 1.0 MOORE et al. (1980)13- Kaçkar K-Ar grd 30 ÇOĞULU (1975)

K-Ar grd 32 ÇOĞULU (1975)K-Ar grd 47 ÇOĞULU (1975)

14- Kaçkar U/(Th-Pb) md 33 DELALOYE et al. (1972)U/(Th-Pb) md 56 DELALOYE et al. (1972)U/(Th-Pb) grd 29 DELALOYE et al. (1972)U/(Th-Pb) grd 49 DELALOYE et al. (1972)

15- Kaçkar K-Ar grd 62.4 ± 4.2 MOORE et al. (1980)16- Çamlıkaya-Sırtyayla-

Marselavat-Halkalıtaş-Güllübağ (Kaçkar)

FT (tit anite) 112.4 ± 1.6 BOZTUĞ et al. (2007)

FT (tit anite) 57.1 ± 1.2 BOZTUĞ et al. (2007)FT (tit anite) 52.9 ± 1.3 BOZTUĞ et al. (2007)FT (tit anite) 46.4 ± 1.0 BOZTUĞ et al. (2007)FT (tit anite) 43.7 ± 2.3 BOZTUĞ et al. (2007)FT (z ircon) 38.1 ± 0.9 BOZTUĞ et al. (2007)

Page 5: Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey)

269Insight into magma genesis

(2004), YILMAZ-ŞAHIN (2005), BOZTUĞ et al. (2006, 2007), KAYGUSUZ et al. (2008), KAYGUSUZ & AYDINÇAKIR (2009) and KAYGUSUZ et al. (2009). The oldest unit of the Dereli-Şebinkarahisar and Araklı-Çaykara region comprises pre-Early Jurassic metamorphic rocks, whereas Torul, Dağbaşı and Kaçkar regions consists of the lower Jurassic volcanic and pyroclastic rocks. The Late Cretaceous-Ear-ly Paleocene plutons cut Middle and Upper Jurassic and Lower Cretaceous sedimentary rocks, Late Cretaceous volcanic, volcano-sedimentary and sedimentary rocks. The youngest igneous rocks of this region consist of Eo-cene to Mio-Pliocene volcanic and volcaniclastic rocks.

Most plutons of the eastern Pontide magmatic belt are cut by dacitic, andesitic, aplitic and pegmatitic dykes. A number of mafi c microgranular enclaves (MMEs) with el-lipsoidal, ovoid and angular shapes (ranging from centim-eters to meters in diameter) occur. Their contacts with the host rocks vary from sharp to gradational.

3. Analytical methods

Zircons from the Torul pluton were set in an epoxy mount, polished to expose the grain centres and vacuum-coated

Table 1. Continued.

Number in Fig. 1 Method Rock type Age (Ma) Reference

17- Kaçkar K-Ar grd 127 GILES (1974)K-Ar grd 132 GILES (1974)

18- Kaçkar K-Ar grd 41 MOORE et al. (1980)19- Boğalı-Uzuntarla (South of Araklı) K-Ar grd 75.7 ± 1.55 YILMAZ-ŞAHIN et al. (2004)

K-Ar grd 61.4 ± 1.47 YILMAZ-ŞAHIN et al. (2004)K-Ar mg 42.4 ± 0.87 YILMAZ-ŞAHIN et al. (2004)K-Ar mg 41.2 ± 0.89 YILMAZ-ŞAHIN et al. (2004)K-Ar grd 138.5 ± 2.2 BOZTUĞ & HARLAVAN (2008)

20- Dölek-Sarıçiçek K-Ar mz 42.9 ± 1.81 KARSLI et al. (2007)K-Ar gr 43.5 ± 1.82 KARSLI et al. (2007)K-Ar to 44.1 ± 2.22 KARSLI et al. (2007)K-Ar mz 42.7 ± 2.21 KARSLI et al. (2007)

21- Saraycık Rb/Sr grd 66 ARSLAN (1998)Ar-Ar grd 52.8 ± 0.7 TOPUZ et al. (2005)Ar-Ar grd 52.2 ± 0.4 TOPUZ et al. (2005)

22- Kaletaş U-Pb (z ircon) grd 44.4 ± 0.3 ARSLAN & ASLAN (2006)23- South of Kürtün K-Ar grd 43.1 ± 2.2 JICA (1986)24- Şebinkarahisar FT (apatite) 80.7 ± 3.2-62.4 ± 2.5 BOZTUĞ et al. (2004)

Asarcık (Şebinkarahisar) K-Ar 75.7 ± 1.6-60.0 ± 1.3 OYMAN et al. (1995)Eskine (Şebinkarahisar) K-Ar 82.4 ± 1.8-45.2 ± 1.0 OYMAN et al. (1995)Saydere (Şebinkarahisar) K-Ar 64.5 ± 1.7 OYMAN et al. (1995)

25- Kösedağ Rb/Sr (WR) sy 37 ± 2.6 KALKANCI (1974)Rb/Sr (WR) sy 42 ± 4 KALKANCI (1974)Pb-Pb sy 52.1 ± 6.4 BOZTUĞ (2008)

26- Gümüşhane K-Ar gr 162 ÇOĞULU (1975)27- Gümüşhane Rb/Sr (WR) gr 535 ± 74 JICA (1986)

Rb/Sr (WR) gr 406 JICA (1986)28- Gümüşhane U/(Th-Pb) gr 298 ÇOĞULU (1975)

U/(Th-Pb) gr 304 ÇOĞULU (1975)U/(Th-Pb) gr 338 ÇOĞULU (1975)

29- Gümüşhane U/(Th-Pb) mz 127 DELALOYE et al. (1972)U/(Th-Pb) mz 108 DELALOYE et al. (1972)U/(Th-Pb) grd 188 DELALOYE et al. (1972)

30- Gümüşhane Rb/Sr (WR) gr 360 ± 2 BERGOUGNAN (1987)31- Gümüşhane K-Ar grd 107 MOORE et al. (1980)

FT-fission track, WR-whole-rock, grd-granodiorite, qd-quartz diorite, hbmg-hornblende biotite monzogranite, mg-monzogranite, sg-syenogranite, bhmg-biotite hornblende monzogranite, qmd-quartz monzodiorite, qmz-quartz monzonite, to-tonalite, gr-granite, mz-monzonite, and sy-syenite. See Fig. 1 for location.

Page 6: Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey)

270 A. Kaygusuz et al.

with a 500-nm layer of high-purity gold. U-Pb zircon dat-ing was carried out at the Beijing SHRIMP Laboratory (China) following the analytical procedures described by WILLIAMS (1998). Uranium, Th and Pb abundances were measured based on the standard Sri Lankan zircon SL13, with U = 238 ppm and t = 572 Ma. Lead ratios were cor-rected for common Pb using the measured non-radiogenic 204Pb. The SQUID 1.0 and ISOPLOT softwares of LUDWIG (2003) were used for data processing.

Nd-Sr isotopic analyses of the Köprübaşı pluton were conducted at the Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing. Samples were dissolved in a mixture of HF + HClO4 in Savillex beak-ers on a hot plate for one week. Separation of Rb, Sr and light REEs was achieved through a cation-exchange col-umn (packed with BioRad AG 50W-X8 resins). Sm and Nd were further purifi ed using a second cation-exchange column that was conditioned and eluted with diluted HCl. Mass analyses were conducted using a multicollector VG354 mass spectrometer as described by QIAO (1988). 87Sr/86Sr and 143Nd/144Nd ratios were corrected for mass fractionation relative to 86Sr/88Sr = 0.1194 and 146Nd/144Nd = 0.7219, respectively. Finally, the 87Sr/86Sr ratios were adjusted to the NBS-987 Sr standard = 0.710250, and the 143Nd/144Nd ratios, to the La Jolla Nd standard = 0.511860. The uncertainty in concentration analyses by isotopic di-lution is 2 % for Rb, 0.5 % for Sr, and 0.2−0.5 % for Sm and Nd depending upon concentration levels. Procedural blanks are: Rb = 80 pg, Sr = 300 pg, Sm = 50 pg and Nd = 50−100 pg. The detailed explanation of sample prepara-tion, errors and analytical precision are provided in ZHANG et al. (2002).

Pb isotope analyses of the Torul pluton were performed at the Institute of Geosciences, Tübingen. Rock powders were dissolved in 52 % HF for four days, at 140 °C. Di-gested samples were dried and redissolved in 6N HCl, dried again and redissolved in 2.5N HBr. Separation and purifi cation of Pb was achieved on Tefl on columns with a 100 μl (separation) and 40 μl bed (cleaning) of Bio-Rad AG1-X8 (100–200 mesh) anion exchange resin using a HBr-HCl ion exchange procedure. Isotopic measure-ments were done by thermal ionization mass spectrom-etry on a Finnigan MAT 262 mass spectrometer. Pb was loaded with a Si-gel onto a Re fi lament and measured at ~1300 °C in single-fi lament mode. A factor of 1 ‰ per mass unit for instrumental mass fractionation was applied to the Pb analyses, using NBS SRM 981 as the reference material. Total procedural blanks during the measurement period were between 15 and 30 pg for Pb.

4. Results

4.1 Geochronology

In a number of previous studies the granite’s emplace-ment ages were estimated from contact relationships, stratigraphic criteria or biostratigraphic data. These are, however, often obscured by deformation or overlying rocks, so that an age reassessment in the light of new ge-ochronological data appears essential (Fig. 1, Table 1). YILMAZ (1977) give a U-Th-Pb age of 142 Ma on a granite samples from the Çaykara intrusion. GEDIKOĞLU (1979) determined K-Ar cooling ages ranging from 115 to 65 Ma on quartz diorite and granodiorite samples from the Harşit pluton. GILES (1974), TANER (1977) and MOORE et al. (1980) obtained K-Ar cooling ages ranging from 132 to 62 Ma on a granodiorite and tonalite samples from the İkizdere (Kaçkar) pluton. MOORE et al. (1980) reported K-Ar cooling ages ranging from 84 to 71 Ma on a gran-odiorite sample from the Dereli intrusion. JICA (1986) determined K-Ar cooling ages of 68 Ma on granodiorite samples from the Kürtün pluton. OYMAN et al. (1995) ob-tained K-Ar cooling ages ranging from 82 to 60 Ma from the Şebinkarahisar intrusions. YILMAZ-ŞAHIN (2005), and BOZTUĞ & HARLAVAN (2008) give K-Ar hornblende cool-ing ages ranging from 138 to 61 Ma on a granodiorite sample from the Boğalı and Uzuntarla intrusions of the Araklı-Trabzon region. KAYGUSUZ et al. (2009) determined a U-Pb zircon age of 82.7 ± 1.5 Ma on a monzogranite samples from the Sarıosman pluton. KAYGUSUZ & ŞEN (un-published data) obtained a U-Pb zircon age of 79.3 ± 1.4 Ma on a granodiorite samples from the Köprübaşı intru-sion. KAYGUSUZ & AYDINÇAKIR (2009) reported U-Pb zi-con ages of 88.1 ± 1.7 Ma and 82.9 ± 1.3 Ma for tonalite and monzogranite samples from the Dağbaşı pluton.

Knowledge about the age of the Torul pluton was very limited. KAYGUSUZ et al. (2008) reported a 77.9 ± 0.3 Ma Rb-Sr biotite ages, which is slightly older than a 72.1 ± 3.6 Ma K-Ar whole-rock ages reported by JICA (1986). In the course of this study U-Pb SHRIMP analyses were per-formed on zircons from three Torul granitoid samples and the results are summarized in Table 3. Twelve spot analy-ses from zircons from a biotite hornblende monzogranite (sample P17) yield 206Pb/238U ages ranging from 74 to 82 Ma with a weighted mean age of 80.1 ± 1.6 Ma (MSWD = 1.4) (Fig. 2a). Thirteen spot analyses from a quartz mon-zodiorite (sample P3) provided 206Pb/238U ages ranging from 76 to 85 Ma with a weighted mean age of 79.8 ± 1.2 Ma (MSWD = 1.4) (Fig. 2b), and thirteen spot analyses from a quartz monzonite (sample P8) gave 206Pb/238U ages between 72 to 80 Ma with a weighted mean age of 78.8 ± 1.2 Ma (MSWD = 1.4) (Fig. 2c).

Page 7: Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey)

271Insight into magma genesis

Summarizing, Cretaceous to Paleocene plutons in the eastern Pontides, at least those from which precise ra-diometric age data exist, formed between 142 to 56 Ma (Fig. 3 and Table 1), with a major igneous activity around ~78 Ma (Fig. 3b). The Eocene intrusives are dominantly 53–29 Ma in age, with a major igneous event occuring around ~42 Ma (Fig. 3c). Thus, there is evidence for con-tinuous magmatic activity between 88 to 56 Ma and be-tween 53 to 29 Ma (Fig. 3).

Fig. 2. a-c. Concordia diagram showing U-Pb SHRIMP analyses of zircon from the Torul pluton. a Biotite hornblende monzogranite (sample P17), b Quartz monzodiorite (sample P3), c- Quartz mon-zonite (sample P8).

Fig. 3. a-c. Histograms showing geochronologic ages of plutons in the eastern Pontides. a all plutons, b Cretaceous to Paleocene pluto-ns, c Eocene to Oligocene plutons. n: number of analyzed samples. See Table 1 for data sources.

Page 8: Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey)

272 A. Kaygusuz et al.

Tabl

e 2.

Sum

mar

y of

min

eral

ogic

al, p

etro

grap

hica

l, ge

oche

mic

al, i

soto

pic

and

geoc

hron

logi

cal c

hara

cter

istic

s of

the

stud

ied

gran

itoid

s fr

om th

e ea

ster

n Po

ntid

es.

Plut

onTa

mde

re

Gök

çebe

l Şe

bink

arah

isar

Boğ

alı

Sarı

osm

anK

öprü

başı

Toru

lD

ağba

şıÇ

amlık

aya

Sırt

yayl

a

Roc

k ty

peqm

z, a

d, q

md,

grd

qs, q

mz

sy, q

s, q

mz

ad, g

r, gr

dbh

mg,

hbm

gm

g, g

rdgr

d, b

hmg,

qm

d,

qmz,

hbm

g,sg

,qd

to, g

rd, m

ggr

d, to

, qm

d, q

d, m

ggr

d, m

g, q

md,

qm

z, g

r G

rain

siz

em

ediu

m to

coa

rse

med

ium

to c

oars

em

ediu

m to

coa

rse

med

ium

to c

oars

efi

ne to

med

ium

fine

to m

ediu

mfi

ne to

med

ium

fine

to m

ediu

mm

ediu

mco

arse

Text

ure

equi

gran

ular

equi

gran

ular

equi

gran

ular

porb

hyri

ticeq

uigr

anul

areq

uigr

anul

areq

uigr

anul

areq

uigr

anul

areq

uigr

anul

areq

uigr

anul

ar

Min

eral

com

p.or

t, m

ic, p

l, qt

z, h

ast,

aug,

bi

ort,

pert

, pl,

aug,

ha

st, a

rf, q

tzor

t, pe

rt, p

l, au

g,

hast

, arf

, qtz

kf, p

l, qt

z, h

b, b

iK

f, pl

, qtz

, hb,

bi,

tr-ac

tPl

, qtz

, kf,

hb, b

i, tr-

act

Pl, k

f, qt

z, h

b, b

i, py

r, tr-

act

Pl, k

f, qt

z, h

b, b

iqt

z, p

l, or

t, hb

, bi,

cpx

kf, p

l, qt

z, b

i, hb

Acc

esso

ry p

hs.

ap, e

p, z

r, op

sph,

ap,

zr,

opsp

h, a

p, z

r, op

ap, t

i, zr

, op

ti, a

l, ap

, zr,

ep, o

pti,

ap,

zr,

ep, o

pti,

al,

ap, z

r, ep

, op

ti, a

l, ap

, zr,

ep, o

pap

, ti,

zr, e

p, o

pap

, ti,

zr, e

p, o

p

Mag

ma

seri

esSu

balk

alin

e, h

igh-

K,

calc

-alk

alin

eA

lkal

ine-

Suba

lkal

ine,

hi

gh-K

cal

c-al

kalin

eA

lkal

ine-

Suba

lkal

ine,

hi

gh-K

cal

c-al

kalin

eSu

balk

alin

e, h

igh-

K

calc

-alk

alin

eSu

balk

alin

e, h

igh-

K,

calc

-alk

alin

eSu

balk

alin

e,

med

ium

to h

igh-

K,

calc

-alk

alin

e

Suba

lkal

ine,

hig

h-K

, ca

lc-a

lkal

ine

Suba

lkal

ine,

low

to

med

ium

-K, t

hole

iitic

to

cal

c-al

kalin

e

Suba

lkal

ine,

m

ediu

m to

hig

h-K

, ca

lc-a

lkal

ine

Suba

lkal

ine,

hi

gh-K

, ca

lc-a

lkal

ine

SiO

2 (w

t%)

61–6

760

–69

57–7

166

–71

66–7

065

–70

57–7

460

–76

58–6

960

–68

Mg#

29–4

318

–36

14–3

930

–36

19–2

721

–37

35–1

410

–37

30–4

226

–51

ASI

0.90

–1.1

0 (M

etal

umin

ous)

0.84

–1.1

4(M

etal

umin

ous-

pera

lum

inou

s)

0.85

–1.1

9 (M

etal

umin

ous-

pera

lum

inou

s)

0.92

–1.1

5 (M

etal

umin

ous-

pera

lum

inou

s)

0.94

–1.0

6 (M

etal

umin

ous-

pera

lum

inou

s)

0.92

–1.1

1 (M

etal

umin

ous-

pera

lum

inou

s)

0.84

–1.0

9 (M

etal

umin

ous-

pera

lum

inou

s)

0.95

–1.4

1 (M

etal

umin

ous-

pera

lum

inou

s)

0.80

–0.9

7 (M

etal

umin

ous)

0.84

–1.0

(M

etal

umin

ous)

(La/

Lu)

N14

.1–5

.77.

5–9.

25.

9–8.

4–

10.1

–17.

47.

75–1

1.43

9.41

–14.

201.

49–7

.13

––

Eu

(Eu/

Eu*

)1.

77–1

.57

0.71

–1.5

60.

89–1

.36

–0.

61–0

.80

0.61

–0.7

60.

59–0

.84

0.46

–1.1

1–

Mag

mat

ic

proc

esse

sFC

, Mag

ma

mix

ing/

min

glin

gFC

, slig

htly

CC,

M

agm

a m

ixin

g/m

ingl

ing

FC, M

agm

a m

ixin

g/m

ingl

ing

FC, C

C, M

agm

a m

ixin

g/m

ingl

ing

FCFC

, Mag

ma

mix

ing

FC, M

agm

a m

ixin

gFC

, CC,

Mag

ma

mix

ing/

min

glin

gFC

, CC,

Mag

ma

mix

ing/

min

glin

gFC

, CC,

Mag

ma

mix

ing/

min

glin

g

Mag

ma

sour

ceH

ybri

dH

ybri

dH

ybri

dH

ybri

dL

ower

Cru

stL

ower

Cru

stL

ower

Cru

stL

ower

Cru

stH

ybri

dH

ybri

d

Gra

nito

id ty

peI-

type

I-ty

peI-

type

I-ty

peI-

type

I-ty

peI-

type

I-ty

peI-

type

I-ty

pe

ε Nd(

i)–

––

––4

.1 to

–3.

0–3

.4 to

–4.

6–3

.1 to

–5.

3–3

.1 to

1.6

––

87Sr

/86Sr

(i)

––

––

0.70

62–0

.707

00.

7069

–0.7

070

0.70

57–0

.707

90.

7056

–0.7

067

––

206 P

b/20

4 Pb (

i)–

––

––

–18

.58–

19.0

5–

––

207 P

b/20

4 Pb (

i)–

––

––

–15

.64–

15.6

7–

––

208 P

b/20

4 Pb (

i)–

––

––

–38

.50–

39.1

0–

––

Age

(M

a)80

.7 ±

3.2

–62

.4 ±

2.5

80

.7 ±

3.2

–62

.4 ±

2.5

80

.7 ±

3.2

–62

.4 ±

2.5

75

.7 ±

1.5

5–61

.4 ±

1.4

782

.7 ±

1.5

79.3

± 1

.480

.1 ±

1.6

–78.

8 ±

1.2;

77

.9 ±

0. 3

; 72.

1 ±

3.6

88.1

±

1.7–

82.9

± 1

.311

2.4

± 1.

657

.1 ±

1.2

Met

hod

Apa

tite

FTA

patit

e FT

Apa

tite

FTho

rnbl

ende

K/A

rU

-Pb

SHR

IMP

U-P

b SH

RIM

PU

-Pb

SHR

IMP,

Rb-

Sr, K

/Ar

U-P

b SH

RIM

PTi

tani

te F

TTi

tani

te F

T

Ref

eren

ces

YIL

MA

Z &

BO

ZT

(1

996)

; B

OZ

TU

Ğ e

t al.

(200

4);

YIL

MA

Z-Ş

AH

IN e

t al.

(200

4)

YIL

MA

Z &

BO

ZT

(1

996)

; B

OZ

TU

Ğ e

t al.

(200

4);

YIL

MA

Z-Ş

AH

IN e

t al.

(200

4)

YIL

MA

Z &

BO

ZT

(1

996)

; B

OZ

TU

Ğ e

t al.

(200

4);

YIL

MA

Z-Ş

AH

IN e

t al.

(200

4)

YIL

MA

Z-Ş

AH

IN e

t al.

(200

4);

YIL

MA

Z-Ş

AH

IN (

2005

)

KAY

GU

SUZ e

t al.

(200

9)K

AYG

USU

Z &

ŞE

N

(unp

ublis

hed

data

)T

his

stud

y,K

AYG

USU

Z e

t al.

(200

8); J

ICA

(19

86)

KAY

GU

SUZ &

A

YD

INÇA

KIR

200

9B

OZ

TU

Ğ e

t al.

(200

6, 2

007)

BO

ZT

et a

l. (2

006,

200

7)

Mg#

(m

g-nu

mbe

r) =

100

× M

gO/(

MgO

+ Fe

2O3

(T)),

ASI

= m

olar

Al 2O

3/(C

aO+N

a 2O

+K2O

), q

mz-

quar

tz m

onzo

nite

, ad-

adam

ellit

e, q

md-

quar

tz m

onzo

dior

ite, g

rd-g

rano

dior

ite, q

s-qu

artz

sye

nite

, sy-

syen

ite, q

mz-

quar

tz m

onzo

nite

, gr-g

rani

te,

bhm

g-bi

otite

hor

nble

nde

mon

zogr

anite

, hbm

g-ho

rnbl

ende

bio

tite

mon

zogr

anite

, mg-

mon

zogr

anite

, to-

tona

lite,

qd-

quar

tz d

iori

te, s

g-sy

enog

rani

te, m

z-m

onzo

nite

, FT-

fiss

ion

trac

k, W

R-w

hole

-roc

k, C

C-c

rust

al c

onta

min

atio

n, F

C-f

ract

io-

nal

crys

talli

zatio

n. Q

tz:q

uart

z, k

f:k-

feld

spar

, pl:p

lagi

ocla

se, o

rt:o

rtho

clas

e, m

ic:m

icro

clin

e, p

ert:p

erth

ite, a

ug:a

ugite

, bi:b

iotit

e, h

b:ho

rnbl

ende

, tr-a

ct:tr

emol

ite-a

ctin

olite

, has

:has

tingi

te, a

rf:a

rfve

dson

ite, s

ph:s

phen

e, a

p:ap

atite

, al:a

llani

te,

zr:z

irco

n, e

p:ep

idot

e, o

p:op

aque

s, ti

:tita

nite

Page 9: Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey)

273Insight into magma genesis

Tabl

e 3.

U-P

b SH

RIM

P an

alyt

ical

dat

a of

zir

con

from

the

Toru

l plu

ton.

Spot

206 P

b (%

)U

(pp

m)

Th

(pp

m)

232 T

h/23

8 U20

6 Pb*

(pp

m)

206 P

b/23

8 Uag

e (1

1σ20

6 Pb/

238 U

age

(2)

± 1σ

206 P

b/23

8 Uag

e (3

1σ20

7 Pb*

/235 U

(1)

± %

207 P

b*/23

5 U(3

%

Bio

tite

hor

nble

nde

mon

zogr

anit

eP1

7-1

1.43

204

144

0.73

2.

1577

.32

1.97

76.9

41.

9877

.58

2.31

0.09

7.2

30.

09 6

.09

P17-

31.

27 2

22 1

720.

80

2.46

81.6

32.

0181

.79

2.02

81.8

92.

360.

08 8

.28

0.09

5.5

6P1

7-4

2.75

171

122

0.74

1.

8478

.10

2.04

79.4

22.

0579

.77

2.40

0.06

20.0

20.

09 8

.42

P17-

51.

92 5

20 3

550.

71

5.41

76.0

71.

9176

.36

1.75

77.0

42.

010.

0719

.62

0.09

3.9

2P1

7-6

1.59

618

514

0.86

6.

9182

.01

1.90

82.3

91.

8782

.77

2.20

0.08

10.6

70.

09 3

.65

P17-

70.

40 6

05 5

690.

97

6.73

82.6

41.

8782

.54

1.88

82.9

92.

250.

09 4

.61

0.09

3.6

5P1

7-8

0.66

263

211

0.83

2.

9081

.95

1.98

82.0

91.

9982

.38

2.33

0.08

6.9

10.

09 4

.95

P17-

92.

06 2

19 1

550.

73

2.22

74.1

22.

0174

.64

1.90

74.6

92.

200.

0720

.58

0.08

6.4

8P1

7-10

1.09

219

168

0.79

2.

4382

.05

2.09

82.7

22.

0482

.65

2.36

0.07

15.3

20.

08 5

.47

P17-

110.

96 2

26 1

890.

86

2.47

80.6

42.

0480

.68

1.99

80.2

22.

370.

0812

.21

0.07

6.2

3P1

7-12

2.90

195

157

0.84

2.

1078

.00

2.19

79.2

71.

9878

.69

2.35

0.06

32.3

70.

07 6

.81

P17-

132.

03 3

06 2

450.

83

3.34

79.8

32.

3777

.70

2.24

77.5

52.

800.

1210

.03

0.07

6.5

2Q

uart

z m

onzo

dior

ite

p3-1

0.64

463

394

0.88

5.

0680

.86

1.86

81.0

61.

8681

.12

2.19

0.08

6.4

80.

08 4

.11

p3-2

1.71

198

144

0.75

2.

1278

.48

2.02

78.8

62.

0279

.01

2.35

0.07

9.7

10.

08 5

.86

p3-3

0.74

457

237

0.54

5.

2785

.43

1.98

85.2

61.

9885

.99

2.21

0.09

5.4

30.

10 3

.67

p3-4

1.12

251

185

0.76

2.

7179

.75

1.91

80.1

81.

9380

.89

2.22

0.07

6.9

40.

10 4

.51

p3-5

1.74

300

316

1.09

3.

2378

.89

1.87

79.4

21.

8879

.71

2.34

0.07

7.8

40.

09 4

.68

p3-6

0.30

460

519

1.17

4.

9880

.56

2.01

79.9

92.

0180

.80

2.52

0.09

5.2

10.

10 4

.16

p3-7

1.01

218

166

0.79

2.

3980

.87

2.03

80.8

61.

9880

.49

2.31

0.08

12.3

80.

08 5

.97

p3-8

1.48

253

194

0.79

2.

8482

.36

2.04

83.1

12.

0383

.17

2.36

0.07

11.8

20.

09 4

.94

p3-9

0.19

1678

2658

1.64

18.

3981

.53

1.76

81.6

91.

7781

.34

2.44

0.08

3.4

20.

08 2

.82

p3-1

10.

37 3

13 3

141.

04

3.24

76.9

41.

8876

.78

1.88

76.7

62.

290.

08 6

.14

0.08

4.8

8p3

-13

0.85

407

382

0.97

4.

3178

.43

1.83

78.5

81.

8378

.31

2.23

0.08

7.2

80.

08 4

.71

Qua

rtz

mon

zoni

teP8

-30.

93 2

42 1

560.

67

2.48

75.7

21.

9775

.88

1.99

75.7

42.

270.

07 6

.96

0.07

6.4

6P8

-41.

11 3

67 3

731.

05

3.99

80.1

71.

9080

.89

1.86

80.8

82.

270.

0713

.09

0.08

4.0

6P8

-51.

19 2

86 2

150.

78

3.04

78.2

41.

8678

.10

1.86

78.7

22.

170.

08 6

.55

0.09

4.6

3P8

-52.

08 2

81 1

940.

71

2.98

77.2

91.

8978

.85

1.88

78.3

22.

140.

0516

.90

0.07

5.3

1P8

-72.

25 2

02 1

780.

91

2.19

79.1

92.

0079

.88

2.04

80.1

72.

450.

07 7

.22

0.09

5.6

8P8

-83.

83 3

31 2

520.

79

3.34

72.3

92.

1374

.19

1.84

74.1

02.

160.

0449

.06

0.07

6.1

4P8

-90.

92 2

62 2

020.

79

2.85

80.2

42.

0680

.40

1.98

79.9

32.

310.

0814

.58

0.07

5.5

9P8

-10

1.09

330

215

0.67

3.

5980

.18

1.97

82.9

52.

6885

.24

3.83

0.03

94.6

30.

1324

.34

P8-1

10.

57 2

85 2

020.

73

3.01

78.2

31.

9377

.59

1.92

77.7

92.

220.

09 7

.62

0.08

5.7

7P8

-12

1.15

338

255

0.78

3.

6780

.06

1.88

80.1

71.

8880

.97

2.18

0.08

7.3

10.

10 4

.16

P8-1

31.

27 3

21 2

550.

82

3.46

79.1

31.

9479

.54

1.92

80.1

72.

240.

0710

.63

0.09

4.3

6

Err

ors

are

1-si

gma;

Pb c

and

Pb* i

ndic

ate

the

com

mon

and

rad

ioge

nic

port

ions

, res

pect

ivel

y.(1

) C

omm

on P

b co

rrec

ted

usin

g m

easu

red

204 P

b.(2

) C

omm

on P

b co

rrec

ted

by a

ssum

ing

206 P

b/23

8 U-20

7 Pb/

235 U

age

-con

cord

ance

(3)

Com

mon

Pb

corr

ecte

d by

ass

umin

g 20

6 Pb/

238 U

-208 P

b/23

2 Th

age-

conc

orda

nce

Not

e: 2

06Pb

/238 U

age

(1)

val

ues

used

in th

e te

xt a

s th

e w

eigh

ted

mea

n

Page 10: Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey)

274 A. Kaygusuz et al.

Tabl

e 4.

Who

le-r

ock

maj

or-

(wt.%

), tr

ace

(ppm

)-el

emen

t and

rar

e ea

rth–

elem

ent a

naly

ses

(ppm

) of

rep

rese

ntat

ive

sam

ples

fro

m th

e ea

ster

n Po

ntid

e gr

anito

ids

(We

used

pub

lishe

d da

tas

from

YIL

MA

Z &

BO

ZT

199

6; Y

ILM

AZ-Ş

AH

IN e

t al.

2004

; YIL

MA

Z-Ş

AH

IN 2

005;

BO

ZT

et a

l. 20

06, 2

007;

KA

YG

USU

Z e

t al.

2008

; KA

YG

USU

Z &

AY

DIN

ÇA

KIR

200

9; K

AY

GU

SUZ e

t al.

2009

).

Plut

onD

ağba

şıTo

rul

Boğ

alı

Gök

çebe

lTa

mde

re

Sam

ple

tom

ggr

dqm

zqm

dbh

mg

sghb

mg

grd

grad

grd

qssy

qmz

adqm

dgr

dAv

g(n

= 9

)Av

g(n

= 8

)Av

g (n

= 1

6)Av

g(n

= 8

)Av

g(n

= 1

4)Av

g(n

= 7

)Av

g(n

= 3

)Av

g(n

= 9

)Av

g (n

= 1

5)Av

g(n

= 2

)Av

g(n

= 6

)Av

g(n

= 2

)Av

g(n

= 4

)Av

g (n

= 1

)Av

g(n

= 1

0)Av

g(n

= 9

)Av

g (n

= 7

)Av

g(n

= 1

)

SiO

262

.55

74.6

471

.88

59.7

360

.35

65.6

771

.47

63.1

962

.89

68.5

767

.96

66.3

163

.89

60.6

262

.41

63.1

461

.96

64.1

2Ti

O2

0.66

0.20

0.29

0.59

0.56

0.41

0.33

0.50

0.55

0.28

0.28

0.33

0.27

0.36

0.37

0.36

0.34

0.35

Al 2O

315

.73

12.5

514

.03

16.2

816

.55

15.5

914

.27

15.9

015

.63

15.5

915

.77

17.2

416

.31

16.9

816

.49

16.1

916

.66

17.2

8Fe

2O3

(T)

7.24

2.84

3.22

7.83

7.17

4.87

3.16

5.56

6.31

2.46

2.58

3.21

2.85

3.70

4.38

4.00

4.54

4.32

MnO

0.13

0.05

0.04

0.10

0.09

0.09

0.04

0.08

0.09

0.09

0.10

0.12

0.08

0.09

0.12

0.12

0.13

0.10

MgO

2.40

0.42

1.12

2.56

2.39

1.59

0.75

1.95

2.73

1.32

1.31

1.45

1.19

1.13

2.09

2.56

2.25

1.73

CaO

4.41

2.08

2.15

4.67

4.70

3.05

1.37

3.79

4.48

2.76

2.67

3.41

2.97

4.45

4.38

3.89

4.59

4.36

Na 2

O3.

824.

264.

403.

083.

353.

323.

483.

123.

243.

513.

543.

923.

002.

963.

313.

043.

353.

50K

2O0.

951.

080.

863.

833.

604.

145.

224.

063.

444.

774.

663.

926.

316.

663.

684.

103.

763.

87P 2

O5

0.17

0.05

0.07

0.16

0.16

0.13

0.07

0.14

0.17

0.14

0.13

0.17

0.14

0.19

0.17

0.17

0.18

0.14

LOI

1.84

1.63

1.77

0.66

0.62

0.76

0.20

0.87

0.43

0.87

1.22

0.64

1.61

1.20

0.77

1.25

1.04

0.17

Tota

l99

.999

.899

.999

.599

.599

.610

0.4

99.2

99.9

100.

410

0.2

100.

798

.698

.398

.298

.898

.899

.9C

rn.

an.

an.

a47

4526

629

36n.

an.

an.

an.

an.

an.

an.

an.

an.

aN

i2

25

44.

23

24

6.1

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

Cu

56

380

3121

1731

4614

125

5028

7843

54.0

95.0

Pb2

54

9494

7266

5663

2525

2529

3050

3028

.028

.0Z

n33

2717

5764

5530

3554

4047

4978

7883

8181

.082

.0R

b18

1616

143

124

143

243

152

112

149

149

144

196

173

109

120

96.0

107.

0B

a28

429

020

212

9111

8312

1712

4412

7511

0812

2112

8546

378

065

995

499

796

3.0

886.

0Sr

219

123

205

291

326

272

130

268

331

442

455

410

508

546

757

689

828.

080

9.0

Ta0.

30.

20.

40.

71.

31

1.1

1.4

0.8

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

Nb

45

511

1015

1714

1116

1622

129

33

3.00

3.00

Hf

35

32

23

42

2n.

an.

an.

an.

an.

an.

an.

an.

an.

aZ

r10

615

211

115

015

417

218

816

914

714

914

815

317

522

614

414

715

2.0

153.

0Y

3047

2114

1519

2919

1631

3132

4646

2830

2729

Th

344

630

2736

4632

2427

2635

3619

1315

1216

U1

11

43

68

34

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

La

14.4

715

.73

18.5

439

.74

35.8

143

.55

58.5

046

.03

36.0

5n.

an.

an.

a31

.50

31.0

019

.00

20.0

023

.00

n.a

Ce

31.3

935

.15

34.3

949

.76

42.6

484

.26

92.3

774

.69

53.1

4n.

an.

an.

a51

.50

53.0

036

.00

34.0

044

.00

n.a

Pr3.

864.

583.

78u.

a.l

8.59

u.a.

l10

.29

8.90

7.32

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

Nd

16.4

420

.41

14.2

327

.01

24.0

530

.20

33.5

032

.53

26.3

0n.

an.

an.

a20

.50

23.0

019

.00

13.0

019

.00

n.a

Sm3.

865.

402.

835.

574.

265.

316.

005.

354.

85n.

an.

an.

a3.

003.

403.

002.

602.

70n.

aE

u1.

021.

100.

721.

051.

071.

101.

481.

131.

11n.

an.

an.

a0.

601.

001.

000.

800.

80n.

aG

d4.

356.

272.

914.

324.

475.

305.

705.

275.

12n.

an.

an.

an.

an.

an.

an.

an.

an.

aT

b0.

781.

180.

520.

690.

640.

690.

860.

780.

71n.

an.

an.

an.

an.

an.

an.

an.

an.

aD

y4.

787.

443.

123.

693.

513.

794.

704.

113.

84n.

an.

an.

an.

an.

an.

an.

an.

an.

aH

o0.

971.

570.

650.

780.

760.

940.

950.

860.

85n.

an.

an.

an.

an.

an.

an.

an.

an.

aE

r3.

165.

052.

152.

152.

112.

512.

982.

542.

30n.

an.

an.

an.

an.

an.

an.

an.

an.

aT

m0.

440.

760.

320.

380.

380.

430.

460.

420.

41n.

an.

an.

an.

an.

an.

an.

an.

an.

aY

b3.

055.

282.

302.

282.

323.

053.

933.

602.

58n.

an.

an.

a2.

102.

302.

131.

812.

15n.

aL

u0.

470.

790.

360.

350.

350.

370.

440.

380.

39n.

an.

an.

a0.

400.

380.

140.

350.

42n.

a

Page 11: Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey)

275Insight into magma genesis

Tabl

e 4.

Con

tinue

d.Pl

uton

Şebi

nkar

ahis

arK

öprü

üstü

Çam

lıkay

aSı

rtya

yla

Sarı

osm

an

Sam

ple

qsqm

zgr

dm

ggr

dto

qmd

qdm

ggr

dm

gqm

dqm

zgr

hbm

gbh

mg

Avg

(n =

32)

Avg

(n =

3)

Avg

(n =

7)

Avg

(n =

4)

Avg

(n =

41)

Avg

(n =

26)

Avg

(n =

2)

Avg

(n =

2)

Avg

(n =

1)

Avg

(n =

13)

Avg

(n =

8)

Avg

(n =

2)

Avg

(n =

2)

Avg

(n =

1)

Avg

(n =

7)

Avg

(n =

9)

SiO

261

.70

58.7

165

.27

68.6

165

.76

63.3

757

.75

59.9

368

.60

68.1

665

.30

59.8

260

.75

68.3

468

.88

67.2

8Ti

O2

0.45

0.57

0.39

0.33

0.56

0.63

1.27

0.79

0.28

0.40

0.57

0.44

0.74

0.43

0.26

0.31

Al 2O

316

.68

16.9

015

.63

15.2

215

.54

16.1

014

.45

16.6

414

.60

15.1

815

.20

15.9

915

.02

15.3

414

.95

15.3

1Fe

2O3

(T)

4.93

6.27

4.40

3.36

3.95

4.50

7.64

5.81

2.30

3.79

4.58

5.79

3.47

3.57

3.37

3.66

MnO

0.26

0.16

0.08

0.05

0.07

0.08

0.15

0.11

0.05

0.09

0.10

0.12

0.12

0.08

0.07

0.08

MgO

1.99

2.77

1.96

1.01

2.58

3.21

4.66

3.35

1.00

1.32

2.20

3.39

3.65

1.52

0.96

1.19

CaO

2.98

4.62

3.93

2.56

3.78

4.87

5.65

5.43

3.00

3.12

3.88

5.51

4.74

3.13

2.88

3.21

Na 2

O3.

253.

073.

773.

683.

824.

183.

134.

113.

403.

513.

013.

082.

862.

993.

153.

16K

2O6.

305.

412.

693.

562.

711.

542.

491.

944.

483.

413.

943.

464.

254.

344.

414.

32P 2

O5

0.21

0.24

0.11

0.10

0.16

0.19

0.30

0.25

0.00

0.09

0.18

0.24

0.27

0.11

0.09

0.10

LOI

1.09

0.93

1.69

1.40

0.81

0.90

1.52

0.63

0.80

0.55

0.68

1.15

1.40

0.30

0.77

1.00

Tota

l99

.899

.799

.699

.999

.799

.699

.099

.098

.599

.699

.699

.097

.310

0.2

99.8

99.6

Cr

n.a

n.a

n.a

n.a

2934

3432

328

96

41n.

an.

an.

aN

in.

an.

a4.

72.

5n.

an.

an.

an.

an.

an.

an.

an.

an.

an.

a9.

115

Cu

5446

77

1615

1626

1335

4962

6631

1012

Pb46

487

99

66

437

2929

3230

2810

10Z

n93

9020

1651

5957

6578

7780

8784

7532

21R

b23

515

465

9158

1923

3717

312

312

510

811

915

713

713

0B

a67

577

311

0912

8856

437

037

543

198

789

975

469

861

483

010

8812

38Sr

229

623

386

273

398

500

461

479

273

249

381

620

552

293

290

349

Tan.

an.

a0.

80.

6n.

an.

an.

an.

an.

an.

an.

an.

an.

an.

a1

0.8

Nb

2114

88.

311

1010

1112

2124

2325

2211

10H

fn.

an.

a3.

63.

5n.

an.

an.

an.

an.

an.

an.

an.

an.

an.

a4.

34.

2Z

r29

621

912

012

714

914

914

818

615

415

618

517

119

516

313

513

7Y

5844

1919

1611

1217

3238

4028

3645

1717

Th

7050

1417

105

58

1817

2318

2618

3225

Un.

an.

a3

2n.

an.

an.

an.

an.

an.

an.

an.

an.

an.

a4

4L

a50

.33

n.a

26.9

629

.18

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

39.3

136

.35

Ce

94.0

0n.

a54

.71

59.0

0n.

an.

an.

an.

an.

an.

an.

an.

an.

an.

a67

.36

61.8

6Pr

n.a

n.a

5.47

5.22

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

6.65

6.15

Nd

29.3

3n.

a19

.69

17.2

8n.

an.

an.

an.

an.

an.

an.

an.

an.

an.

a21

.14

20.6

0Sm

5.40

n.a

3.65

3.06

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

3.47

3.52

Eu

1.17

n.a

0.77

0.63

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

0.69

0.73

Gd

n.a

n.a

3.12

2.67

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

2.80

2.71

Tb

n.a

n.a

0.54

0.45

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

0.38

0.43

Dy

n.a

n.a

2.99

2.58

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

2.59

2.67

Ho

n.a

n.a

0.60

0.53

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

0.53

0.52

Er

n.a

n.a

1.98

1.71

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

1.61

1.65

Tm

n.a

n.a

0.28

0.26

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

0.26

0.25

Yb

3.68

n.a

2.05

1.86

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

1.89

1.82

Lu

0.68

n.a

0.32

0.29

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

n.a

0.30

0.29

Fe2O

3 (T

) = to

tal i

ron,

LO

I = lo

ss o

n ig

nitio

n, n

.a =

not

ana

lyze

d, u

.a.l

= un

der a

naly

zed

limite

d, n

= s

ampl

e nu

mbe

r, av

g =

aver

age.

grd

-gra

nodi

orite

, qd-

quar

tz d

iori

te, h

bmg-

horn

blen

de

biot

ite m

onzo

gran

ite, m

g-m

onzo

gran

ite, s

g-sy

enog

rani

te, b

hmg-

biot

ite h

ornb

lend

e m

onzo

gran

ite, q

md-

quar

tz m

onzo

dior

ite, q

mz-

quar

tz m

onzo

nite

, to-

tona

lite,

gr-g

rani

te, a

d-ad

amel

lite,

qs

-qua

rtz

syen

ite, s

y-sy

enite

.

Page 12: Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey)

276 A. Kaygusuz et al.

4.2 Petrographic features

The eastern Pontide plutons are composed of quartz dior-ites, tonalites, granodiorites, quartz monzodiorites, quartz monzonites, monzogranites, adamellites, syenogranites, quartz syenites and syenites (Table 2). These rocks are generally fi ne-, medium- to coarse-grained, equigranular, porphyric, poikilitic, myrmekitic and rarely micrographic-textured (Table 2). Porphyric textures, characterised by K-feldspar (up to 3 cm) and plagioclase (up to 3.5 mm) phe-nocrysts are generally observed in the Boğalı, Sırtyayla and partly Sarıosman plutons. Most plutons consist of K-feldspar (orthoclase, microcline and perthite), plagio-clase, quartz, hornblende (hastingsite, arfvedsonite, and

tremolite-actinolite), pyroxene (augite), and biotite (Table 2). Apatite, epidote, zircon, sphene, titanite, allanite, and opaque minerals occur as accessory minerals. Second-ary minerals comprise chlorite, calcite, sericite and clay phases (Table 2).

Some of the eastern Pontide plutons contain different types of MMEs and exhibit some special microscopic tex-tures such as oscillatory zoned plagioclases, coexistence of two types of plagioclase phenocrysts, irregular changes of anorthite contents within plagioclase, poikilitic tex-tures, anti-rapakivi texture, spongy cellular dissolution/melting plagioclase and rounded plagioclase megacrysts in mafi c microgranular enclaves, refl ecting mingling and mixing between coeval felsic and mafi c magmas (DIDIER

Fig. 4. a ASI vs. SiO2 diagram with fi eld boundaries between I-type and S-type of CHAPPELL & WHITE (1974) and peraluminous and me-taluminous fi elds of SHAND (1947). b K2O vs. SiO2 diagram with fi eld boundaries between medium-K, high-K and shoshonitic series according to PECCERILLO & TAYLOR (1976). ASI (aluminium satura-tion index) = molar Al2O3/(Na2O+K2O+CaO).

Fig. 5. a Primitive mantle-normalised trace–element patterns (nor-malising values from SUN & MCDONOUGH 1989), b Chondrite nor-malised rare earth–element patterns (normalising values from TAY-LOR & MCLENNAN, 1985) for the eastern Pontide intrusive samples. See Fig. 4 for explanation.

Page 13: Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey)

277Insight into magma genesis

& BARBARIN 1991, HIBBARD 1991, 1995, BaRbarin & DI-DIER 1992).

4.3 Geochemical characteristics

The Late Cretaceous to Paleocene plutons in eastern Pon-tides have a range in SiO2 from 57 to 76 wt% (Table 2 and 4), corresponding to a compositional variation from diorite to granite (MIDDLEMOST 1994, not shown here). All samples are sub-alkaline except the samples of the Şebinkarahisar and Gökçebel pluton. The majority of samples are mainly calc-alkaline and Mg-rich accord-ing to the classifi cation scheme of FROST et al. (2001). Dağbaşı samples are calcic, whereas the Şebinkarahisar and Gökçebel samples are alkaline (not shown here). The samples are metaluminous to peraluminous, with values of alumina saturation index, ASI [molar Al2O3/(CaO+Na2O+K2O)], ranging from 0.80 to 1.41 (Fig. 4a, Table 2). The majority of samples mainly have medium to high-K calc-alkaline characteristics (Fig. 4b). Dağbaşı samples plot in the low-K calc-alkaline fi eld, whereas the

Şebinkarahisar and Gökçebel samples plot in the shosho-nitic fi eld (Fig. 4b).

Harker plots of selected major and trace elements (not shown here) show systematic variations in element con-centration. The rocks defi ne a variation trend without a compositional gap. CaO, MgO, Al2O3, Fe2O3, TiO2, P2O5, Zr and Sr contents decrease with increasing SiO2 content, whereas K2O, Na2O, Ba and Rb increase; Pb, Th, Y and Nb are nearly constant. On the other hand, K2O, Rb and Ba increase, whereas TiO2, P2O5, CaO, MgO, Fe2O3 and Al2O3 decrease with increasing SiO2, which is compatible with their evolution through fractional crystallisation pro-cesses. This conclusion is well supported by the depletion in Ba, Sr, P, and Eu (Fig. 5). The negative Eu anomalies (Fig. 5b) require fractionation of plagioclase and/or K-feldspar. Fractionation of feldspar would also result in depletion of Ba and Sr. Negative Eu anomalies and a de-crease of Sr with increasing silica (Fig. 5) all assert that plagioclase was an important fractionating phase. Deple-tion in P results from removal of apatite during fractional crystallisation. The increase in K2O and Rb with increas-

Fig. 6. a-d. a εNd(i) vs. 87Sr/86Sr(i); b-d 87Sr/86Sr(i), εNd(i) and 143Nd/144Nd(i) vs. SiO2 diagrams, respectively. See Fig. 4 for explanation.

Page 14: Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey)

278 A. Kaygusuz et al.

Table 5. Rb-Sr and Sm-Nd isotope data from the eastern Pontide granitoids (data from KAYGUSUZ et al. 2008; KAYGUSUZ & AYDINÇAKIR 2009; KAYGUSUZ et al. 2009).

Pluton / Type

Rb(ppm)

Sr(ppm)

87Rb/86Sr 87Sr/86Sr 2σm 87Sr86Sr(i) Sm(ppm)

Nd(ppm)

147Sm/144Nd

143Nd/144Nd

2σm 143Nd/144Nd(i)

eNd(i)aeNd(0)a TDM

b TDMc

Dağbașıto min 8.89 234.10 0.1096 0.705746 15 0.70561 4.71 20.87 0.1365 0.512515 10 0.51244 –1.73 –2.40 1.16 1.00

max 10.32 234.49 0.1275 0.706162 15 0.70600 4.98 21.88 0.1376 0.512534 14 0.51245 –1.37 –2.03 1.17 1.03avg (n = 2) 9.60 234.30 0.1186 0.705954 15 0.70581 4.85 21.37 0.1371 0.512524 12 0.51245 –1.55 –2.22 1.16 1.01

gd min 6.93 183.57 0.0813 0.706119 12 0.70585 2.76 13.97 0.1177 0.512477 12 0.51241 –2.25 –3.14 1.01 1.02max 47.28 247.38 0.7451 0.706839 21 0.70666 3.92 17.24 0.1374 0.512514 15 0.51244 –1.61 –2.41 1.23 1.07avg (n = 4) 26.59 220.09 0.3845 0.706585 15.5 0.70610 3.16 15.22 0.1249 0.512492 13 0.51242 –2.05 –2.86 1.08 1.06

mg min 6.29 110.30 0.0817 0.705785 12 0.70566 3.03 14.34 0.1037 0.512425 9 0.51237 –3.12 –4.16 0.83 0.76max 17.30 222.76 1.1570 0.707569 36 0.70612 5.66 21.06 0.1624 0.512692 16 0.51260 1.56 1.06 1.28 1.14avg (n = 4) 11.40 147.49 0.4385 0.706344 21.3 0.70580 4.66 18.69 0.1366 0.512612 12.3 0.51253 0.16 –0.51 1.03 0.87

Köprüüstümg min 5.87 290.03 0.0423 0.707079 11 0.70700 3.35 18.68 0.1070 0.512380 11 0.51233 –4.29 –5.03 1.02 1.19

max 88.23 401.15 0.8803 0.707874 16 0.70704 3.53 18.93 0.1146 0.512398 12 0.51235 –3.88 –4.68 1.12 1.23avg (n = 2) 47.05 345.59 0.4613 0.707476 13.5 0.70702 3.44 18.80 0.1108 0.512389 11.5 0.51234 –4.09 –4.85 1.07 1.21

gd min 15.40 312.36 0.1101 0.707042 10 0.70687 3.45 18.37 0.1137 0.512376 8 0.51231 –4.55 –5.11 1.08 1.15max 75.15 405.02 0.6529 0.707517 18 0.70693 6.79 30.53 0.1346 0.512429 11 0.51238 –3.36 –4.07 1.40 1.25avg (n = 3) 51.17 350.15 0.4487 0.707342 13.3 0.70690 4.61 22.46 0.1218 0.512402 10 0.51235 –3.94 –4.61 1.19 1.20

Sarıosmanbhmg min 102.42 321.65 0.7962 0.707355 12 0.70622 3.16 17.61 0.0994 0.512425 11 0.51237 –3.19 –4.16 0.92 1.13

max 128.62 372.16 1.1570 0.707569 13 0.70643 3.43 20.88 0.1084 0.512438 12 0.51238 –2.97 –3.90 0.98 1.14avg (n = 3) 115.68 345.57 0.9773 0.707444 12.3 0.70631 3.26 19.03 0.1038 0.512431 11.3 0.51238 –3.07 –4.04 0.95 1.13

phbmg min 90.41 310.44 0.5511 0.707659 14 0.70632 3.41 19.81 0.0993 0.512376 12 0.51232 –4.10 –5.11 0.96 1.15max 134.32 474.65 1.2518 0.707780 14 0.70702 3.78 22.99 0.1040 0.512423 13 0.51237 –3.22 –4.19 0.99 1.22avg (n = 2) 112.36 392.54 0.9015 0.707719 14 0.70667 3.59 21.40 0.1017 0.512400 13 0.51234 –3.66 –4.65 0.98 1.18

Torulqmd min 120.00 308.00 1.0585 0.707218 10 0.70570 3.97 23.85 0.1009 0.512397 9 0.51234 –3.89 –4.70 0.95 1.15

max 142.00 328.00 1.3338 0.707623 10 0.70642 4.78 24.66 0.1176 0.512418 9 0.51237 –3.31 –4.29 1.13 1.20avg (n = 2) 131.00 318.00 1.1962 0.707421 10 0.70606 4.37 24.26 0.1093 0.512408 9 0.51235 –3.60 –4.50 1.04 1.18

gd min 91.00 326.00 0.7743 0.707073 9 0.70593 4.64 22.29 0.0924 0.512403 7 0.51234 –3.79 –4.58 0.87 1.14max 131.00 340.00 1.1626 0.707759 10 0.70653 5.44 30.62 0.1266 0.512425 9 0.51238 –3.09 –4.15 1.22 1.19avg (n = 4) 113.00 332.50 0.9850 0.707348 9.8 0.70623 4.92 27.16 0.1115 0.512413 8 0.51235 –3.53 –4.40 1.06 1.17

qm min 122.00 316.00 1.1171 0.708052 10 0.70678 5.12 27.03 0.1149 0.512386 9 0.51233 –4.08 –4.92 1.12 1.22max 122.00 316.00 1.1171 0.708052 10 0.70678 5.12 27.03 0.1149 0.512386 9 0.51233 –4.08 –4.92 1.12 1.22avg (n = 1) 122.00 316.00 1.1171 0.708052 10 0.70678 5.12 27.03 0.1149 0.512386 9 0.51233 –4.08 –4.92 1.12 1.22

bhmg min 126.00 263.00 1.3705 0.707974 10 0.70642 3.70 19.04 0.1026 0.512393 9 0.51233 –3.98 –4.78 0.98 1.17max 151.00 266.00 1.6551 0.709073 10 0.70719 5.56 32.41 0.1181 0.512412 9 0.51235 –3.55 –4.41 1.14 1.21avg (n = 3) 139.00 264.33 1.5219 0.708453 10 0.70672 4.91 27.15 0.1111 0.512402 9 0.51234 –3.72 –4.60 1.06 1.19

hbmg min 138.00 269.00 1.2715 0.707622 10 0.70574 5.14 26.47 0.1033 0.512393 10 0.51234 –3.90 –4.78 1.00 1.20max 165.00 314.00 1.7747 0.707757 10 0.70618 5.67 33.32 0.1179 0.512397 13 0.51234 –3.83 –4.70 1.14 1.20avg (n = 2) 151.50 291.50 1.5231 0.707690 10 0.70596 5.41 29.90 0.1106 0.512395 11.5 0.51234 –3.86 –4.74 1.07 1.20

sg min 196.00 106.00 4.0810 0.707858 9 0.70320 5.18 26.84 0.0911 0.512393 9 0.51233 –3.97 –4.78 0.88 1.15max 259.00 158.00 7.0723 0.711885 10 0.70641 5.82 38.77 0.1202 0.512416 10 0.51237 –3.25 –4.33 1.15 1.21avg (n = 3) 226.33 134.33 5.0851 0.710263 9.7 0.70448 5.47 30.98 0.1095 0.512405 9.3 0.51235 –3.66 –4.55 1.05 1.18

n = sample number. min:minimum values. max:maximum values. avg:average values. qd-quartz diorite. qmd-quartz monzodiorite. gd-granodiorite. bhmg-biotite hornblende monzogranite. sg-syenogranitea εNd(i) and εNd(0) values are calculated based on present-day 147Sm/144Nd = 0.1967 and 143Nd/144Nd = 0.512638b Single stage model age (TDM). calculated with depleted mantle present-day parameters 143Nd/144Nd = 0.513151 and 147Sm/144Nd = 0.219c Two-stage model age (TDM). according to LIEW & HOFMAN (1988)

Page 15: Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey)

279Insight into magma genesis

ing silica content is consistent with the late appearance of K-feldspar and biotite in the crystallization sequence.

General trends of the primitive mantle normalized (SUN & MCDONOUGH 1989) element concentration dia-grams are shown in Fig. 5a. All rocks show enrichment of large ion lithophile elements (LILEs), depletion of high fi eld strength elements (HFSEs) and prominent positive Pb anomalies. Negative Nb, Ta and Ti anomalies best express the depletion in HFSEs. Chondrite-normalized (TAYLOR & MCLENNAN 1985) rare earth element patterns of all rock types have concave-upward shape with dif-ferences in abundances (Fig. 5b). They are all LREE-en-riched and HREE-depleted, with small to moderate nega-tive Eu anomalies.

4.4 Isotopic features

Existing Rb-Sr and Sm-Nd isotopic data for the Late Cretaceous to Early Paleocene granitoid in eastern Pon-tides are listed in Table 5 and plotted in Fig. 6a–d. To-rul, Sarıosman, Köprübaşı and Dağbaşı plutons show a range in Sr-Nd values (87Sr/86Sr(i) from 0.7032 to 0.7079 and εNd(i) from 1.6 to –4.5). The corresponding Nd model ages (TDM) are in the range 0.83–1.89 Ga. The Dağbașı samples have lower εNd(i) values (1.6 to –3.1) than the other samples. In the εNd(i) versus 87Sr/86Sr(i) diagram all samples plot on the extension of the mantle array (Fig. 6a), point-ing towards the fi eld for the lower continental crust (LCC) but displaced from the fi eld for the upper continental crust (UCC). All of the rocks roughly show a negative correla-tion in the εNd(i)–87Sr/86Sr(i) plot.

Pb isotope data are only available from the Torul plu-ton (Table 6, Figs. 7a-e). All samples have similar initial Pb isotopic compositions [(206Pb/204Pb)(i) = 18.58–19.05, (207Pb/204Pb)(i) = 15.64–15.67, (208Pb/204Pb)(i) = 38.50–

39.10]. On the projections of 207Pb/204Pb(i) vs. 206Pb/204Pb(i) (Fig. 7a) and 208Pb/204Pb(i) vs. 206Pb/204Pb(i) (Fig. 7b), all samples plot to the right of the geochron and above the Northern Hemisphere Reference Line (NHRL) (HART 1984). In these fi gures, as well as in the 143Nd/144Nd(i) vs. 206Pb/204Pb(i) diagram (Fig. 7c), the Torul samples plot close to EM II fi eld. In the initial 206Pb/204Pb vs. 207Pb/204Pb and 208Pb/204Pb diagrams (Figs. 7d and e), they form a close cluster within the fi eld of arc magmas (ZARTMAN & DOE 1981).

4.5 Tectonic setting

The arc-related plutonic rocks from the eastern Pontides have the following geochemical features: (1) they are gen-erally low- to high-K, calc-alkaline in composition; (2) they display enrichment in LIL elements, such as K, Rb, and Ba with respect to the HFSE, especially Nb and Ti and (3) all rock types show a signifi cant positive Pb anomaly, except one sample from the Dağbaşı pluton (Fig. 5). Mag-mas with these chemical features are supposedly gener-ated in subduction-related environments (e.g., FLOYD & WINCHESTER 1975, ROGERS & HAWKESWORTH 1989, SAJONA et al. 1996).

In the tectonic discrimination diagram (Zr+Nb+Ce+Y) vs. FeO*/MgO of WHALEN et al. (1987) the samples fall within the I-type granite fi eld, except one sample from the Torul and one from Dağbaşı pluton which plot in the fi eld of highly fractionated I-type granite (Fig. 8a). In the SiO2 vs. ASI (molar Al2O3/(CaO+Na2O+K2O)) diagram (Fig. 4a), most of the samples plot in the I-type gran-ite fi eld, except one sample of the Dağbaşı pluton. In the (Na2O+K2O-CaO) vs. SiO2 diagrams of FROST et al. (2001), the samples join the I-type fi eld of Lachlan fold belt granitoids. Applying the discrimination criteria of

Table 6. Lead isotope data from the Torul pluton.

Sample Type SiO2 Pb (ppm) U (ppm) Th (ppm) 206Pb/204Pb (206Pb/204Pb)80 Ma207Pb/204Pb (207Pb/204Pb) 80 Ma

208Pb/204Pb (208Pb/204Pb) 80 Ma

T59 qd 52.2 20 1 6 18.946 18.906 15.657 15.655 38.992 38.913T59b qd 52.1 20 1.4 3.9 18.881 18.827 15.648 15.646 38.892 38.841203 qmd 59.8 11 5 24 18.943 18.577 15.658 15.641 39.074 38.497T470 gd 61.5 65 5 22 18.936 18.874 15.663 15.660 39.057 38.96711 gd 62 41 5 25 18.898 18.800 15.659 15.655 39.016 38.855T686 gd 64.7 50 4 31 19.117 19.052 15.673 15.670 39.263 39.099T110b bhmg 66.2 27 7 35 18.931 18.723 15.662 15.652 39.066 38.723T460 bhmg 67.1 80 5 37 18.874 18.824 15.654 15.652 38.930 38.808T637 sg 69.6 50 8 44 19.049 18.920 15.660 15.654 39.146 38.913348 sg 73.5 51 9 46 19.000 18.857 15.654 15.648 39.097 38.85863b sg 73.3 50 8.7 52.2 18.922 18.782 15.651 15.644 39.023 38.748

qd-quartz diorite, qmd-quartz monzodiorite, gd-granodiorite, bhmg-biotite hornblende monzogranite, sg-syenogranite

Page 16: Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey)

280 A. Kaygusuz et al.

PEARCE et al. (1984), the majority of samples plot in the volcanic arc granites (VAG) fi eld on the Rb vs. (Y+Nb) diagram (Fig. 8b). On the Sr/Y vs. Y diagram (Fig. 8c), all samples plot in the low Sr/Y and high Y areas similar to modern island-arc rocks. The Rb/30-Hf-Ta*3 ternary diagram of HARRIS et al. (1986) provides a better distinc-tion between volcanic arc granites and pre-, syn and late

collisional granites. All samples plot in the VAG fi eld on this diagram (Fig. 8d). A comparison of the eastern Pon-tide plutons with arc-type granitoids is made on the Nb vs. Rb/Zr diagram (Fig. 8e). The majority of samples plot in the normal arc fi elds, while the Dağbaşı samples plot in the primitive arc fi eld, and some Tamdere and Çamlıkaya samples fall in the primitive to normal arc fi elds (Fig. 8e).

Fig. 7. a-e. Pb isotope composition of the Torul pluton, depicted in various diagrams. (a-e) Plot of 207Pb/204Pb(i), 208Pb/204Pb(i), 143Nd/144Nd(i), 207Pb/204Pb(i), and 208Pb/204Pb(i), vs. 206Pb/204Pb(i) ra-tios, respectively. EM I-enriched mantle type I (ZINDLER & HART 1986); HIMU-High-µ (µ = 238U/204Pb (LUSTRINO & DALLAI 2003); EM II-enriched mantle type II; LC-lower crust; NHRL-Northern Hemisphere Reference Line (HART 1984); UC-upper crust; BSE-bulk silicate earth; PREMA-primordial mantle. The area of mantle (MORB), orogene, upper crust (UC), lower crust (LC), and pelagic sediments are from ZARTMAN & DOE (1981). See Fig. 4 for expla-nation.

Page 17: Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey)

281Insight into magma genesis

In general, the long axis of most granitic plutons shows good agreement with the major tectonic directions (NE-SW, NW-SE, Fig. 1c). These directions correspond to the two main regional fracture alignments in the eastern Pontides which played an important role during the em-placement of the granitoids within the Pontide magmatic arc (GEDIKOĞLU 1978, BEKTAŞ & ÇAPKINOĞLU 1997). The

fracture pattern was probably related to the subduction process.

The eastern Pontide intrusions comprise the elliptical-ly shaped plutons (Fig. 1), and the contacts between the intrusions and the country rocks are predominantly sharp and discordant. The contact facies are fi ner-grained, and the textures are massive, porphyritic and granophyric. The

Fig. 8. a-d. a FeO*/MgO vs. (Zr+Nb+Ce+Y) classifi cation diagram (WHALEN et al. 1987); b Rb vs. (Y+Nb) discrimination diagram (PEARCE al. 1984); c Sr/Y vs. Y diagram; d Rb/30-Hf-Ta*3 triangu-lar diagram (HARRIS et al. 1986); e Nb vs. Rb/Zr diagram (BROWN et al. 1984) for the eastern Pontide intrusive rocks. Adakites and island arc fi elds are taken from DRUMMOND & DEFANT (1990). VAG, volcanic-arc granites; Syn-COLG, syn-collisional granites; WPG, within-plate granites; ORG, ocean-ridge granites; L-P-COLG, late-post-collisional granites; FG, fractionated granitoid; OGT, unfrac-tionated granitoid. See Fig. 4 for explanation.

Page 18: Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey)

282 A. Kaygusuz et al.

intrusions contain abundant country-rock xenoliths at the endocontact. All these features show that the eastern Pon-tide plutons emplaced into shallow crustal depths either by a stoping type of ascent or by ballooning.

4.6 Potential source rocks

Calc-alkaline intermediate to felsic magmas have been interpreted to be derived (1) from basaltic parent magmas by fractional crystallisation (FC) or assimilation and frac-tional crystallisation (AFC) processes (BACON & DRUITT 1988) or (2) from lower crustal mafi c to intermediate meta-igneous (RAPP & WATSON 1995, SINGH & JOHANNES 1996) or metasedimentary rocks by dehydration melting (PATIÑO DOUCE & BEARD 1996, STEVENS et al. 1997) sourc-

es. The fi rst interpretation has been considerably doubted, because the major volume of volcanic and intrusive rocks in the study area is not basaltic but felsic in composition. The composition of the eastern Pontides granitoids does not represent a fractionation sequence from basalt to gran-ite. The predominance of felsic magmas (SiO2 = 57–76 wt.%; Mg# = 10–51, Table 2) makes it unlikely that all these melts were generated by fractionation of mantle-derived mafi c magmas. If there was a single mafi c mag-ma source from which the felsic rocks solidifi ed through fractional crystallization processes, the chondrite-nor-malised REE pattern of these rocks should show a strong fractionation between the light and heavy REEs, with a pronounced negative Eu anomaly, which, however, is not observed. A derivation from mafi c magmas through AFC

Fig. 9. a-d. Chemical composition of the eastern Pontide intrusions: Outlined fi elds denote compositions of partial melts obtained in expe-rimental studies by dehydration melting of various bulk compositions. MB, metabasalts; MA, metaandesites; MGW, metagreywackes; MP, metapelites; FP, felsic pelites; AMP, amphibolites. Data sources: VIELZEUF & HOLLOWAY (1988), PATIÑO DOUCE & JOHNSTON (1991), RAPP et al. (1991), GARDIEN et al. (1995), RAPP (1995), RAPP & WATSON (1995), PATIÑO DOUCE & BEARD (1996), STEVENS et al. (1997), SKJERLIE & JOHNSTON (1996), PATIÑO DOUCE (1997), PATIÑO DOUCE & MCCARTHY (1998), PATIÑO DOUCE (1999). See Fig. 4 for explanation.

Page 19: Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey)

283Insight into magma genesis

processes can also be excluded because all rocks show little variation in initial Sr-Nd isotope ratios with SiO2 (Fig. 6b-d).

The geochemical features of the eastern Pontide plu-tons (i.e, depletion in Ba, Sr, Nb, and Ti, enrichment in Rb, Th, K, Pb and La) are comparable with those of typi-cal crustal melts, e.g. granitoids of the Lachlan Fold belt (CHAPPELL & WHITE 1992). Dehydration melting experi-ments of various source rock lithologies (PATIÑO DOUCE & JOHNSTON 1991, WOLF & WYLLIE 1994, PATIÑO DOUCE & Beard 1996, PATIÑO DOUCE & MCCARTHY 1998) yield partial melts of distinct chemical signatures that allow for discrimination between compositionally different protoliths (ALTHERR & SIEBEL 2002, TOPUZ et al. 2005). Compositional differences of magmas produced by par-tial melting of different source rocks, such as amphibo-lites, tonalitic gneisses, metagraywackes and metapelites, under variable melting conditions, may be visualised in terms of molar oxide ratios. Dehydration melting of metapelites and metagraywackes (RAPP et al. 1991, RAPP 1995, RAPP & WATSON 1995) yields higher values for K2O/Na2O, Mg#, Al2O3/(FeOT+MgO+TiO2) and (Na2O+K2O)/(FeOT+MgO+TiO2) and lower CaO/(MgO+FeOT) val-ues, compared to the investigated rocks (Figs. 9a-d). The chemical compositions of the studied intrusions are thus broadly compatible with an origin by dehydration melt-ing from mafi c (amphibolitic) or tonalitic lower crustal rocks.

5. Concluding remarks

The plutons of the eastern Pontide magmatic belt were formed above a Mesozoic to Early Cenozoic paleo-sub-duction zone. As a whole, the eastern Pontide belt pre-serves a record of a long-term crustal evolution from pre-subduction rifting, through arc volcanism and plutonism to post-subduction alkaline volcanism (e.g., AKIN 1978, ŞENGÖR & YILMAZ 1981, AKINCI 1984). The generation of subduction-related granitoids reached a peak during Late Cretaceous to Paleocene (KÖPRÜBAŞI et al. 2000).

The formation of the granitoid plutons in the eastern Pontides took place in three tectono-magmatic stages, namely (1) an arc stage (subduction), (2) a syn-collision stage, and (3) a post-collision stage (ŞENGÖR & YILMAZ 1981, YILMAZ & BOZTUĞ 1996, YILMAZ et al. 1997, OKAY & ŞAHINTÜRK 1997). The arc plutonic stage is related to the subduction of the Neo-Tethys beneath the Eurasian plate during the Late Cretaceous time. Calc-alkaline arc mag-matism in the eastern Pontides began in the Turonian and continued intermittently until the end of the Paleocene (TOKEL 1995, YILMAZ & BOZTUĞ 1996, GÜNGÖR 1997,

OKAY & ŞAHINTÜRK 1997, YILMAZ et al. 1997, YILMAZ et al. 2000, BOZTUĞ et al. 2003). During the same period, granitic intrusions emplaced into shallow levels of the crust and formed composite plutons. During the second plutonic period, mainly alkaline magmas were produced. These rocks were formed in response to the tensional regime after crustal thickening caused by the Anatolide-Pontide collision (YILMAZ & BOZTUĞ 1996, OKAY & ŞAHINTÜRK 1997, YILMAZ et al. 1997). The third plutonic stage comprises magma(s) generated by the partial melt-ing of mantle material during an advanced stage of exten-sion (YILMAZ & BOZTUĞ 1996, YILMAZ et al. 1997, OKay & ŞAHINTÜRK 1997).

According to our present understanding, the arc-granitoids of the eastern Pontides crystallized from dif-ferent magma sources under the effects of different mag-matic processes (i.e. fractional crystallization, crustal contamination, magma mixing/mingling). Some plutons (Tamdere, Gökçebel, Şebinkarahisar, Boğalı, Çamlıkaya, and Sırtyayla) probably developed from hybrid magma sources, while others (Torul, Sarıosman, Köprübaşı, and Dağbaşı) could have been derived from mafi c lower crus-tal lithologies (YILMAZ & BOZTUĞ 1996, YILMAZ-ŞAHIN et al. 2004, YILMAZ-ŞAHIN 2005, BOZTUĞ et al. 2006, 2007, KAYGUSUZ et al. 2008, KAYGUSUZ & AYDINÇAKIR 2009, KA-YGUSUZ et al. 2009).

Plutons from which Sr-Nd isotope data is available (Torul, Dağbaşı, Sarıosman and Köprübaşı) show a lim-ited range in Sr-Nd values (initial 87Sr/86Sr from 0.7056 to 0.7079, εNd(i) from 1.6 to –5.3). From Fig. 6 it be-comes apparent that the samples defi ne a trend of increas-ingly crustal Sr-Nd isotopic signatures from the north (e.g., Dağbaşı) to the south (e.g., Torul, Sarıosman, and Köprübaşı). This could a shift towards a more felsic com-position of the arc crust in this direction. Alternatively, it could signify that crustal contamination and/or AFC pro-cesses became increasingly more important towards the south.

Including presently available age data, the Cretaceous to Paleocene plutonic rocks in the eastern Pontides are dominantly 142-56 Ma in age. As becomes apparent from the existing data, a major pulse of igneous activity oc-curred around ~78 Ma (Fig. 3b) and the age of the Torul pluton presented in this study (80-78 Ma) coincides with this peak. The Eocene intrusive rocks are dominantly 53–29 Ma in age, with a major igneous event occuring around ~42 Ma (Fig. 3c). The age compilation also shows that there was continuous magmatic activity between 88 to 56 Ma and between 52 to 29 Ma (Fig. 3). While the older plutons were generated during subduction, the younger plutons can be related to the collision of the eastern Pon-tide island arc with the Anatolide-Tauride plate during the

Page 20: Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey)

284 A. Kaygusuz et al.

Paleocene to Early Eocene, and subsequent regional ex-tension.

Concerning the distribution of the eastern Pontide granitoids, it is interesting to note that there is no spa-tial and temporal relationship from east to west. Instead, magmatism becomes younger from the north to south (Fig. 3). The Cretaceous to Paleocene subduction-related plutons occur in the northern part of the eastern Pontides, while the Eocene collision-related plutons are situated in the southern part of the eastern Pontides (Fig. 1d). This could signal that plate convergence began in the northern part of the eastern Pontides in the Cretaceous and gradu-ally proceeded southward. In terms of the “slab-break off” model anticipated by BOZTUĞ et al. (2005) and ARSLAN et al. (2007), this could be interpreted as rollback of the Pon-tide subduction zone.

Summarizing, the Cretaceous to Paleocene granitoids of the eastern Pontides are sub-alkaline to slightly alka-line, I-type plutons with SiO2 between 57 and 76 wt.%, and display low- to high-K calc-alkaline, metaluminous to peraluminous characteristics, and portray small to moder-ate ranges in the initial Sr-Nd-Pb values. The geochemical and isotopic compositions of these plutons were suggest an origin through dehydration melting of mafi c (amphibo-litic) or tonalitic lower crustal source rocks. The regional, geological and tectonic settings reveal that the plutons emplaced in an arc-type setting, related to a primitive to normal stage of subduction of the Neo-Tethyan Ocean beneath the Eurasian plate. The temporal distribution of the granitoids indicates that plate convergence began in the northern part of the eastern Pontides in the Cretaceous and gradually proceeded southward.

Acknowledgements

This work was supported by TUBITAK-Ankara (109Y052) and by the Research Fund of the Karadeniz Technical University. We are greateful to Bin Chen help-ful suggestions about isotope analyses. We appreciate the help of E. Reitter during radiogenic isotope analyses. Heinz-Günter Stosch, Erdin Bozkurt, Hulusi Kargı, Se-lahattin Kadir, Hüseyin Kurt and anonymous reviewers are kindly thanked for their general improvement of the manuscript.

References

ADAMIA, S. A., LORDKIPANIDZE, M. B. & ZAKARIADZE, G. S. (1977): Evolution of an active continental margin as exemplifi ed by the Alpine history of the Caucasus. – Tectonophysics 40: 183–199.

AKIN, H. (1978): Geologie, Magmatismus und Lagerstaettenbil-dung im ostpontischen Gebirge-Türkei aus der Sicht der Plat-tentektonik. – Geol. Rundsch. 68: 253–283.

AKINCI, Ö. T. (1984): The Eastern Pontide volcano-sedimentary belt and associated massive sulphide deposits. In: Dixon, J. E. & Robertson, A. H. F. (eds).The geological evolution of the Eastern Mediterranean, vol 17. – Geol. Soc. Spec. Publ. pp. 415–428.

ALTHERR, R. & SIEBEL, W. (2002): I-type plutonism in a continen-tal back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece. – Contrib. Mineral. Petrol. 143: 397–415.

ARSLAN, M. & ALIYAZICIOĞLU, İ. (2001): Geochemical and petro-logical characteristics of the Kale (Gümüşhane) volcanic rocks: implications for the Eocene evolution of eastern Pontide arc vol-canism, northeast Turkey. – Int. Geol. Rev. 43: 595–610.

ARSLAN, M. & ASLAN, Z. (2006): Mineralogy, petrography and whole-rock geochemistry of the Tertiary granitic intrusions in the Eastern Pontides, Turkey. – J. Asian Earth Sci. 27: 177–193.

ARSLAN, M., BOZTUĞ, D., ŞEN, C., KOLAYLI, H., TEMIZEL, İ. & ABDIOĞLU, E. (2007): Petrogenesis and Geodynamic Evolution of the Southern Zone Eocene Volcanism, Eastern Pontides. – Tübi-tak-Çaydag Project no: 103Y012 (unpublished).

ARSLAN, M., KOLAYLI, H. & TEMIZEL, İ. (2004): Petrographical, geo-chemical and petrological characteristics of the Güre (Giresun, NE Turkey) Granitoid. – Bull. Earth Sci. Applic. Res. Centre, Hacettepe University 30: 1–21.

ARSLAN, M., TEMIZEL, İ. & ABDIOĞLU, E. (2002): Subduction in-put versus source enrichment and role of crustal thickening in the generation of Tertiary magmatism in the Pontide paleo-arc setting, NE Turkey. – In: DE VIVO, B. & BODGAR, R. J. (eds): Workshop-Short Course on Volcanic Systems, Geochemical and Geophysical Monitoring, Melt inclusions: Methods, Applica-tions and Problems, Napoli, Italy, 13–16.

ARSLAN, M., TÜYSÜZ, N., KORKMAZ, S. & KURT, H. (1997): Geo-chemistry and Petogenesis of the Eastern Pontide Volcanic Rocks, Northeast Turkey. – Chemie der Erde, Geochemistry 57: 157–187.

ASLAN, Z. (1998): Saraycık-Sarıhan Granitoyidleri (Bayburt) ve çevre Kayaçlarının Petrolojisi, Jeokimyası ve Sarıhan Granitoyi-dinin Jeokronolojik incelenmesi. – PhD Thesis, Karadeniz Tech-nical University, Trabzon (unpubl.).

BACON, C. R. & DRUITT, T. H. (1988): Compositional evolution of the zoned calc-alkaline magma chamber of Mount Mazama, Cra-ter Lake, Oregon. – Contrib. Mineral. Petrol. 98: 224–256.

BARBARIN, B. & DIDIER, J. (1992): Genesis and evolution of mafi c microgranular enclaves through various types of interaction be-tween coexisting felsic and mafi c magmas. – Trans. Royal Soc. Edinburg: Earth Sci. 83: 145–153.

BEKTAŞ, O. & ÇAPKINOĞLU, Ş. (1997): Doğu Pontid magmatik arkında (KD Türkiye) neptüniyen dayklar ve blok tektoniği, Mesozoyik havzaların kinematiği ile ilgili bulgular. – ÇÜ 20.Yıl Sempozyumu, Adana, Bildiri Özleri, pp. 187–189.

BERGOUGNAN, H. (1987): Etudes géologiques dans L’est Anatolien. – These de Doctorat D’etat, Academie de Paris Univ. Pierre et Marie Curie, Mém. Des Sci. de la Terre. 606 pp.

BOZTUĞ, D. (2008): Petrogenesis of the Kösedağ Pluton, Suşehri-NE Sivas, east-central Pontides, Turkey. – Turkish J. Earth Sci. 17: 241–262.

BOZTUĞ, D., ERÇIN, A. İ., KURUÇELIK, M. K., GÖÇ, D., KÖMÜR, İ. & İSKENDEROĞLU, A. (2006): Geochemical characteristics of the composite Kaçkar batholith generated in a Neo-Tethyan conver-gence system, Eastern Pontides, Turkey. – J. Asian Earth Sci. 27: 286–302.

Page 21: Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey)

285Insight into magma genesis

BOZTUĞ, D. & HARLAVAN, Y. (2008): K-Ar ages of granitoids unravel the stages of Neo-Tethyan convergence in the eastern Pontides and central Anatolia, Turkey. – Int. J. Earth Sci. [DOI:10.1007/s00531-007-0176-0].

BOZTUĞ, D., JONCKHEERE, R. C., WAGNER, G. A., ERÇIN, A. İ. & YEĞINGIL, Z. (2007): Titanite and zircon fi ssion-track dating re-solves successive igneous episodes in the formation of the com-posite Kaçkar batholith in the Turkish Eastern Pontides. – Int. J. Earth Sci. 96: 875–886.

BOZTUĞ, D., JONCKHEERE, R. C., ARSLAN, M., SEN, C., KARSLI, O. & ERÇIN, A. İ. (2005): Eocene slab break-off revealed by the E-W distribution of the multi-sourced granitoids and tectonic denuda-tion in the eastern Pontides, Turkey. – Geophys. Res. Abstracts, Vol. 7, 02129.

BOZTUĞ, D., JONCKHEERE, R., WAGNER, G. A. & YEĞINGIL, Z. (2004): Slow Senonian and fast Palaeocene–Early Eocene uplift of the granitoids in the Central Eastern Pontides, Turkey: apatite fi s-sion-track results. – Tectonophysics 382: 213–228.

BOZTUĞ, D., KUŞÇU, İ., ERÇIN, A. İ., AVCI, N. & ŞAHIN, S. Y. (2003): Mineral deposits associated with the pre-, syn- and post-colli-sional granitoids of the neo-Tethyan convergence system be-tween the Eurasian and Anatolian plates in NE and Central Tur-key. – In: ELIOPOULOPS, D. et al. (eds). – Mineral Exp. Sustainable Dev. Millpress, Rotterdam, pp. 1141–1144.

BROWN, G. C., THORPE, R. S. & WEBB, P. C. (1984): The geochemi-cal characteristics of granitoids in contrasting arcs and comments on magma sources. – J. Geol. Soc. 141: 413–426.

ÇAMUR, M. Z., GÜVEN, İ. H. & ER, M. (1996): Geochemical char-acteristics of the Eastern Pontide volcanics: An example of mul-tiple volcanic cycles in arc evolution. – Turkish J. Earth Sci. 5: 123–144.

CHAPPELL, B. W. & WHITE, A. J. R. (1974): Two contrasting granite types. – Pacifi c Geol. 8: 173–174.

CHAPPELL, B. W. & WHITE, A. J. R. (1992): I- and S-type granites in the Lachlan Fold Belt. – Trans. Royal Soc. Edinburg: Earth Sci. 83: 1–26.

ÇOĞULU, E. (1975): Gümüşhane ve Rize Granitik Plutonlarının Mukayeseli Petrojeolojik ve Jeokronolojik Etüdü. – Dissertation Thesis, İstanbul Technical University (unpublished).

DELALOYE, M., ÇOĞULU, E. & CHESSEX, R. (1972): Etude géochrono-metrique des massifs cristallins de Rize et de Gümüşhane, Pon-tides Orientales (Turquie). – Archives des Sciences Physiques et Naturelles 25, Supplement 7: 43–52.

DIDIER, J. & BARBARIN, B. (1991). Enclaves and granite petrology: Developments in Petrology, vol 13, Elsevier, Amsterdam, 625 pp.

DOKUZ, A., TANYOLU, E. & GENÇ, S. (2006): A mantle- and a lower crust-derived bimodal suite in the Yusufeli (Artvin) area, NE Tur-key: trace element and REE evidence for subduction-related rift origin of Early Jurassic Demirkent intrusive complex. – Int. J. Earth Sci. 95: 370–394.

DRUMMOND, M. S. & DEFANT, M. J. (1990): A model for trond-hjemite-tonalite-dacite genesis and crustal growth via slab melt-ing: Archean to modern comparisons. – J. Geophys. Res. 95: 21503–21521.

EĞIN, D., HIRST, D. M. & PHILLIPS, R. (1979): The petrology and geochemistry of volcanic rocks from the northern Harşit river area, Pontide volcanic province, northeast Turkey. – J. Volcanol. Geotherm. Res. 6: 105–123.

EYUBOĞLU, Y. (2009): Late Cretaceous high-K volcanism in the eastern pontide orogenic belt: implication for the geodynamic evolution of NE Turkey. – Int. Geol. Rev. (in press).

FLOYD, P. A. & WINCHESTER, J. A. (1975): Magma type and tectonic setting discrimination using immobile elements. – Earth Planet Sci. Lett. 27: 211–218.

FROST, B. R., BARNES, C. G., COLLINS, W. J., ARCULUS, R. J., ELLIS, D. J. & FROST, C. D. (2001): A geochemical classifi cation for granitic rocks. – J. Petrol. 42: 2033–2048.

GARDIEN, V., THOMPSON, A. B., GRUJIC, D. & ULMER, P. (1995): Ex-perimental melting of Biotite + plagioclase + quartz ± muscovite assemblages and implications for crustal melting. – J. Geophys. Res. 100: 15581–15591.

GEDIK, A., ERCAN, T., KORKMAZ, S. & KARATAŞ, S. (1992): Rize-Fındıklı Çamlıhemşin arasında (Doğu Karadeniz) yer alan mag-matik kayaçların petrolojisi ve Doğu Pontidlerdeki bölgesel yayılımları. – Türkiye Jeoloji Bülteni 35: 15–38.

GEDIKOĞLU, A. (1978): Harşit granit karmaşığı ve çevre kayaçları. – PhD Thesis, Karadeniz Technical University, Trabzon [in Turk-ish with English abstract, unpubl.].

GEDIKOĞLU, A. (1979): Harşit (Giresun–Doğankent) granit karmaşığının jeokronolojik etüdü. – Türkiye Jeoloji Bilimsel ve Teknik Kurultayı Bildiri Özleri Kitabı 33: 59–60.

GILES, D. L. (1974): Geology and mineralization of the Ulutaş cop-per–molybdenum prospect, mineral exploration in two areas. – UNDP Technical Report 6, MTA, Ankara (unpublished)

GÖRÜR, N. (1988): Timing of opening of the Black Sea basin. – Tec-tonophysics 147: 247–262.

GÜNGÖR, Y. (1997): Kaçkar granitoyidi orta kesiminin mineralo-jik-petrografi k ve litojeokimyasal incelenmesi. – PhD Thesis, İstanbul University, 171s, (unpubl.).

GÜVEN, İ. H. (1993): 1/250,000-Scale Geological and metallogeni-cal map of the eastern Black Sea region. – Pub. Mineral Res. Exploration Institute of Turkey, Trabzon.

HARAGUCHI, S., ISHII, T., KIMURA, J. I. & OHARA, Y. (2003): Forma-tion of tonalite from basaltic magma at the Komahashi–Daini Seamont, northern Kyushu–Palau Ridge in the Philippine Sea, and growth of Izu-Ogasawara (Bonin)–Mariana arc crust. – Con-trib. Mineral. Petrol. 145: 151–168.

HARRIS, N. B. W., PEARCE, J. A. & TINDLE, A. G. (1986): Geochemi-cal characteristics of collision-zone magmatism. – Geol. Soc. of London, Spec. Publ. 19: 67–81.

HART, S. R. (1984): A large scale isotope anomaly in the Southern Hemisphere mantle. – Science 309: 753–757.

HIBBARD, M. J. (1991): Textural anatomy of twelve magma-mixed granitoid systems. – In: DIDIER, J. & BARBARIN, B. (eds): Enclaves and granite petrology. Developments in Petrology, Vol 13, Else-vier, Amsterdam, pp. 431–444.

HIBBARD, M. J. (1995): Petrography to Petrogenesis. – 587 pp., Prentice Hall.

İLBEYLI, N. (2008): Geochemical characteristics of the Şebinkarahisar granitoids in the Eastern Pontides, northeast Turkey: Petrogen-esis and tectonic implications. – Int. Geol. Rev. 50: 563–582.

JICA (1986): The republic of Turkey report on the cooperative min-eral exploration of Gümüşhane area, consolidated report. – Japa-nese Int. Coop. Agency, 146 pp.

KALKANCI, Ş. (1974): Etude géologique et pétrochimique de sud de la region de Suşehri: géochronologie du massif syenitique de Kösedağ (NE de Sivas-Turquie). – These Doctorate 3 eme cycle, Univ. de Grenoble. 135 pp. (unpublished).

KARSLI, O., CHEN, B., AYDIN, F. & ŞEN, C. (2007): Geochemical and Sr-Nd-Pb isotopic compositions of the Eocene Dölek and Sarıçiçek Plutons, Eastern Turkey: Impications for magma inter-action in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting. – Lithos 98: 67–96.

KAY, R. W. & KAY, S. M. (1993): Delamination and delamination magmatism. – Tectonophysics 219: 177–189.

Page 22: Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey)

286 A. Kaygusuz et al.

KAYGUSUZ, A. & AYDINÇAKIR, E. (2009): Mineralogy, whole-rock and Sr–Nd isotope geochemistry of mafi c microgranular enclaves in Cretaceous Dagbasi granitoids, Eastern Pontides, NE Turkey: Evidence of magma mixing, mingling and chemical equilibra-tion. –Chemie der Erde, Geochemistry 69: 247–277.

KAYGUSUZ, A., CHEN, B., ASLAN, Z., WOLFGANG, S. & ŞEN, C. (2009): U-Pb zircon SHRIMP ages, geochemical and Sr-Nd isotopic compositions of the Early Cretaceous I-type Sarıosman pluton, Eastern Pontides, NE Turkey. – Turkish J. Earth Sci. 18: 549–581.

KAYGUSUZ, A., WOLFGANG, S., ŞEN, C. & SATIR, M. (2008): Petro-chemistry and petrology of I-type granitoids in an arc setting: the composite Torul pluton, Eastern Pontides, NE Turkey. – Int. J. Earth Sci. 97: 739–764.

KAZMIN, V. G., SBORTSHIKOV, I. M., RICOU, L. E., ZONENSHAIN, L. P., BOULIN, J. & KNIPPER, A. (1986): Volcanic belts as markers of the Mesozoic-Cenozoic evolution of Tethys. –Tectonophysics 123: 123–152.

KETIN, İ. (1966): Anadolunun tektonik birlikleri. – MTA Dergisi 66: 22–34.

KÖPRÜBAŞI, N., ŞEN, C. & KAYGUSUZ, A. (2000): Doğu Pontid adayayı granitoyidlerin karşılaştırılmalı petrografi k ve kimyasal özellikleri. – Uygulamalı Yerbilimleri 1: 111–120.

KORKMAZ, S., TÜYSÜZ, N., ER, M., MUSAOĞLU, A. & KESKIN, İ. (1995): Stratigraphy of the Eastern Pontides, NE Turkey. – In: ERLER et al. (eds): Proc. Int. Symposium of the geology of the Black Sea Region, pp. 59–69.

LIEW, T. C. & HOFMAN, A. W. (1988): Precambrian crustal compo-nents, plutonic associations, plate environment of the Hercynian fold Belt of Central Europe: Indications from a Nd and Sr iso-topic study. – Contrib. Mineral. Petrol. 98: 129–138.

LUDWIG, K. R. (2003): Isoplot 3.0: A geochronological toolkit for Microsoft excel, Berkeley Geochronology Center. Special pub. No. 4.

LUSTRINO, M. & DALLAI, L. (2003): On the origin of EM-I end-member. – N. Jb. Miner. Abh. 179: 85–100.

MANETTI, P., PECCERILLO, A., POLI, G. & CORSINI, F. (1983): Petro-chemical contraints on the models of Cretaceous-Eocene tectonic evolution of the Eastern Pontid Chain (Turkey). – Cretaceous Res. 4: 159–172.

MIDDLEMOST, E. A. K. (1994): Naming materials in the magma/ig-neous rock system. – Earth Sci. Rev. 37: 215–224.

MOORE, W. J., MCKEE, E. H. & AKINCI, Ö. (1980): Chemistry and chronology of plutonic rocks in the Pontid mountains, northern Turkey. – Symposium of European Copper Deposits, Belgrade, pp. 209–216.

OKAY, A. I. & ŞAHINTÜRK, Ö. (1997): Geology of the Eastern Pon-tides. – In: ROBINSON, A. G. (ed.): Regional and petroleum geol-ogy of the Black Sea and surrounding region. AAPG Memoir 68: 291–311.

OKAY, A. I. & TÜYSÜZ, O. (1999): Tethyan sutures of northern Tur-key. – In: DURAND, B, JOLIVET, L, HORVATH F. & SÉRANNE M. (eds): The Mediterranean Basins: Tertiary extension within the Alpine Orogen, 156. – Geol. Soc. Spec. Publ. pp. 475–515.

OYMAN, T., DELALOYE, M., PISKIN, O. & CALAPKULU, F. (1995): Pet-rochemical and K-Ar radiometric investigations of granitoids from Sebinkarahisar area (Giresun-Turkey): Proc. Int. Earth Sci. Congress on Aegean Region, Dokuz Eylül University Pub. v. 2, p. 429–439.

ÖZSAYAR, T., PELIN, S. & GEDIKOĞLU, A. (1981): Doğu Pontidler’de Kretase. –KTU Yer Bilimleri Dergisi 1: 65–14.

PATIÑO DOUCE, A. E. (1997): Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. – Geology 25: 743–746.

PATIÑO DOUCE, A. E. (1999): What do experiments tell us about the relative contributions of crust and mantle to the origin of gra-nitic magmas? – In: CASTRO, A., FERNANDEZ, C. & VIGNERESSE, J. L. (eds): Understanding granites: intergrating new and classical techniques. – Geol. Soc. Spec. Publ. 168: 55–75.

PATIÑO DOUCE, A. E. & BEARD, J. S. (1996): Effects of P, f (O2) and Mg/Fe ratio on dehydration melting of model metagreywackes. – J. Petrol. 37: 999–1024.

PEARCE, J. A., HARRIS, N. B. W. & TINDLE, A. G. (1984): Trace el-ement discrimination diagram for the tectonic interpretation of granitic rocks. – J. Petrol. 25: 956–983.

PATIÑO DOUCE, A. E. & JOHNSTON, A. D. (1991): Phase equilibria and melt productivity in the pelite system: implications for the origin of peraluminous granitoids and aluminous granulites. – Contrib. Mineral. Petrol. 107: 202–218.

PATIÑO DOUCE, A. E. & MCCARTHY, T. C. (1998): Melting of crustal rocks during continental collision and subduction. In: HACKER, B. R. & LIOU, J. G. (eds.): When continents collide: Geodynamics and geochemistry of ultra-high pressure rocks. Kluwer, Academ-ic Publisher, Dordrecht, pp. 27–55.

PECCERILLO, R. & TAYLOR, S. R. (1976): Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. – Contrib. Mineral. Petrol. 58: 63–81.

QIAO, G. (1988): Normalization of isotopic dilution analyses–a new program for isotope mass spectrometric analysis. – Scientia Si-nica 31: 1263-1268.

RAPP, R. P. (1995): Amphibole-out phase boundary in partially melted metabasalt, its control over liquid fraction and composi-tion, and source permeability. – J. Geophys. Res. 100: 15601–15610.

RAPP, R. P., WATSON, E. B. & MILLER, C. F. (1991): Partial melting of amphibolite eclogite and the origin of Archean trondhjemites and tonalites. – Precambrian Res. 51: 1–25.

RAPP, R. P. & WATSON, E. B. (1995): Dehydration melting of me-tabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. – J. Petrol. 36: 891–931.

ROBINSON, A. G., BANKS, C. J., RUTHERFORD, M. M. & HIRST, J. P. P. (1995): Stratigraphic and structural development of the eastern Pontides, Turkey. – J. Geol. Soc. London 152: 861–872.

ROGERS, G. & HAWKESWORTH, C. J. (1989): A geochemical traverse across the North Chilean Andes: evidence for crust generation from the mantle-wedge, – Earth Planet Sci. 91: 271–285.

SAJONA, F. G., MAURY, R. C., BELLON, H., COTTON, J. & DEFANT, M. (1996): High fi eld strength element enrichment of Pliocene-Pleistocene Island Arc Basalts, Zamboanga Peninsula, western Mindanao (Philippines). – J. Petrol. 37: 693–726.

SHAND, S. J. (1947): Eruptive rocks. Their genesis, composition, classifi cation and their relation to ore-deposits. – 3rd edition, J Wiley Sons, New York, 488 pp.

SINGH, J. & JOHANNES, W. (1996): Dehydration melting of tonalites: Part II. Composition of melts and solids. – Contrib. Mineral. Pet-rol. 125: 26–44.

SKJERLIE, K. P. & JOHNSTON, A. D. (1996): Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hy-drous phases: implications for anatexis in the deep to very deep continental crust and active continental margins. – J. Petrol. 37: 661–691.

STEVENS, G., CLEMENS, J. D. & DROOP, G. T. R. (1997): Melt pro-duction during granulite facies anatexis: experimental data from ‘primitive’ metasedimentary protoliths. – Contrib. Mineral. Pet-rol. 128: 352–370.

Page 23: Insight into magma genesis at convergent plate margins – a case study from the eastern Pontides (NE Turkey)

287Insight into magma genesis

SUN, S. S. & MCDONOUGH, W. F. (1989): Chemical and isotope systematics of oceanic basalts; implication for mantle composi-tions and processes. – In: SAUNDERS, A. D. & NORY, M. J. (eds.): Magmatism in the ocean basins. Vol 42. – Geol. Soc. Spec. Pub. pp. 313–345

ŞENGÖR, A. M. C., ÖZEREN, S., GENÇ, T. & ZOR, E. (2003): East Anatolian high plateau as a mantle-supported, North-south shortened domal structure. – Geophys. Res. Let. 30 (24), 8045. DOI:10.1029/2003GL017858.

ŞENGÖR, A. M. C. & YILMAZ, Y. (1981): Tethyan evolution of Tur-key: a plate tectonic approach. – Tectonophysics 75: 181–241.

TANER, M. F. (1977): Etuda géologique et pétrographique de la ré-gion de Güneyce-İkizdere, située au sud de Rize (Pontides ori-entales, Turquie). – PhD Thesis, Universite de Geneve, 180 pp. (unpubl.)

TAYLOR, S. R. & MCLENNAN, S. M. (1985): The continental crust: Its composition and evolution. – Oxford, Blackwell Pub, 312 pp

TEMIZEL, İ. & ARSLAN, M. (2009): Mineral chemistry and petro-chemistry of post-collisional Tertiary mafi c to felsic cogenetic volcanics in the Ulubey (Ordu) area, eastern Pontides, NE Tur-key. – Turkish J. Earth Sci. 18: 29–53.

TOKEL, S. (1977): Doğu Karadeniz Bölgesi’nde Eosen yaşlı kalk alkalen andezitler ve jeotektonizma. – Türkiye Jeoloji Kurumu Bülteni 20: 49–54.

TOKEL, S. (1995): Magmatic and geochemical evolution of the Pon-tide segment of the northern Tethys subduction system, Geology of the Black Sea region. – In: ERLER, A., ERCAN, T., BINGÖL, E. & ÖRÇEN, S. (eds.): Proc. of the Internat. Symp. on the Geol. of the Black Sea Region, September 7–11, 1992, Ankara, published by the General Directorate of Mineral Research and Exploration and Chamber of Geological Engineers, Ankara, Turkey, 163–170.

TOPUZ, G., ALTHERR, R., KALT, A., SATIR, M., WERNER, O. & SCHWARZ, W. H. (2004): Aluminous granulites from the Pulur complex, NE Turkey: a case of partial melting, effi cient melt exctraction and crystallization. – Lithos 72: 183–207.

TOPUZ, G., ALTHER, R., SCHWARZ, W. H., SIEBEL, W., SATIR, M. & DOKUZ, A. (2005): Post-collisional plutonism with adakite-like signatures: the Eocene Saraycık granodiorite (Eastern Pontides, Turkey). –Contrib. Mineral. Petrol. 150: 441–455.

VIELZEUF, D. & HOLLOWAY, J. R. (1988): Experimental determina-tions of the fl uid-absent melting reactions in the pelitic system. – Contrib. Mineral. Petrol. 98: 257–276.

WHALEN, J. B. (1985): Geochemistry of an island-arc plutonic suite: the Uasilau-Yau Yau intrusive complex, New Britain. PNG – J. Petrol. 26: 603–632.

WHALEN, J. B., CURRIE, K. L. & CHAPPELL, B. W. (1987): A-type granites: geochemical characteristics, discrimination and petro-genesis. – Contrib. Mineral. Petrol. 95: 407–419.

WILLIAMS, I. S. (1998): U-Th-Pb geochronology by ion microprobe. – In: MCKIBBEN, M. A., SHANKS, W. C. & RIDLEY, W. I. (eds). Application of microanalytical techniques to understanding min-eralizing processes. – Rev. Economic Geol. 7: 1–35.

WOLF, M. & WYLLIE, P. (1994): Dehydration melting of solid am-phibolite at 10 kb. the effect of temperature and time. – Contrib. Mineral. Petrol. 115: 369–383.

YEĞINGIL, Z., BOZTUĞ, D., ER, M., ODDONE, M. & BIGAZZI, G. (2002): Timing of neotectonic fracturing by fi ssion-track dating of obsidian in-fi lling faults in the İkizdere-Rize area, NE Black Sea region Turkey. – Terra Nova 14, 3: 169–174.

YILMAZ, A., ADAMIA, S., CHABUKIANI, A., CHKHOTUA, T., ERDOĞAN, K., TUZCU, S. & KARABIYIKOĞLU, M. (2000): Structural correla-tion of the southern Transcaucasus (Georgia)-Eastern Pontides (Turkey). – In: BOZKURT, E., WINCHESTER, J. A. & PIPER, J. D. A. (eds): Tectonics and Magmatism in Turkey and Surrounding Area. – Geological Soc. Spec. Pub. 173: 171–182.

YILMAZ, C. & KORKMAZ, S. (1999): Basin development in the east-ern Pontides, Jurassic to Cretaceous, NE Turkey. – Zentralbl. Geol. Palaönt., Teil I, 10–12, 1485–1494.

YILMAZ, İ. (1977): Çaykara granitlerinin petrojenetik ve jeokrono-metrik etüdü. – Tübitak Doğa Bilim Dergisi 8: 29–35.

YILMAZ, S. & BOZTUĞ, D. (1996). Space and time relations of three plutonic phases in the Eastern Pontides, Turkey. – Int. Geol. Rev. 38: 935–956.

YILMAZ, Y. (1972): Petrology and structure of the Gümüşhane gran-ite and surrounding rocks, North-Eastern Anatolia. – PhD Thesis, University of London, pp. 260.

YILMAZ, Y., TÜYSÜZ, O., YIĞITBAŞ, E., GENÇ, Ş. C. & ŞENGÖR, A. M. C. (1997): Geology and tectonic evolution of the Pontides, Re-gional and Petroleum geology of the Black Sea and Surrounding Region. – American Ass. Petrol. Geologist Memoir 68: 183–226.

YILMAZ-ŞAHIN, S. (2005): Transition from arc- to post-collision extensional setting revealed by K–Ar dating and petrology: an example from the granitoids of the Eastern Pontide Igneous Ter-rane, Araklı-Trabzon, NE Turkey. – Geol. J. 40: 425–440.

YILMAZ-ŞAHIN, S., GÜNGÖR, Y. & BOZTUĞ, D. (2004): Comparative petrogenetic investigation of Composite Kaçkar Batholith grani-toids in Eastern Pontide magmatic arc-Northern Turkey. – Earth Planets Space 56: 429–446.

ZARTMAN, R. E. & DOE, B. R. (1981): Plumbotectonics. The model. – Tectonophysics 75: 135–162.

ZHANG, H. F., SUN, M., ZHOU, X. H., FAN, W. M. & YIN, J. F. (2002): Mesozoik lithosphere destruction beneath the North China Cra-ton: evidence from major, trace element, and Sr-Nd-Pb isotope studies of Fangcheng basalts. – Contrib. Mineral. Petrol. 144: 241–53.

ZINDLER, A. & HART, S. R. (1986): Chemical geodynamics. – An-nual Rev. Earth Planetary Sci. 14: 493–571.

Received: March 18, 2010; accepted: April 23, 2010.Responsible editor: H.-G. Stosch

Authors’ addresses:

A. Kaygusuz, Department of Geological Engineering, Gümüşhane University, 29000 Gümüşhane, Turkey, E-mail: [email protected]

W. Siebel, M. Satir, Institute of Geosciences, Universität Tübingen, Wilhelmstr 56, D-72074 Tübingen, Germany.

N. İlbeyli, Faculty of Engineering, Mustafa Kemal University, 31040 Hatay, Turkey

M. Arslan, Cüneyt Şen, Department of Geological Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey.