Top Banner
Input Function x(t) Output Function y(t) T[ ] System InputSignal O utputSignal -A collection ofitem sthattogetherperform sa function -M odifies/transform san inputto give an output System Represented by
90

Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

Dec 13, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

SystemInput Signal Output Signal

- A collection of items that together performs a function - Modifies / transforms an input to give an output

System

Represented by

Input Function x(t)

Output Function y(t)

T[ ]

Page 2: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

Consider The following Input/Output relations

i(t)

RRV ( )t

RV ( ) ( )t Ri t

i(t)

C CV ( )t

C

1V ( ) ( )

t

t i dC

i(t)

L LV ( )t

L( )

V ( )di t

t Ldt

Page 3: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

In general we can represent the simple relation between the input and output as:

x( )t

Input

y( )t

Output y(t) = T[ x(t) ]

Were T[ ] is an operator that map the function x(t) to another function y(t) .( Function to Function mapping)

T[ ]

Page 4: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

Example

Let the input x(t) = 2sin(4pt) then the output y(t) be

T[ ] = d [ ]dt

Let the operator Differential Operator

T[x(y(t) = t)] = 2sin(4d [ ]dt

)t = 8cos(4 )t

Function 2sin(4pt) mapped Function 8cos(4pt)

Page 5: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

( ) ( )x t Ri V tc

C

R

( )x t

( )i t

( )V tC

( )( )

dV tci t Cdt

( )

( ) ( )dV tcx t RC V tcdt

Input Input

Output

Page 6: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

The operator or relation T can be defined as

- Linear / Non linear

- Time Invariant / Time Variant

- Continuous-Time / Discrete-Time

- Causal / Non Causal

Page 7: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

Representation of a general system

y(t) = T[x(t)]

where the notation T[x(t)] indicates a transformation or mapping

This notation T[.] does not indicate a function

that is, T[x(t)] is not a mathematical function into which we substitutex(t) and directly calculate y(t).

The explicit set of equations relating the input x(t) and the output y(t) is called the mathematical model, or simply, the model, of the system

Page 8: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

Properties of Continuous Time Systems

Page 9: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.
Page 10: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.
Page 11: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.
Page 12: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.
Page 13: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.
Page 14: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.
Page 15: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.
Page 16: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

( )x t[ ]S

( ) [ ( )]y t S x ttime shift

( )oy t t

( )x t[ ]S

[ ( )]oS x t ttime shift

( )ox t t

Page 17: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

( )i t[ ]S time shift

( ) [ ( )]C

V t S i t 1 ( )t

i dC

1( ) ( )

o

C

t t

oV t t i dC

time shift

( )i t ( )oi t t[ ]S

1[ ( )] ( )t

o oS i t t i t dC

1The capacitor is time-invariant if [ ( )] ( ) ( )C

t

o o oS i t t V t t i t dC

1 1( ) ( )

ot tt

oi t d i dC C

OR

1Is the capacitor is time-invariant ? ( ) ( )C

t

V t i dC

both output of the block diagram are equal

both output of the block diagram are equal The capacitor is time-invariant

Page 18: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

are equal

The resistor is time-invariant

Page 19: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

are not equal

is time-variant

Page 20: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

Is ( ) = ( ) time-invariant ?t

z t x d

let = ot [ ( )]= ( )ot t

oS x t t x d

( )oz t t time-invariant

are they equal ?

Page 21: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

0

Is ( ) = ( ) time-invariant ?t

z t x d

let = ot [ ( )]= ( )o

o

t t

ot

S x t t x d

time-variant

are they equal ?

0

( ) = ( )t

oz t t x d

0

[ ( )] = ( )t

o oS x t t x t d

( )oz t t 0

( )t

x d

Page 22: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.
Page 23: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

Examples of Linear systems

1 2[ ( ) ( )]c ax t bx t 1 2( ) ( )cax t cbx t 1 2( ) ( )cy t cy t

Page 24: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

Examples of Nonlinear systems

We can stop here and imply the system is non linear

violates Additivity due to the cross terms

Page 25: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

To satisfy homogeneity [ ( )] ( ) ( )S cx t cy t cx t ca

( )cx t ca

We can stop here and imply the system is non linear

Page 26: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

1( )x t

[ ]S

To check additivity

1 1[ ( )] = ( )S x t x t a

2( )x t 2 2[ ( )] = ( )S x t x t a

1 2( ) ( )x t x t 1 2 1 2[ ( ) ( )] = ( ) ( )S x t x t x t x t a

1 2[ ( )]+ [ ( )]S x t S x t

Page 27: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.
Page 28: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

( )x t ( )y tx(t)H[ ]

( ) ( )x dt

H

Linear –Time Invariant

( ) ( )y(t) = H x dt

Operator with respect to t Integration with respect to l

( ) ( )H= x t d

constant with respect to t

( ) ( )H= x t d

() )(= h t dx

( )t( )h t(t)H[ ]

The convolution integral

Page 29: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.
Page 30: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

Evaluate ( ) ( ) h x t d

Moving

Fix

Example 2-7

Page 31: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

( )h

Sep 1 : make the functions or signals in terms of the variable l

( )x

)( ()xh t d

Page 32: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

Sep 2 : make the moving function in terms of l

6t 4t

Sep 2 : add t to to form ( t )

t t

( )x t

Moving to the right

Page 33: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

( )h

For t ≤ 4 there is no overlapping between the functions

6t 4t

( )x t

( )( ) 0dx th

Page 34: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

4 6

4

0

(1)(2)

t

d

4

02

t 2(( 4) 0)t 2 8t

t0

4

Page 35: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

4

6

(1)(2)

t

t

d

4

62

t

t

2(( 4) ( 6))t t 4

4 6t

0

4

8

Page 36: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

4

6

(1)(2)t

d 4

62

t

2((4) ( 6))t 2 20t

4 6t

0

4

8 10

Page 37: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

( )h

For t ≥ 10

6t 4t

( )x t

( )( ) 0dx th

For t ≥ 10 there is no overlapping between the functions

Page 38: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

4 6t

0

4

8 10

)( ()xh t d

t

Page 39: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.
Page 40: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.
Page 41: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.
Page 42: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.
Page 43: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.
Page 44: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.
Page 45: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.
Page 46: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.
Page 47: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

Since | ( ) | | ( ) |h d d

0

|1| d

( ) ( ) not stableh t u t

Page 48: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.
Page 49: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.
Page 50: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

0 0

10

1

( ) cos sinnn

n n

x t n ta a b n t

0

0

0

1 ( )T

x t dtT

a The average of x(t)

0

00

cos2 ( ) 0n

T

a n tx t dt nT

00

0sin2 ( )n

T

b nx t dt tT

Chapter 3 The Fourier Series0jn t

n

nX e

0

00

1 ( ) jn t

T

n x t e dtT

X

Page 51: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

| |k kkC C

| |kC

10

0 1 2 3

1.52.5

2.01.52.5

2.0

123 k

10

0 1 2

3

12

3 k

30o

30o

90o

90o

k

Page 52: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

since ( ) is an odd function 0o

x t C

Page 53: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

kC

Time domain Fourier domain or Frequency domain

one to one

Page 54: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

Let ( ) = ( ) + y t Ax t B

Known

0

kyjk t

k

C e

unknown

what are the coefficients interms of the coefficientsky kxC CQuestion unknown known

Writing y(t) as

0

y

C

ky

C

0 0y xC AC B 0

ky kxC AC k

Page 55: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

Let ( ) be as shownx t

Let ( ) = ( ) + y t Ax t B

Let ( ) be as showny t

one to one

one to onewhat are and

oy kyC C

0( ) kyjk t

k

Cy t e

unknown

We wish to find the Fourier series for the sawtooth signal ( ) y t

First, note that the total amplitude variation of ( ) is while the total variation of ( ) is 4. x t X y to4Also note that we invert x(t) to get y(t), yielding =

o

AX

4 ( ) = ( ) + ( ) + 1o

y t Ax t B x tX

Page 56: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

one to one

one to onewhat are and

oy kyC C

0( ) kyjk t

k

Cy t e

unknown

4 ( ) = ( ) + ( ) + 1o

y t Ax t B x tX

Page 57: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

( ) ( ) j tx t X e d

1( ) ( )2

j tX x t e dt

Fourier Transform Pairs

Sufficient conditions for the existence of the Fourier transform are

On any finite interval, a. ( ) is bounded; b. ( ) has a finite number of maxima

f tf t

( Dirichlet conditions )

1.

and minima; and c. ( ) has a finite number of discontinuities.

f (t) is absolutely integrable; that is, ( )

Note that these are conditions and not condi

f t

f t dt

2.

sufficient necessary tions

you can have a function that is not absolutely integrable however it has Fourier Transform like cos( ) (will be shown later)tNote

Page 58: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

0)()( atuetx at

( )

0( ) ( )at j t a j tX j e u t e dt e dt

Finding the Fourier Transform

1a

( )

0

1

( )a j te

a j

1

( )a j

0)()( atuetx at 1( )

( )X j

a j

Page 59: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

0)()( atuetx at 1( )

( )X j

a j

Page 60: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

Example Find the Fourier Transform for the following function

aa( ) ( ) j tX x t e dt

1

1

j te dt

1

1

j tej

2sinc( )

j je ej

22

j je ej

2 sin( )

sin( )2

(1) ( 1)j je ej

Page 61: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

a ( ) 2sinc( )X

2

a( )X

22

Page 62: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

a ( ) 2sinc( )X

aa

( )| ( )|( ) jXX e

2

0

a| ( )|X

22

0

( )f

2 2

2

a( )X

22

Page 63: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

Example

0

b( )x t

t1 1

1

1bb( ) ( ) j tX x t e dt

0 1

1 0

(1) ( 1) j t te dt e dt

2sinc

2j

bb

( )| ( )|( ) jXX e

b2sin| |

2) c(X

Page 64: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

0

b( )x t

t1 1

1

1

2b ( ) sinc

2X f j

2

f0

( )f

2

2

2b ( ) sinc

2X j

bb

( )| ( )|( ) jXX e

oAlways 0  it add no angle (0 )

Page 65: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

( )t 1

Page 66: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

1 21 1 1 1 1 2[ ( ) ( ) ] ( ) + ( )F a x t a x t a X a X 1-Linearity

Properties of the Fourier Transform

Page 67: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

( )X 1( )X 2( )X

(1)(4)sinc(4 ) (2)(2)sinc(2 ) +

( )sinc( )A T T

4sinc(4 ) 4sinc(2 )+

Using Fourier Transform Properties

Page 68: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

Let ( ) ( )x t X Then1( ) ta

aax X

2-Time-Scaling (compressing or expanding)

Page 69: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

) 2sinc( )(aX

2(2sinc(2 ))

what is the fourier transform of

Let

11

21 2 ( ) aX X

since ( )1 2

a

tx t x

2 2 )(aX

4sinc(2 )

Page 70: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

00 Let ( ) Then ( ) ( ) ( )e tjx t x t tX X

3-Time-Shifting

Page 71: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

Example Find the Fourier Transform of the pulse function

0

( )x t

t2

1

Solution

From previous Example

a ( ) 2sin (2 )X c

Since ( ) ( )1ax t x t 1( )

2sinc(2 ) = e j

2sinc(2 ) = e j

0 ( ) ( )e a

tjX X

Page 72: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.
Page 73: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

If ( ) ( ) ( ) 2 ) (Xx t tX x then

2W

2W

2W

t

2 sinc(2 ) W Wt

Find the   of 2 sinc(2 ) W WtF.T

5-Duality ازدواجية

Page 74: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

2W

2W

2W

t

12 sinc(2 ) ( ) ( 4 )2

W Wt X t W

2

sinc2

( ) = X

2

Step 1 from Known transform from the F.T Table

Step 2

t

2

0

1

t

( ) = rectt

x t

2

2W0

1

rect4W

2W

rect4W

Even Function

( ) 2 ( )tX x

1 ( ) ( )2

2 x x

Page 75: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

2 21 1( ) ( ) ( ( ) )x t x t X X

6- The convolution Theorem

2 21 11( ) ( ) ) ( )

2( Xx t x t X

The multiplication Theorem

Page 76: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

rect rectt t

Find the Fourier Transform of following

Solution

Since rect

t

t

2

2 0

rect

t

t

2

2 0

trit

t 0

convolution

Time

sinc( )f sinc( )f 2 2sinc ( )f Frequencymultiplication

Page 77: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

System Analysis with Fourier Transform

= ( ) ( ) x h t d

( )x t

( )h ty(t) = ( ( ) )x t h t

( )X ( )H ( )Y ( ) ( )X H

( ) ) ) ( (Y X H y(t) = ( ( ) )x t h t

convolution in time

multiplication in Frequency

impulse response

convolution in timemultiplication in Frequency

Page 78: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

7-Differentiation

Let ( ) ( ) ( ) ( )( ) d

dtx t x t j XX

1( ) ( ) (0) ( )t

x d X Xj

7- Integration

Page 79: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

? 0

Page 80: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

( ) ( ) j tF f t e dt

0

( )k

Page 81: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.
Page 82: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

Find the Transfer Function for the following RC circuit

C

R

( )x t

( )y t

( ) ( ) ( ) dy tRC y t x t t

dt

C

R

( )t

( )h t

( ) ( ) ( )dh tRC h t t

dt

1( ) ( )t

R Ch t e u tR C

we can find h(t) by solving differential equation as follows

Method 1

Page 83: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

C

R

( )x t

( )y t

( ) ( ) ( )dy tRC y t x t

dt

( )FT ( ) FT ( ) dy tRC y t x t

dt

( ) ( ) ( ) ( ) RC j Y Y X

( ) 1 ( ) ( ) j RC Y X

( )( )

( ) Y

HX

1( ) 1j RC

We will find h(t) using Fourier Transform Method rather than solving differential equation as follows

Method 2

Page 84: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

C

R

( )x t

( )y t

( ) ( ) ( )dy tRC y t x t

dt

( )( )

( ) Y

HX

1( ) 1j RC

(1/ )( ) (1/ )

RCj RC

1( ) ( ) > 0 tx t e u tj

1( ) ( )t

R Ch t e u tR C

From Table 4-2

Page 85: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

C

R

( )x t

( )y t

Method 3

R

( )X

( )Y

1j C

Fourier Transform

1

( ) ( )1

j CY f X

Rj C

1( )

1X

j RC

( ) 1( )

( ) 1

YH

X j RC

1( ) ( )t

R Ch t e u tR C

Page 86: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

C

R

( )x t

( )y t

R

( )X

( )Y

1j C

Fourier Transform

( ) 1( )

( ) 1

YH

X j RC

2

1| ( ) |

1 ( )H

RC

( )H | ( ) |H

( )H 1tan ( )RC

Page 87: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

2

1| ( ) |

1 ( )H

RC

( )H 1tan ( )RC

1( )

1H

j RC

Page 88: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

C

R

( )x t

( )y t

Find y(t) if the input x(t) is

( ) ( )tx t A e u t

Method 1 ( convolution method)

Using the time domain ( convolution method , Chapter 3)

y( ) = ( ) ) (t x t h t

1( ) ( )t

R Ch t e u tR C

Example

Page 89: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.

C

R

( )x t

( )y t

( ) ( )tx t A e u t

/ ( )(1/ )

A RCj RC j

1 1( ) 1/1AY jRC jRC

Using partial fraction expansion (will be shown later)

From Table 5-2 /( ) ( )1

t RC tAy t e e u tRC

( ) AXj

1( ) ( )t

R Ch t e u tR C

(1/ )( )

(1/ ) ( )RCH

RC j

( ) ) ( ( )Y X H

Method 2 Fourier Transform

Sine Y(w) is not on the Fourier Transform Table 5-2

Page 90: Input Function x(t) Output Function y(t) T[ ]. Consider The following Input/Output relations.