Top Banner
Spectroscopy Infrared Spectra By- Saurav K. Rawat (Rawat DA Greatt)
52

Infrared spectoscopy

Nov 22, 2014

Download

Education

Rawat DA Greatt

infrared spectroscopy
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Infrared spectoscopy

Spectroscopy

Infrared Spectra

By- Saurav K. Rawat

(Rawat DA Greatt)

Page 2: Infrared spectoscopy

Infrared spectra in this presentation are taken by permission from the SDBS web site:

SDBSWeb: http://www.aist.go.jp/RIODB/SDBS/

Page 3: Infrared spectoscopy

?????????????????

Page 4: Infrared spectoscopy

Spectroscopy“seeing the unseeable”

Using electromagnetic radiation as a probe to obtain information about atoms and molecules that are too small to see.

Electromagnetic radiation is propagated at the speed of light through a vacuum as an oscillating wave.

 

Page 5: Infrared spectoscopy

electromagnetic relationships:

  λυ = c λ 1/υ

 E = hυ E υ

  E = hc/λ E 1/λ

λ = wave length

υ = frequency

c = speed of light

E = kinetic energy

h = Planck’s constant

λ

c

Page 6: Infrared spectoscopy

 

Two oscillators will strongly interact when their energies are equal.

 

E1 = E2

λ1 = λ2

υ1 = υ2

 

If the energies are different, they will not strongly interact!

We can use electromagnetic radiation to probe atoms and molecules to find what energies they contain.

Page 7: Infrared spectoscopy

some electromagnetic radiation ranges

Approx. freq. range Approx. wavelengths

Hz (cycle/sec) meters

Radio waves 104 - 1012 3x104 - 3x10-4

Infrared (heat) 1011 - 3.8x1014 3x10-3 - 8x10-7

Visible light 3.8x1014 - 7.5x1014 8x10-7 - 4x10-7

Ultraviolet 7.5x1014 - 3x1017 4x10-7 - 10-9

X rays 3x1017 - 3x1019 10-9 - 10-11

Gamma rays > 3x1019 < 10-11

 

Page 8: Infrared spectoscopy

Infrared radiation

λ = 2.5 to 17 μm

υ = 4000 to 600 cm-1

 These frequencies match the frequencies of covalent bond stretching and bending vibrations. Infrared spectroscopy can be used to find out about covalent bonds in molecules.

IR is used to tell:

1. what type of bonds are present

2. some structural information

Page 9: Infrared spectoscopy

 IR source sample prism detector

 

graph of % transmission vs. frequency

=> IR spectrum

 

4000 3000 2000 1500 1000 500

v (cm-1)

100

%T

0

Page 10: Infrared spectoscopy

toluene

Page 11: Infrared spectoscopy

Some characteristic infrared absorption frequencies BOND COMPOUND TYPE FREQUENCY RANGE, cm-1

 C-H alkanes 2850-2960 and 1350-1470 

alkenes 3020-3080 (m) and 

RCH=CH2 910-920 and 990-1000 

R2C=CH2 880-900 

cis-RCH=CHR 675-730 (v) 

trans-RCH=CHR 965-975 

aromatic rings 3000-3100 (m) and 

monosubst. 690-710 and 730-770 

ortho-disubst. 735-770 

meta-disubst. 690-710 and 750-810 (m) 

para-disubst. 810-840 (m) 

alkynes 3300  O-H alcohols or phenols 3200-3640 (b)  C=C alkenes 1640-1680 (v) 

aromatic rings 1500 and 1600 (v)  C≡C alkynes 2100-2260 (v)  C-O primary alcohols 1050 (b) 

secondary alcohols 1100 (b) 

tertiary alcohols 1150 (b) 

phenols 1230 (b) 

alkyl ethers 1060-1150 

aryl ethers 1200-1275(b) and 1020-1075 (m)  all abs. strong unless marked: m, moderate; v, variable; b, broad

Page 12: Infrared spectoscopy

IR spectra of ALKANES

C—H bond “saturated”

(sp3) 2850-2960 cm-1

+ 1350-1470 cm-1

-CH2- + 1430-1470

-CH3 + “ and 1375

-CH(CH3)2 + “ and 1370, 1385

-C(CH3)3 + “ and 1370(s), 1395 (m)

Page 13: Infrared spectoscopy

n-pentane

CH3CH2CH2CH2CH3

3000 cm-1

1470 &1375 cm-1

2850-2960 cm-1

sat’d C-H

Page 14: Infrared spectoscopy

CH3CH2CH2CH2CH2CH3

n-hexane

Page 15: Infrared spectoscopy

2-methylbutane (isopentane)

Page 16: Infrared spectoscopy

2,3-dimethylbutane

Page 17: Infrared spectoscopy

cyclohexane

no 1375 cm-1

no –CH3

Page 18: Infrared spectoscopy

IR of ALKENES

=C—H bond, “unsaturated” vinyl

(sp2) 3020-3080 cm-1

+ 675-1000

RCH=CH2 + 910-920 & 990-1000

R2C=CH2 + 880-900

cis-RCH=CHR + 675-730 (v)

trans-RCH=CHR + 965-975

C=C bond 1640-1680 cm-1 (v)

Page 19: Infrared spectoscopy

1-decene

910-920 & 990-1000 RCH=CH2

C=C 1640-1680

unsat’dC-H

3020-3080 cm-1

Page 20: Infrared spectoscopy

4-methyl-1-pentene

910-920 & 990-1000 RCH=CH2

Page 21: Infrared spectoscopy

2-methyl-1-butene

880-900R2C=CH2

Page 22: Infrared spectoscopy

2,3-dimethyl-1-butene

880-900R2C=CH2

Page 23: Infrared spectoscopy

IR spectra BENZENEs

=C—H bond, “unsaturated” “aryl”

(sp2) 3000-3100 cm-1

+ 690-840

mono-substituted + 690-710, 730-770

ortho-disubstituted + 735-770

meta-disubstituted + 690-710, 750-810(m)

para-disubstituted + 810-840(m)

C=C bond 1500, 1600 cm-1

Page 24: Infrared spectoscopy

ethylbenzene

690-710, 730-770 mono-

1500 & 1600

Benzene ring

3000-3100 cm-1

Unsat’d C-H

Page 25: Infrared spectoscopy

o-xylene

735-770ortho

Page 26: Infrared spectoscopy

p-xylene

810-840(m)para

Page 27: Infrared spectoscopy

m-xylene

meta

690-710, 750-810(m)

Page 28: Infrared spectoscopy

styrene

no sat’d C-H

910-920 & 990-1000

RCH=CH2mono

1640C=C

Page 29: Infrared spectoscopy

2-phenylpropene

mono880-900R2C=CH2

Sat’d C-H

Page 30: Infrared spectoscopy

p-methylstyrene

para

Page 31: Infrared spectoscopy

IR spectra ALCOHOLS & ETHERS

C—O bond 1050-1275 (b) cm-1

1o ROH 1050

2o ROH 1100

3o ROH 1150

ethers 1060-1150

O—H bond 3200-3640 (b)

Page 32: Infrared spectoscopy

1-butanol

CH3CH2CH2CH2-OH

C-O 1o

3200-3640 (b) O-H

Page 33: Infrared spectoscopy

2-butanol

C-O 2o

O-H

Page 34: Infrared spectoscopy

tert-butyl alcohol

C-O 3oO-H

Page 35: Infrared spectoscopy

methyl n-propyl ether

no O--H

C-O ether

Page 36: Infrared spectoscopy

2-butanone

C=O

~1700 (s)

Page 37: Infrared spectoscopy

C9H12

C-H unsat’d & sat’d

1500 & 1600benzene

monoC9H12 – C6H5 = -C3H7

isopropylbenzene

n-propylbenzene?

Page 38: Infrared spectoscopy

n-propylbenzene

Page 39: Infrared spectoscopy

isopropyl split 1370 + 1385

isopropylbenzene

Page 40: Infrared spectoscopy

C8H6

C-H unsat’d

1500, 1600benzene

monoC8H6 – C6H5 = C2H

phenylacetylene

3300

C-H

Page 41: Infrared spectoscopy

C4H8

1640-1680

C=C

880-900R2C=CH2

isobutylene CH3

CH3C=CH2

Unst’d

Page 42: Infrared spectoscopy

Which compound is this?a) 2-pentanoneb) 1-pentanolc) 1-bromopentaned) 2-methylpentane

1-pentanol

Page 43: Infrared spectoscopy

What is the compound?a) 1-bromopentaneb) 1-pentanolc) 2-pentanoned) 2-methylpentane

2-pentanone

Page 44: Infrared spectoscopy
Page 45: Infrared spectoscopy

H2C CHCH2

CH3CH3

CH3CH2CH2CH2CH3

H2CH2C

CH2CH2CH2CH3

biphenyl allylbenzene 1,2-diphenylethane

o-xylene n-pentane n-butylbenzene

A

B

C

D

E

F

In a “matching” problem, do not try to fully analyze each spectrum. Look for differences in the possible compounds that will show up in an infrared spectrum.

Page 46: Infrared spectoscopy

1

Page 47: Infrared spectoscopy

2

Page 48: Infrared spectoscopy

3

Page 49: Infrared spectoscopy

4

Page 50: Infrared spectoscopy

5

Page 51: Infrared spectoscopy

6

Page 52: Infrared spectoscopy

Rawat’s [email protected]@yahoo.co.uk

RawatDAgreatt/LinkedInwww.slideshare.net/RawatDAgreatt

Google+/blogger/Facebook/Twitter-@RawatDAgreatt

+919808050301+919958249693