Top Banner
Página 1 4.4 Informe de Investigación Innovaciones para la seguridad Niño restricciones de Australia 2004 07 2004 Página 2 REPRODUCCIÓN DE ESTA PAGINA ESTA AUTORIZADO Real Automóvil Club de Victoria (RACV) Ltd RECUPERACIÓN DE LA INFORMACIÓN Informe N º Fecha ISBN Páginas PP 4.4 2004 06 2004 1 875963 41 3 42 Título Innovación de seguridad para sistemas de retención infantil en Australia Autores Michael Griffiths - Soluciones de seguridad vial Julie Brown - Soluciones para la Seguridad Vial Michael Paine - Diseño de Vehículos y de Investigación Realización de la Organización Departamento de Política Pública Real Automóvil Club de Victoria (RACV) Ltd 550 Princes Highway NobFle Parque Norte 3174 Resumen Australia ha estado a la vanguardia de la restricción de seguridad para niños, debido al desarrollo de un sistema obligatorio Norma Australiana para los sistemas de retención infantil que es considerado un líder mundial en cuanto al nivel de la protección que proporcionan. Mientras que el estándar australiano de sistemas de retención infantil es muy estrictos sigue habiendo margen para la
79

Informe de Investigación SRI en Australia

Sep 11, 2014

Download

Travel

 
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Informe de Investigación SRI en Australia

Página 1 4.4 Informe de Investigación Innovaciones para la seguridad Niño restricciones de Australia               2004 07 2004      

Página 2 REPRODUCCIÓN DE ESTA PAGINA ESTA AUTORIZADO Real Automóvil Club de Victoria (RACV) Ltd RECUPERACIÓN DE LA INFORMACIÓN Informe N º Fecha ISBN Páginas PP 4.4               2004 06 2004       1 875963 41 3 42 Título Innovación de seguridad para sistemas de retención infantil en Australia Autores Michael Griffiths - Soluciones de seguridad vial Julie Brown - Soluciones para la Seguridad Vial Michael Paine - Diseño de Vehículos y de Investigación Realización de la Organización Departamento de Política Pública Real Automóvil Club de Victoria (RACV) Ltd 550 Princes Highway NobFle Parque Norte 3174 Resumen Australia ha estado a la vanguardia de la restricción de seguridad para niños, debido al desarrollo de un sistema obligatorio Norma Australiana para los sistemas de retención infantil que es considerado un líder mundial en cuanto al nivel de la protección que proporcionan. Mientras que el estándar australiano de sistemas de retención infantil es muy estrictos sigue habiendo margen para la mejora que incluye: inadecuada e incorrecta utilización de direccionamiento de sistemas de retención infantil Mejorar la protección contra impactos laterales La introducción de sistemas innovadores que ofrecen un mayor nivel de protección para los niños mayores. Áreas de mejora potencial de retención de niños australianos se exponen y discuten en el informe, en particular en relación con el riesgo de una incorrecta instalación. Palabras clave

Page 2: Informe de Investigación SRI en Australia

retención de niños, cinturón de seguridad, niño, bebé, edad, uso de sistema de seguridad, instalación, diseño, lesiones, lesiones la prevención, la cabeza, el cuello, el movimiento, la norma australiana, el diseño de normas de Australia, prueba de laboratorio, la cabeza en la colisión, colisión lateral, bolsa de aire, de anclaje, la innovación, la educación, internacional comparación Descargo de responsabilidad La investigación presentada en este informe ha sido financiado por la RACV y se libera en el interés público. Las opiniones expresadas y las recomendaciones son las de los autores y no reflejan necesariamente política RACV. Aunque el informe se cree que es correcta en el momento de la publicación, RACV, en la medida legal, excluye cualquier responsabilidad por pérdida (tanto si se producen bajo contrato, agravio, estatuto o de otra manera) que surjan de el contenido del informe o de su uso. Cuando esa responsabilidad no puede excluirse, se reduce a el alcance legal. La discreción y el juicio se debe aplicar cuando el uso o aplicación de cualquiera de la información contenida en el Informe. i RACV INFORME DE INVESTIGACIÓN NO 4.4

Página 3 INNOVACIONES DE SEGURIDAD PARA SISTEMAS DE RETENCIÓN INFANTIL DE AUSTRALIA ii Tabla de contenidos Resumen Ejecutivo iv 1. Introducción 1 2. Antecedentes 2 2.1 El Estándar Australiano de retención para niños 2 2.2 Australia Sistema de anclaje actual 3 3. Ámbito de aplicación para la mejora 4 3.1 y Uso incorrecto inapropiado 4 3.2 Protección de impacto lateral 6 3.3 Los sistemas que ofrecen mayores niveles de protección para niños mayores 7 4. En el plano internacional 9

Page 3: Informe de Investigación SRI en Australia

4.1 Sistemas de Anclaje Alternativa 9 4.1.1 Antecedentes 9 4.1.2 Normas y Reglamentos 10 4.1.3 Las pruebas de mejorar la protección 11 4.1.4 Facilidad de uso y mal uso de sistemas de retención infantil 12 4.1.5 Posibles ámbitos de preocupación con ISOFIX 13 4.2 Búsquedas de Patentes 14 4.3 Desarrollos Comerciales 14 4.3.1 EE.UU. Modelos de sistemas de retención infantil 14 4.3.2 Modelos europeos de sistemas de retención infantil 16 4.3.3 Los modelos japoneses de sistemas de retención infantil 16 4.3.4 CRS Interacción con bolsas de aire 16 4.3.5 Las contramedidas de uso indebido 17 4.4 Diseño de Vehículos de asiento 17 4.5 Mejora de la protección de impacto lateral 18 4.6 Mejora de la Protección de Niños Mayores 19 5. Evolución de las normas de Australia 21 5.1 Armonización de Normas Internacionales de retención infantil 21 5.2 Ubicación de los anclajes Top Tether 21 5.3 Retención Infantil de Australia Evaluación de Programas (CREP) 22 6. Las innovaciones de seguridad potenciales para las restricciones de Australia 24 6.1 Sistemas Indicador Visual 24 6.2 Manual del usuario permanentemente conectado a CRS 24 6.3 tensada, flexible sistema LATCH estilo Baja adjuntos 24 Baja estilo rígido ISOFIX adjuntos 6.4 24

Page 4: Informe de Investigación SRI en Australia

6.5 Efectos secundarios de Protección de Metodología 24 6.6 Tensado del cinturón de seguridad para adultos 26

Página 4 iii RACV INFORME DE INVESTIGACIÓN NO 4.4 6.7 Ajuste fácil de la altura del hombro del arnés 26 6.8 antideslizamiento y asiento de diseño 26 6.9 clips en el pecho 26 6.10Top Guías de anclaje 26 7. Innovación de seguridad con mayor potencial para Australia 28 8. Requisitos de Investigación 29 CRS 8.1 Diseño y problemas de uso 29 8.2 Diseño Temas de vehículos 29 8.3 Programas del Consumidor 30 8.4 Normas y Reglamentos 30 8.5 Cuestiones Internacionales 30 8.6 Supervisión continua 30 9. Estrategias de implementación 31 10. Observaciones finales 32 11. Referencias 33 Apéndice A: resultados de la búsqueda de patentes 35

Página 5 RESUMEN EJECUTIVO niño restricciones de Australia son considerados como un líder mundial en términos del nivel de protección que proporcionar. El objetivo de esta investigación fue investigar las oportunidades de nuevas mejoras en la nivel de protección, tanto a través de desarrollos innovadores en el diseño de sistemas de retención infantil y las deficiencias en el actual estándar de Australia.

Page 5: Informe de Investigación SRI en Australia

Niño restricciones de Australia Australia ha estado a la vanguardia de la restricción de seguridad para niños, debido al desarrollo de un sistema obligatorio Norma Australiana para los sistemas de retención infantil. Esta norma ha sido eficaz, ya que ha requerido un seguridad del sistema, incluyendo las correas de sujeción superior, un ajuste de un solo punto de los arneses, la entrepierna doble correas de retención para niños orientados hacia adelante y extensa las pruebas de choque de laboratorio de impacto frontal, lateral, invertida simula el impacto y la parte trasera. Mientras que el estándar australiano de sistemas de retención infantil es muy estrictos sigue habiendo margen para la mejora que incluye: inadecuada e incorrecta utilización de direccionamiento de sistemas de retención infantil Mejorar la protección contra impactos laterales La introducción de sistemas innovadores que ofrecen un mayor nivel de protección para los niños mayores. Abordar e incorrecta uso inadecuado Mientras el niño restricciones australianas han altas tasas de uso, uso incorrecto reduce la eficacia de la sistema de retención. Los estudios han encontrado que alguna forma de abuso es común que tienen lugar cuando los niños son heridos restringida. Las evaluaciones muestran que hasta el 70% de las restricciones se utiliza en Australia puede ser instalado de forma incorrecta. Para tratar de superar algunos de los problemas de instalación, la comunidad internacional de seguridad para niños unido sus fuerzas para desarrollar un nuevo sistema de anclaje de sistemas de retención infantil en vehículos. Este concepto, originalmente conocido como ISOFIX, fue propuesto por primera vez en 1991. Los objetivos principales de esta sistema se para reducir la incidencia del mal uso, y mejorar el nivel general de protección proporcionada por los sistemas de retención infantil en los accidentes. Después de una considerable investigación y el desarrollo de un sistema de fijación rígida se propuso que hizo uso de dos bajos accesorios rígidos. Si bien esto es aceptable para algunos, muchos expertos, sugirió que una sujeción superior se requiere. Los EE.UU. y Canadá han establecido un nuevo estándar la incorporación de este sistema rígido, conocido como el sistema LATCH, con la exigencia de un anclaje superior. Una cantidad limitada de pruebas de laboratorio de prototipos rígido semi-rígidos) y los sistemas de anclaje (ha llevado a cabo. En el impacto frontal accidentes tales sistemas no parecen ofrecer importantes protección adicional a la ya aportada por el niño mejor y las restricciones de Australia anclaje de los sistemas actuales. Sin embargo, el principal beneficio de rígidos anclajes inferiores en los actuales

Page 6: Informe de Investigación SRI en Australia

método australiano de anclaje, en términos de protección contra choques, es su capacidad para reducir los lados desplazamiento lateral y rotación de retención de niños en accidentes de impacto lateral. Además, en el sistema de retención infantil sistemas en los que hay un difícil encaje con el asiento del vehículo (a menudo debido a los contornos del asiento para adaptarse a dos adultos ocupantes traseros), el rígido sistema tiene el potencial para mejorar el rendimiento al proporcionar una más rígido en forma. Mientras que los anclajes inferiores ISOFIX debería ayudar a eliminar algunas formas de abuso en Australia, no la posibilidad de nuevas formas de mal uso, incluyendo: INNOVACIONES DE SEGURIDAD PARA SISTEMAS DE RETENCIÓN INFANTIL DE AUSTRALIA iv

Página 6 Sueltas inferiores adjuntos (si los archivos adjuntos de tensión no se incluyen) Dificultad para contratar y desunir los accesorios más bajo podría reducir su consumo Un requisito para la educación de la comunidad en el uso del nuevo sistema. En la actualidad hay un pequeño número de vehículos importados en el mercado australiano que han de vehículos adjuntos en que cumplan los requisitos de la Norma Internacional ISOFIX. Sin embargo, no hay sistemas de retención infantil disponibles en Australia para su uso con estos sistemas. Además, la falta de un australiano Regla de diseño para sistemas de anclaje rígida significa que no están regulados por la fuerza o de posición. Los primeros indicadores de campo sugieren que los anclajes ISOFIX no puede ser fuerte suficiente, lo que sugiere que es prudente esperar para Australia y fomentar la investigación y desarrollo en vez de poner en práctica este sistema inmediatamente. Mejorar la protección contra impactos laterales en las restricciones protección contra impactos laterales es un área donde la mejora se podría hacer. La protección de una restringida de la cabeza del niño se ha mostrado como mínimo en los resultados de ambos mundo real y estudios de laboratorio. Los estudios de los accidentes de impacto lateral muestra la cabeza del niño como la más frecuente y grave zona lesionada del cuerpo independientemente del tipo de impacto. protección contra impactos laterales se puede mejorar si: el sistema de retención infantil ha 'alas laterales "que mantienen la cabeza una vez que la cabeza se mantiene, proporcionar algún tipo de absorción de energía en "el lado de las alas rotación del sistema de retención infantil a su vez el objeto y la cara de entrada es prevenir. El alto nivel de protección delantera dispuesto por la norma australiana se ha traducido en

Page 7: Informe de Investigación SRI en Australia

reconocimiento internacional como posiblemente más duro del mundo de la Norma. También fue la primera norma de incluir una prueba de impacto lateral. Sin embargo, se trataba de una prueba sencilla, y de protección delantera es tan eficaz que la protección de impacto lateral mejor se ha convertido en el próximo "frontera" para conquistar. Una nueva prueba de impacto lateral adicional se ha especificado en la actual revisión de la australiana Norma. La nueva prueba evalúa las posibles lesiones de cabeza en impactos laterales. campo Muchos estudios han señalado que, si bien cinturones de seguridad para adultos proporcionar una protección adecuada para los niños de 4 - 10 años, el nivel de protección que ofrecen a estos niños no es tan alta que la prevista dedicado por sistemas de retención infantil para los más pequeños. Los asientos elevados son teóricamente "niño dedicado sistemas de retención "para los niños en este rango de edad. Sin embargo, los estudios sugieren que: - las tasas de uso de asientos elevados por los niños en este rango de edad es muy baja La mayoría de los niños involucrados en accidentes con víctimas fueron adultos sistemas de cinturón de seguridad El nivel de protección previsto por las actuales plazas de refuerzo de Australia es menor que el previsto por dedicada sistemas de retención infantil para los más pequeños asiento de diseño de refuerzo en Australia es una zona de notable en el que aparece a la zaga de la práctica EE.UU.. Las innovaciones de seguridad potencial de retención de niños de Australia En cuanto a los niveles relativos de la protección ofrecida a los ocupantes del vehículo, los niños están bien atendidos en el Australia. Sin embargo, hay margen para el desarrollo de los sistemas de retención infantil que ofrecen incluso mayores niveles de protección de los ocupantes y, sobre todo en el corto plazo, el ámbito para desarrollar innovación en los sistemas de retención infantil que reduce en gran medida la probabilidad de que una instalación incorrecta. Áreas de innovación y mejora de los sistemas de retención de niños identificados incluyen: La introducción de sistemas de indicadores visuales para reducir el mal uso. Un sistema de indicadores visuales pueden se integrará en el sistema de retención infantil que se indica al consumidor si el niño v RACV INFORME DE INVESTIGACIÓN NO 4.4

Página 7 sistema de seguridad se ha instalado correctamente en el vehículo, y si el niño era aprovechado correctamente en el sistema de retención infantil. Mejor diseño de refuerzo de seguridad para un rango de edad de los niños, la incorporación de impacto lateral protección y antideslizamiento características.

Page 8: Informe de Investigación SRI en Australia

Mejor baja la fijación del sistema de retención infantil a través de la adopción de una variante de la ISOFIX / sistema LATCH. Este sería usar dos correas de anclaje inferiores flexibles, uno para cada parte inferior trasera esquina de la retención de niños, que se tensan después de la instalación a fin de proporcionar un casi rígida la instalación. Introducción de una exigente prueba de impacto lateral más para sistemas de retención infantil. Para pasar esta prueba, es prevé que un sistema de retención infantil que requieren energía acolchada que absorbe alas laterales, y el la cabeza del niño sea contenida por la disposición del arnés dentro de estas alas. la altura del hombro variable de ajuste del arnés que se logra a través de una variable continua sistema en lugar de la necesidad de rethreading las correas del arnés por las ranuras a diferentes alturas. Permanente adjunto de manuales de usuario para el sistema de retención infantil. INNOVACIONES DE SEGURIDAD PARA SISTEMAS DE RETENCIÓN INFANTIL DE AUSTRALIA vi

Página 8 1 RACV INFORME DE INVESTIGACIÓN NO 4.4 Australia tiene 30 años de experiencia en el desarrollo de los sistemas de retención infantil (SRI). Durante esta vez los requisitos para sistemas de retención infantil, según lo establecido en la norma australiana 1754, han evolucionado de manera significativa. Esta experiencia ha permitido a Australia para incorporar las mejores características identificadas por investigación de seguridad vial y eliminar las características indeseables, tales como excursiones cabeza excesiva, resbale, dificultades en el uso correcto de los sistemas de retención, etc Sin embargo, a pesar de la excelente el rendimiento de sistemas de retención infantil australiana, sobre todo en comparación con otros países, sigue habiendo margen de mejora. El propósito de este informe es examinar las oportunidades de mejora en el nivel de protección brindada a los niños que viajan en vehículos, en primer lugar a través de innovaciones en los niños diseño de sistemas de retención y en segundo lugar para hacer frente a las deficiencias en las normas vigentes o en proyecto. El estándar australiano ha evolucionado tanto como resultado de la identificación de características indeseables en tiempo real accidentes y de las basadas en la investigación de laboratorio que se encuentran margen para seguir mejorando en el niño sistemas de protección de los ocupantes. El resultado de esta revisión ha sido la identificación de un número de diseño de sistemas de retención infantil características que son susceptibles de soluciones innovadoras.

Page 9: Informe de Investigación SRI en Australia

Posibles soluciones innovadoras se incluye el desarrollo de las recientes normas internacionales en modalidades de colocación de CRS a los vehículos y otras ideas no se abordan actualmente que garantiza una mayor investigación. Los posibles soluciones con la mayor probabilidad de éxito, así como estrategias para su aplicación, se presentan en este informe. 1. Introducción

Página 9 INNOVACIONES DE SEGURIDAD PARA SISTEMAS DE RETENCIÓN INFANTIL DE AUSTRALIA 2 2.1 El Estándar Australiano de retención para niños El primer australiano de sujeción para niños estándar se publicó en 1970, como E-46. Esto fue que posteriormente fue sustituido en 1975 por AS 1754. Los cambios en AS 1754 y sus ediciones posteriores han sido el resultado de una larga historia de investigación de seguridad vial (incluyendo la profundidad en los estudios de accidentes, de laboratorio pruebas de trineo y las pruebas de colisión de vehículos) y una relación de trabajo única entre los investigadores y el SRC fabricantes. El resultado es una norma, considerada por muchos como el mejor del mundo que contiene una serie de requisitos de diseño único en comparación con las normas internacionales. Posiblemente el más importante de estas características ha sido la única de larga data obligatoria requisito para las correas de sujeción superior como parte del vehículo / interfaz de sistema de retención infantil. La imperiosa beneficio de una sujeción superior es su influencia en la reducción de los ocupantes del niño excursión cabeza. mundo de los estudios Real han demostrado consistentemente y de manera concluyente que la cabeza es la región más vulnerable del cuerpo de un hijo de los ocupantes. La protección de la cabeza del contacto con el interior del vehículo es la más alta prioridad de cualquier ocupante del sistema de protección de menores. Sin embargo, un beneficio secundario de los requisitos obligatorios ha sido la necesidad de utilizar un anclaje superior que ha mantenido con eficacia sistemas de retención infantil en el asiento trasero. Otros requisitos importantes que históricamente han establecido niño protección de los ocupantes de Australia además de la experiencia de otros países (como los de América del Norte y Europa), incluyen: especificación cuidadosa de la longitud de la correa superior cuando se ajusta a su longitud más corta; especificación cuidadosa de la ubicación de los puntos de montaje de correas de sujeción superior en los coches (para ayudar a

Page 10: Informe de Investigación SRI en Australia

mayor accesibilidad). Las dificultades con la accesibilidad y el mantenimiento correcto tensado adjunto han dado lugar a la norma de diseño de Australia permitiendo sólo un área limitada para la tapa anclajes de sujeción que es considerablemente más restrictiva que la permitida en el sistema LATCH EE.UU. FMVSS 225 regulación; Ajuste de punto único para el arnés; correas de entrepierna doble hacia adelante frente a las restricciones (es decir, un arnés de seis puntos obligatorios); Un bebé desarrollado especialmente ficticio, mucho más flexible que maniquíes infantiles en el extranjero (de ahí más propensos a la expulsión) para pruebas de choque del trineo; Una prueba para la facilidad de ajuste del arnés; El requisito de que cualquier tapa de un asiento de seguridad debe ser extraíble o sin tener que quitar el arnés o por tener un acuerdo que permite aprovechar la correa de hombro para retirarse de hardware ubicado en una de dos posiciones en la parte trasera del ocupante, y Un método de prueba dinámica integral que incluye frontales, laterales, traseras, y de arriba abajo simulada impactos. El niño australiano de retención estándar ha sido recientemente objeto de examen y una nueva versión modificada de la Norma está destinado a la liberación algún momento de 2004. Las cuestiones relacionadas con la nueva modificar la norma australiana se discuten en la Sección 5. 2. Antecedentes

Página 10 2.2 Australia Sistema de anclaje actual El método actual de fijación de CRS en Australia implica el uso de un cinturón de seguridad para adultos y una tapa correa de sujeción. El cinturón de adulto se utiliza como medio de asegurar la parte inferior de la CRS a la vehículo. En la década de 1970, antes de que el uso del sistema de cinturón de adulto se convirtió en obligatoria, el australiano Estándar permitida la parte inferior de un asiento de seguridad que se ancla al vehículo por un asiento cinturón o tirantes dedicado. El uso de correas dedicada resultaron ser un problema de retención de niños encuestas montaje llevado a cabo en el centro de los aparcamientos de compras por el ex NSW de Investigación de Accidentes de Tránsito Unidad (TARU), aproximadamente entre 1980 y 1985, donde se reveló que suficiente se estaba prestando atención a garantizar que estas bandas dedicadas se ajustaron bien. Este observación dio lugar a la norma se modifique el mandato de la utilización de un cinturón de seguridad para adultos como la anclaje inferior de fijación. La experiencia de Australia, por lo tanto, con la parte inferior trasera independiente

Page 11: Informe de Investigación SRI en Australia

correas de anclaje para sistemas de retención infantil, en la década de 1970, identificó el problema que tiene que haber una método fácil de usar y fiable para garantizar que no hay holgura en estos inferior trasera flexible correas. Alta retención del sistema de retención infantil se logra mediante el uso de la correa de sujeción superior. Comienzo de la página correas proporcionan un mayor apego seguro la mayor parte de sistemas de retención infantil en comparación con los que se concede el cinturón de seguridad solamente. En particular, proporcionan más fijación rígida en la parte superior del niño sistema de seguridad, para que pueda "rebote" del accidente, mientras que el vehículo es la trituración, que reduce considerablemente la excursión de la cabeza del niño en relación con el interior del vehículo, tanto en impactos frontales y laterales. Este significa que la cabeza es mucho menos susceptible de chocar con otras partes del interior del vehículo que es el más probable causa de lesiones graves a un niño restringido adecuadamente. Otra ventaja de los amarres principales es que proporcionar apego seguro más de un SIR disponibles cuando el cinturón de adulto sólo es de sólo un cinturón de regazo. Por lo tanto la posición del asiento trasero central, que hasta hace poco tenían a menudo un cinturón de regazo solamente, puede ofrecer un mayor nivel de protección de tomar ventaja de la distancia de la puerta. Aunque hay especulaciones y desinformación en curso en Europa con respecto a la posibilidad de que el uso de ataduras superior puede contribuir a la lesión grave del cuello en los niños pequeños contenida en adelante las restricciones que enfrentan, sus preocupaciones parecen ser infundados. Esta cuestión fue tratada en un número de informes con un informe de la Asociación Australiana de Automóviles (Brown, Griffiths y Paine, 2002). Al igual que otras características del diseño, parece que hay alguna diferencia en lo bien que los límites de sujeción superior Excursión de la cabeza en función de las características del diseño del sistema de retención infantil en sí. La ubicación de la punto de anclaje en el vehículo también puede influir en el rendimiento. En, los problemas particulares con la punto de anclaje que se encuentra demasiado cerca del asiento de atrás se han observado en Australia en el pasado. De campo y estudios de laboratorio han demostrado que la forma actual de fijación empleado en Australia es extremadamente eficaz en impactos frontales. Sin embargo, existe margen para mejorar el control de desplazamiento lateral en impactos laterales. Un nuevo concepto de anclaje se ha desarrollado y está empezando a introducirse en otros los países. Este sistema hace uso de rígido o semi rígido anclajes inferiores como un medio para limitar el avance

Page 12: Informe de Investigación SRI en Australia

rotación del sistema de retención infantil. En América del Norte y las autoridades de Canadá han adoptado una flexible o rígido anclaje inferior concepto en relación con una sujeción superior. Este concepto tiene la potencial de reducir significativamente el uso indebido y retención / problemas de incompatibilidad vehículo. La mayoría de importante es que también tiene el potencial de mejorar significativamente el rendimiento de los sistemas de retención infantil en impactos laterales. Cuestiones actuales sobre la adopción de un sistema de anclaje inferior nuevo en Australia se discuten en la Sección 4.1. 3 RACV INFORME DE INVESTIGACIÓN NO 4.4

Página 11 INNOVACIONES DE SEGURIDAD PARA SISTEMAS DE RETENCIÓN INFANTIL DE AUSTRALIA 4 Australia sistemas de retención infantil proporcionan muy buena protección para los ocupantes del niño, en particular en el impacto frontal. Las investigaciones de la eficacia del mundo real han demostrado que los niños sistemas de retención para proporcionar una mejor protección para los niños que los cinturones de adultos ofrecen a los adultos. Sin embargo, y en el mundo real de los estudios de laboratorio han demostrado también que hay margen para mejorar el nivel de protección. El mayor margen para lograr mejoras en: Reducir el uso indebido y / o uso inadecuado de los sistemas de retención, Mejorar la protección contra impactos laterales, y El suministro de sistemas que ofrecen un mayor nivel de protección de los niños en los 4 -10 años de edad área de distribución. 3.1 y Uso incorrecto inapropiado Para ser lo más eficaz posible un sistema de retención infantil debe ser utilizado correctamente. El uso correcto requiere que un sistema de retención debe ser utilizado por un niño de tamaño apropiado, el niño debe estar bien colocado en el sistema de seguridad, y el sistema de seguridad debe estar correctamente anclada al vehículo. los niños australianos son conocidos por tener altos índices de uso de sistema de seguridad (más del 95%) (Henderson, 1994). Sin embargo, el uso incorrecto reduce la eficacia del sistema de retención. Mientras retención incorrecta uso a menudo se informa de un problema común, los diferentes tipos de abuso tienen efectos diferentes en el rendimiento de retención infantil. En América del Norte, los últimos estudios observacionales han demostrado que alrededor del

Page 13: Informe de Investigación SRI en Australia

80% de los bebés no estaban siendo utilizados como estaba previsto, el modo de uso indebido era sobre todo del tipo menor (Weber, 2000). las tasas de uso indebido son más bajos en Australia. Un reciente 1997 observacional y entrevista de las instalaciones de retención de niños llevado a cabo en NSW encontró que el 29% de instalaciones relacionadas con la seguridad había problemas significativos. Incluso los índices más bajos de uso indebido de NSW se encontró que en su mayoría de carácter menor, principalmente relacionados con la tensión de ambas formas de anclaje (Es decir, los cinturones de sujeción superior y de adultos) y la sujeción del arnés del niño. La falta de un anclaje superior era un problema en el 5% de las instalaciones encuestadas (Paine, 1998). En lo que respecta a la utilización efectiva de las restricciones (Es decir, la colocación del niño en el CRS), los estudios en Australia han demostrado que sólo un 5% de sistemas de retención infantil y el 8% de los asientos para niños se usan incorrectamente (Griffiths, Brown, Kelly, 1994). Sin embargo, el mal uso sigue siendo un problema significativo, ya que la mayoría de los estudios de campo en la investigación de lesiones los niños han encontrado que el contenido de algún tipo de mal uso es frecuentemente implicados en los casos en los niños son heridos restringida (Gotschall, mejor, Bulas, Eichelberger, 1998, Henderson, 1994; Rattenbury y Gloyns, 1993; Weinstein, Sweeney, Garber, Eastwood, Osterman, Roberts, 1997). Posiblemente el estudio más completo hasta la fecha de la utilización indebida retención papel que juega en lesiones a los niños restringida fue presentado por Gotschall et al (1998). Estos autores estudiaron la circunstancias que rodean a una lesión a todos los niños de 0 -12 años ingresados en una de las principales de América del Norte centro de trauma tras un accidente automovilístico. Encontraron que el 36% de los niños ingresados en el centro había sido restringida incorrectamente. Este uso incorrecto se asoció con una mayor gravedad de la lesión. De particular interés fue la observación de que todos los casos mortales en su estudio participaron un uso incorrecto. Del mismo modo, Weinstein et al (1997) encontraron 9 de cada 10 niños fatalmente herido en su muestra de 207 niños, en los sistemas de restricciones que fueron mal instalados o inadecuado para su tamaño y de peso. Sin embargo, se trataba de un estudio realizado en EE.UU., donde los amarres de arriba no eran comunes en 1997, y por lo tanto pone de relieve los posibles niveles de uso indebido, sin sistemas de sujeción superior. 3. Ámbito de aplicación para la mejora

Página 12 Henderson (1994) destacó el papel del uso indebido de implicados en accidentes de accidentes incluidos en su

Page 14: Informe de Investigación SRI en Australia

muestra de niños mirando hacia el frente utilizando sistemas de retención infantil en Australia. Henderson (1994) reportaron que de los 38 niños que utilizan sistemas de retención orientado hacia adelante, cinco fueron con sus restricciones en forma incorrecta el momento del accidente. Cuatro de los cinco se asociaron con lesiones o la muerte. Aún más importante es la observación de los niños colocados en orientados hacia atrás y hacia adelante restricciones, sólo cinco recibieron heridas con un MAIS superior a 2 (es decir, mayor que las lesiones leves / moderados niveles superficiales). Casi todos los heridos graves se asocian con algún tipo de mal uso. En general Henderson (1994) reportaron que el uso indebido del sistema de retención infantil estuvo presente en el 10% de los niños en los sistemas de retención infantil dedicada. Recientemente, Lalande, Legault y Pedder (2003) reportaron una serie de 44 impactos frontales simulado utilizando tres tipos diferentes de sistemas de retención infantil orientado hacia delante de Canadá con diferentes modos de uso indebido. La objetivo de este trabajo fue identificar la degradación relativa de la seguridad como resultado de diferentes, pero las formas más comunes del mal uso, en comparación con el nivel de protección previsto en un sistema de retención infantil cuando no está mal. Los autores concluyeron que algunas formas de mal uso de degradar la seguridad mucho más que otras formas de mal uso. Lalande et al (2003) el trabajo es útil, ya que se llevó a cabo en un establecimiento de normas y perfectamente cuantificados, que los casos de mala fue más grave. El uso inadecuado es una forma sutil pero generalizada de mal uso. Se trata de la utilización de un sistema de retención por los niños fuera de la edad (o la altura y peso) clase para la que la restricción está diseñado ese tipo. Gotschall et al (1998) encontraron que más del 76% de su muestra estaban restringidos inapropiada. Sin embargo el uso inadecuado también se incluyen los niños que utilizan los cinturones de adultos, cuando aún estaban en el altura / rango de peso de los asientos elevados. El efecto de esta forma de uso indebido de gravedad de la lesión fue estudiado en detalle por Weinstein et al (1997). Encontraron un gran número de niños tienden a moverse en la siguiente fase de contención antes de que se había alcanzado el tamaño adecuado para que el sistema de sujeción. Una tendencia similar fue observada por Isaksson-Hellman, Jakobsson, Gustafsson y Norin (1997) en un estudio sueco. Los autores observaron que la muestra incluyó un número significativo de niños que no habría sufrido lesiones si el sistema de seguridad óptimo del sistema niño más se habían utilizado. De

Page 15: Informe de Investigación SRI en Australia

interés es que su hallazgo de que los niños relacionados restringida eran más propensos a sufrir lesiones cuando se encontraban en el pequeño final de la gama del tamaño recomendado para el sistema que estaba utilizando. Estudios de campo, como el realizado en NSW en 1993 y comunicadas por Henderson, Brown y el dolor (1994) y Henderson, Brown y Griffiths (1997) y el estudio actual de 2 a 8 años los niños de edad llevando a cabo por el Príncipe de Gales Instituto de Investigaciones Médicas sugieren que, si bien la mayoría de niños están sujetos, la mayoría de los niños involucrados en accidentes contenida está utilizando el cinturón de seguridad para adultos sistemas. Es decir, los niños se gradúan demasiado pronto en los cinturones de seguridad para adultos cuando se más seguro hacia el frente en los sistemas de retención infantil. A principios de graduación de preescolar de entre los niños de sistemas de retención infantil dedicado y en adultos del asiento sistemas de cinturón también ha sido reportada en América del Norte (Winston 2000), así como el uso de seguridad para adultos cinturones de los niños en el rango de edad de 3 a 8 años para los que los asientos elevados están diseñados (Durbin, Kallan & Winston, 2003). Si bien los resultados de estudios de campo en Australia sugieren las prácticas análogas ocurrir aquí (Henderson et al, 1994, 1997, Brown & Bilston 2002, 2003), hasta la fecha no cuantificaciones de esas prácticas han llevado a cabo en Australia. Un reciente estudio norteamericano por Winston et al (2000) específicamente destinados a determinar el riesgo de lesiones significativas asociadas con la graduación prematura de los niños pequeños a los cinturones de seguridad. Esto fue logra a través de comparar el resultado de las lesiones de los niños que utilizan sistemas de retención adecuados con la de los niños que utilizan sistemas inadecuados. La muestra estuvo constituida por 2.077 niños. De acuerdo a los estudios australianos (Henderson, 1994, 1997, Brown & Bilston 2002), Winston et al. reportó 40% de todos los niños de edad restringida 2-5 años para utilizar cinturones de seguridad para adultos. Winston et al. (2000) también informó que en comparación con los niños en los sistemas de retención infantil dedicados, los niños en cinturones de seguridad de adultos fueron 3,5 veces más probabilidades de sufrir un perjuicio grave, especialmente en la cabeza región. 5 RACV INFORME DE INVESTIGACIÓN NO 4.4

Página 13 INNOVACIONES DE SEGURIDAD PARA SISTEMAS DE RETENCIÓN INFANTIL DE AUSTRALIA 6

Page 16: Informe de Investigación SRI en Australia

Un estudio realizado por Morris, Arbogast, Durbin y Winston (2000) también han informado mal uso de los propulsores. Ellos encontraron que la forma predominante de uso inapropiado de este tipo de retención infantil fue inadecuado uso. Eso es este sistema de seguridad fue utilizado por los niños en un / intervalo de tamaño de edad fuera del rango de tamaño de diseño. En particular, señaló que la mayoría de los niños en su muestra (n = 227) eran "demasiado" pequeño para este tipo de restricción. Es decir, que aún debe ser mediante un sistema de seguridad orientado hacia adelante. Existe el potencial para reducir el riesgo de mal uso o uso incorrecto participación de montaje pobres de la de retención en el vehículo y / o el niño al sistema de retención a través de soluciones de ingeniería. Mundial y las innovaciones locales en este ámbito se discuten en la sección 6. La lucha contra el uso inadecuado o específicamente la graduación prematura en los cinturones de seguridad para adultos probablemente requiere un cambio de comportamiento estrategia, así como el diseño innovador de mejor booster para niños mayores. Más riguroso de impacto lateral requisitos de protección en última instancia, puede conducir esto. 3.2 Protección de impacto lateral La necesidad de protección contra impactos laterales mejorado ha sido reportado por un número de investigadores en Australia y el extranjero sobre la base de pruebas de campo y el laboratorio (Arbona y Moll 2001; Brown, Kelly y Griffiths, 1997; Brown, et al 2002 (a), Henderson, 1994; Kelly y Griffiths, 1996; Weber, 2000). Protección de contenido de la cabeza de un niño en impactos laterales se ha mostrado como mínimo en los resultados de tanto en el mundo real y estudios de laboratorio. Casi todos los estudios de las lesiones recibidas por los niños que participan en impactos laterales informe de la cabeza como la más frecuente y gravemente heridos región del cuerpo independientemente del tipo de impacto. Agran y Winn (1988) reportaron más grave que la cabeza y lesiones en la cara ocurren a los niños sentados en el lado de colisión en los accidentes de impacto lateral, en comparación con los niños en otros posiciones y otros tipos de impacto. Esto no es sorprendente ya que la investigación ha demostrado que la mayoría de los graves lesiones en la cabeza en los niños ocurren cuando hay una huelga de cabeza con una superficie interior (Khaewong, Nguyen, Bents, Eichelberger, Gotschall and Morissey, 1995). Such head strikes are commonly observed during laboratory crash sled tests. In side impacts in the real world, these head strikes are complicated by the hard car door surface often intruding at a significant velocity towards

Page 17: Informe de Investigación SRI en Australia

the child, while the child's head moves towards the car door. Most recently, Arbogast et al (2001) note that in their database of real world crashes, severe head injuries are the most common serious injury sustained by children in side impacts (40% of serious injuries), even at minor crash severities. They attribute this to contact with the side structures of the vehicle. Brown et al (1997) reported that the three main goals of a child restraint system in side impact debe ser: Ensuring that the child restraint has 'side wings' that retain the head Once the head is retained, providing some form of energy absorption in the 'side wings', and Preventing rotation of the child restraint to turn and face the incoming object, and preventing sideways movement towards the door. Some, but not all, Australian restraints currently provide relatively effective side structures (or side wings) that work to retain a child's head in side impact. Despite this inadequacy, only relatively minor design changes are required to offer improved side impact protection in many Australian restraint systems. Similarly the provision of energy absorption in side structures is uncommon, even though technology exists allowing this to be implemented in a cost efficient way. Finally, improved (separate, twin) lower anchorage systems have been shown to reduce sideways movement and rotation of child restraint systems (Brown et al, 1997). All of the above can be achieved with existing technologies and will be discussed in more detail in Section 4.

Página 14Proposed amendments to the Australian Standard are likely to affect the side impact performance of Australian child restraints. Current side impact performance assessment involves a simulated side impact at approximately 32km/hr on a standardardised car seat with no other vehicle interior. Pass/fail criteria is based on a restraint systems ability to retain a child crash test dummy without any component failure. As at December 2003, the proposed amended version of the Standard includes a revised, more stringent side impact assessment based on the Australian Child Restraint Evaluation Program (CREP). This will be discussed in more detail in Section 5. 3.3 Systems that Offer Increased Levels of Protection for Older Children Many field studies have noted that while adult seat belts provide adequate protection for children

Page 18: Informe de Investigación SRI en Australia

aged 4 – 10 years, the level of protection provided to these children is not as high as that provided by dedicated child restraints for younger children. Booster seats are theoretically 'dedicated child restraint systems' for children in this age range. However, studies suggest that:- Usage rates of booster seats by children in this age range is very low The level of protection provided by current Australian booster seats is less than that provided by dedicated child restraint systems for younger children (booster seat design in Australia is one notable area where we appear to lag behind US practice). A recent study by Ebel, Koepsell, Bennet and Rivara (2003) who investigated booster seat usage by North American children found that 83.5% of their sample of children who could have been using a booster seat were using adult belts alone. A lack of ongoing objective surveys has resulted in such statistics not being available in Australia, but the high number of children in the booster appropriate age range reported to be wearing adult belts in crashes suggests a similar phenomena in Australia (Henderson, 1994, Henderson et al 1997, Brown & Bilston 2002, 2003). The primary purpose of a booster seat used to be to provide a transition between dedicated child restraint systems and adult seat belts by 'boosting'(lifting) the seated height of the child occupant to give better seat belt geometry. There are two different classes of boosters currently available in Australia, booster cushions and asientos elevados. The main difference between the two is that the cushion is comprised of a seating area only while the seat incorporates a seat back. There are a number of booster design features that can influence the level of protection provided to children in a crash. The first is directly related to how well the booster achieves better seat belt fit. Most, if not all modern booster designs incorporate some positive means of ensuring good placement of the shoulder and lap portions of an adult belt. However there are some models that hold the adult belt system away from the child's body. When a significant gap exists between the child seated in the booster and the webbing, the child tends to be thrown forward unrestrained until they collide with the seat belt, with greater risk of injury than a seat belt positioned firmly against their body. Backless boosters or booster cushions do not provide any lateral support for a sleeping child. La

Page 19: Informe de Investigación SRI en Australia

point of improving seat belt fit is lost if a sleeping child falls sideways and the upper torso comes out of the belt. For this reason, and also because there is absolutely no means for retaining the child’s head in side impact, these types of booster are not favoured. Some booster seats with backs provide some form of lateral support, however none appear to provide adequate containment of the head in side impacts. Another possible disadvantage of booster seats noted by Weber (2000) is that the high back of the booster seat “positions the child several inches closer to other parts of the car interior”. Este 7 RACV RESEARCH REPORT NO 04/04

Página 15SAFETY INNOVATIONS FOR AUSTRALIAN CHILD RESTRAINTS 8 becomes a safety issue with some booster seats because they are generally not restrained by an anchorage attachment with any anchorage system to the vehicle as only a limited number have top tethers. The consequence of deficiencies in the current design of booster seats can be seen in results from field studies. Field studies generally show that while booster seats appear to reduce the likelihood of injury compared to an adult belt system, they provide a lower level of protection than other forms of dedicated child restraint (Carlsson, Norin & Ysander, 1991; Isaksson-Hellman et al, 1997; Khaewpong et al, 1995).

Página 16The main goal of this review has been to identify potential developments in terms of safety innovations for children in crashes, and in particular those associated with new methods of child restraint anchorage. The methods employed to achieve this have included document searches, patent searches and informal discussions with international child safety researchers. Since there is a particular emphasis on alternative anchorage developments, this issue will be discussed first, followed by a summary of other innovative international developments. 4.1 Alternative Anchorage Systems 4.1.1 Background During the 1990's the international child safety community joined forces to develop a new system

Page 20: Informe de Investigación SRI en Australia

for anchoring child restraint systems to vehicles. This concept, originally known as ISOFIX, was first proposed in 1991. An International Standard related to this concept was near to completion in 1999 (Weber 2000). The initial proposal sought to develop a concept that would be internationally universal in its use, thereby overcoming incompatibility problems due to variations in child restraint design, adult seat belt geometry and vehicle seat characteristics. The primary objectives driving the development of such a system were to reduce the incidence of misuse, and to improve the overall level of protection provided by child restraint systems in crashes. The initial ISOFIX design proposed consisted of a four point system, that is, it required rigid attachment of the child restraint system at each of the four lower corners. Los representantes de Canada and Australia preferred a three point system consisting of two point lower rear anchorages, with a top tether. There were also concerns that the 4 point system would result in very heavy and much more expensive child restraint systems. A system was subsequently proposed that made use of two lower rigid attachments which was favoured by many of the European task force members. The Canadians and Australians (and later the USA) agreed with this lower anchor two point system, but indicated they would require the use of a top tether, since there were concerns about other means of preventing forward movement of the top of the child restraint system . However, no international consensus regarding how this could be overcome was reached. The final definition included in 1999 ISO 13216-1, requires two rigid lower anchorages “and a means to limit the pitch rotation of the child restraint system”. In the USA and Canada regulations have already been drawn up regarding this system with the inclusion of a top tether. In North America the new US standard, known as LATCH, was introduced on September 1, 2002. Both countries plan to continue to allow child restraints to be installable in older vehicles and seating positions not equipped with lower anchorage using the current seat belt systems. To assist manufacturers to design restraints that will be compatible with rigid attachment and to “allow the attachment technology to evolve and be tested in the market place”, the US regulation also provides for flexible lower attachment straps.

Page 21: Informe de Investigación SRI en Australia

This provision is also included in the final Canadian regulation. Such non-rigid attachments consist of lower anchorages that utilize flexible webbing based attachments with an adjustment system. These are commonly called semi-rigid anchorage systems. Such systems are now widely available in North America (Weber 2000; National Highway Transport Safety Administration 2003). Inicialmente se was thought the lower anchor would be two separate straps, but surprisingly a single running loop of webbing has been allowed in North America. Currently there are a small number of vehicles available on the Australian market that have in- vehicle attachments that meet the requirements of the ISOFIX International Standard. That is, some 9 RACV RESEARCH REPORT NO 04/04 4. International Developments

Página 17SAFETY INNOVATIONS FOR AUSTRALIAN CHILD RESTRAINTS 10 vehicles that are now imported into Australia have special rigid bars fitted to outboard rear seating posiciones. These “ISOFIX” anchorages provide 'rigid' lower attachment points for child restraints, which can be used to attach the restraint rather than using adult seat belts. Sin embargo, no hay child restraints available in Australia for use with such systems. In addition, the lack of an Australian Design Rule for rigid anchorage systems means they are not regulated for strength or position. Temprano field indicators suggest that the ISOFIX anchorages may not be strong enough, suggesting that it is prudent for Australia to wait rather than implement this system immediately. As previously indicated, there are two ways in which a child restraint can be connected to ISOFIX rigid bar anchorages. The first is via a rigid connection on the child restraint, ie special rigid bars fitted to the child restraint that couple with the ISOFIX anchorages on the vehicle; and the second is via a flexible attachment on the child restraint. These two types are generally referred to as 'rigid' and 'semi-rigid' respectively. Rigid attachment of the child restraint to the ISOFIX anchorages is favoured in some parts of Europa. In North America the LATCH system allows for several different types of semi-rigid methods of attachment. These range from a simple loop of webbing (similar in performance to the

Page 22: Informe de Investigación SRI en Australia

lap portion of a seat belt) to tensioned, flexible straps attached to each side of the child restraint. It is not widely understood that there are at least five distinct types of lower attachments allowed under the LATCH system. These include: - Seat belt plus top tether (the current Australian anchorage method) Rigid ISOFIX LATCH with flexible untensioned loop LATCH with flexible tensioned loop LATCH with individual, flexible, untensioned straps LATCH with individual, flexible, tensioned straps A variety of child restraints using LATCH variants are now available in North America. 4.1.2 International Standards and Regulations The US requirements are set out in their FMVSS 225 “Child Restraint Anchorage Systems”, the equivalent of the Australian ADR34. These are mandatory requirements for new vehicles. En resumen, this specifies location and strength requirements for top tether anchorages (generally three to be provided for rear seating positions) and ISOFIX style lower anchorages (generally two pairs to be provided for the outboard rear seats). The centre rear seat is not required to have ISOFIX lower anchorages but must have a top tether anchorage for this position so that a CRS can be installed, using the seat belt for lower restraint. Whilst a vehicle manufacturer could install 3 sets of lower anchorages, we are not aware of any US manufacturers who plan to do so. As indicated previously, ISO Standard 1316-1 “Road Vehicles - Anchorages in vehicles and attachments to anchorages for child restraint systems” sets out requirements for the ISOFIX anchorages. Estos requirements are essentially the same as those in the North American Standard (FMVSS 225). At present there is no European regulation that requires vehicles to have ISOFIX anchorages. However, many new European vehicles have these anchorages. Potential problems with this are:- Because they are not covered by an Australian government regulation, or at this stage a European regulation, there is no guarantee as to their strength or other aspects of compliance, and Ad hoc feedback to members of the ISO CRS Committee is that there are reports of these voluntary anchorages breaking in crashes.

Página 18Nevertheless, the consumer program EuroNCAP indicates if these anchorages are provided in its consumer brochures.

Page 23: Informe de Investigación SRI en Australia

In Europe, child restraint systems must be granted approval to ECE Child Restraint Standard ECE-R 44. Currently this standard does not cover ISOFIX devices, nor has the ISO Standard been adopted as a component of ECE-R 44. It appears that the specification of the 'third' anchorage (an anti-pivot anchorage, which can achieve its performance by a top tether or forward strut) that is stalling the inclusion of specifications for ISOFIX in Europe. The 'third' anchorage specified in North America, is the top tether, however in Europe some German researchers continue to oppose the use of top tethers. Langweider, Hummel, Finkbeiner and Roselt (2003) reported that a satisfactory solution to the top tether problem may have been found. Following a meeting of the ECE Standards working Group in December 2002 the following was decided:- Forward facing ISOFIX devices with two lower anchorages and a top tether will be required to meet a forward displacement specification 50mm less than the current specification. Eso es forward displacement must be less than 500mm Forward facing ISOFIX devices designed for use with two lower anchorage only (and no top tether) must meet the current ECE-R44 specification of a forward head displacement of 550mm Whilst the proposed ISO Child Restraint Standard does not mandate top tethers, an 'additional anti-rotation system' must be used. This can be 'either a support leg, a lower tether, an upper tether or a different form of tether'. This continued to be the European status as at the ISO CRS meeting in September 2003. 4.1.3 Evidence of Improved Protection A limited amount of laboratory testing of prototype rigid (and semi rigid) anchorage systems has been conducted both in Australia and elsewhere in the world over the past ten years. Los principales benefit of rigid lower anchors over the current Australian method of anchorage, in terms of crash protection, is their ability to reduce sideways lateral displacement and rotation of child restraints in side impact crashes (Kelly, Brown, Griffiths 1995, Brown et al 1997). Generally, in frontal impact crashes crash sled testing has indicated that such systems will not provide significant additional protection to that already being provided by the better Australian child restraints and current anchorage systems. However, in child restraint systems where there is a difficult fit with the vehicle

Page 24: Informe de Investigación SRI en Australia

seat (often because of seat contours to suit two rear adult occupants), the rigid system has the potential to improve performance by providing a more rigid fit. With respect to the rigid versus semi rigid systems, an Australian study by Brown et al (1997) compared the performance of two point rigid lower anchorages, with and without top tether, with semi rigid or webbing based lower anchorages, with and without top tether. This work confirmed the ability of the rigid system (with top tether) to significantly improve the performance of Australian child restraints in side impact. Contact between the child restraints tested and a simulated side door structure was completely prevented by the rigid system in both 45º and 90º side impacts. The two flexible lower anchors variant allowed by LATCH were found to provide some improvement over the current Australian system provided the web straps had no slack. En particular, there was a slight reduction in the sideways movement of the child restraint system and contact with the door was prevented in the 45º impact. The webbing based system allowed more sideways movement than the rigid system. To ensure best performance of webbing based systems, they need to be as rigid as possible. The flexible couplings should be kept as short as possible and be attached to the child restraint as low down and as far back as possible. More importantly, tensioning or retractor systems would assist the overall performance of lower anchor webbing systems (Brown et al, 1997). 11 RACV RESEARCH REPORT NO 04/04

Página 19SAFETY INNOVATIONS FOR AUSTRALIAN CHILD RESTRAINTS 12 In Europe, where top tethers or upper anchorages are not used as part of the conventional anchorage system, testing of both four point, and two point rigid anchorage systems have shown improved levels of protection in frontal impacts (Bell, Burleigh, Czerakowski, 1994; Lowne, Roy, Paton, 1997, Langweider et al, 2003). Many authors, like Brown et al (1997), have reported that the rigid system provides a higher level of protection than the non-rigid types. These authors have also noted that non-rigid systems are

Page 25: Informe de Investigación SRI en Australia

particularly susceptible to slack in the system (Lowne et al 1997). As previously noted, these findings support the need to investigate means for self tightening in non-rigid systems. The new LATCH system in North America includes a variety of forms of semi-rigid lower anchorage. There is an urgent need to compare the performance of the different types of flexible couplings. Este is discussed in greater detail in Section 7. 4.1.4 Ease of use and misuse of child restraints One of the primary drivers for the development of a new anchorage system for CRS was to reduce the incidence of misuse. Therefore, researchers have been studying the 'ease of use' of such systems since the early 1990's. Recently, in Germany. Langweider et al (2003) reported on a study of correctness of installation using ISOFIX type devices. These authors reported that they found 97% of ISOFIX forward facing child restraints, and 100% of ISOFIX rearward facing child restraints were installed correctly. Este was a vast improvement from earlier studies conducted by this group, which had shown that almost two thirds of all installations using conventional anchorage systems in Germany were found to be incorrecta. The Institute of Highway Safety recently released the results of a study investigating the usability of a child restraint system equipped with LATCH anchorages in several models of vehicle. El Instituto of Highway Safety found: “Installation generally is easier and less complex with LATCH compared with the old way of routing safety belts through restraints to attach them to cars. Still, LATCH doesn't always make it a simple click-in operation to install a restraint.” Results from this work also illustrated that both the shape of the vehicle seat and the placement of the anchors for securing the restraints contributed to the ease of access, and therefore the ease of uso. In addition, it was observed that the lower anchors in some vehicles were clearly visible, while in other cases their deeply recessed position into vehicle seats made them difficult to locate. Interestingly, the authors noted that while visible anchors generally made installation easier, this was no siempre es así. They cited one example of a vehicle which had clearly visible anchors but where installation proved difficult due to the position of the safety belt buckle which impeded efforts to tighten the restraint straps.

Page 26: Informe de Investigación SRI en Australia

Another important observation from The Institute of Highway Safety study relates to the removal of sistemas de retención infantil. The authors found that in some cases quick removal proved difficult. They gave the example of a LATCH system incorporating a flexible hook which needed to be depressed and then rotated to allow removal. The authors also observed that there were various difficulties associated in finding top tether locations in different types of vehicles. Finally, this study confirmed the concerns that the “flexible hook” (dog clip) style of LATCH attachment is the most difficult to use, particularly when unclipping it from the ISOFIX anchorage. Results from The Institute of Highway Safety study provide important lessons for Australia. Por example, there may be a case for avoiding the use of 'flexible hook' clips for lower attachments in Australia. Likewise, results from such studies suggest it would be extremely wise to 'road test' proposed anchorage systems in Australia prior to allowing, or mandating their use in Australia. La need for this type of research is discussed in Section 7.

Página 204.1.5 Possible Areas of Concern with ISOFIX While the concept of a new, more rigid lower anchorage system has the potential to have worthwhile benefits for Australia, particularly in terms of reducing misuse and increasing side impact protection, there are a number of potential concerns that need to be addressed first. The current method of attaching child restraint systems uses an adult seat belt as the means of tying the lower portion of a restraint system to a vehicle. The use of the adult seat belt as the lower anchorage is part of current mandatory anchorage requirements. Before this became mandatory, the Australian Standard allowed the lower portion of a child restraint to be anchored to the vehicle by either a seat belt or 'dedicated straps'. The use of 'dedicated straps' were found to be a problem, in that child restraint fitting surveys conducted by the former NSW, Australia, Traffic Accident Research Unit (TARU) revealed insufficient attention was being paid to have systems that ensured these 'dedicated straps' were tightly adjusted. This observation resulted in the Standard being amended to mandate the use of an adult seat belt as the lower anchorage attachment, and consequently the abandonment of lower straps.

Page 27: Informe de Investigación SRI en Australia

The early Australian experience with loosely adjusted lower anchorage attachments highlights the need for caution with the reintroduction of lower anchorage straps such as those involved in the LATCH system. Lower anchorage straps introduced as part of the LATCH system should at least include self tensioning retractors or manual tensioners with visual tension indicators to ensure firm montaje. There is a need to take preventative steps to ensure loose adjustment of lower anchorage straps does not resurface as a problem in Australia. Another potential issue of concern raised by Kelly et al (1995) and Brown et al (1997) is related to the separation distance between the two lower anchorages. If this distance is too wide, the system will reduce rear seating for children from three to two seating positions. This could reduce the number of children that could be carried in the rear seat. The US regulation covering rigid anchorages requires only two positions to have the lower anchors, and Weber (2000) reports that the rigid anchors are unlikely to be provided in the centre rear seat position. Generally a restraint installed using the current seat belt anchor system will not fit between two devices designed for the new anchorage system. However, this does not need to be the case. Large and medium/large Australian sedans could be designed to accommodate three CRS with three sets of flexible lower anchors (ie 6 anchor straps). One vehicle manufacturer in Australia has informally indicated that they intend to provide 3 sets of flexible lower anchors. Many Australian families rely on fitting three children in the rear seat. It would be unfortunate if these families were forced to purchase vehicles with three rows of seats to have a restraint for each infantil. Around 40% of Australian children using child seats currently travel in the centre rear seating position and it is desirable that this practice continues due to the inherent safety of this seating position, particularly in side impacts. Of course in the foreseeable future, CRS will always be able to be attached using the adult seat belt as a lower anchorage for this position, and Australian experience suggests that performance with such CRS is good due mainly to the top tether. However, because they believe they are better, some parents will prefer to use ISOFIX/LATCH anchorages. Preliminary investigations indicate that it may

Page 28: Informe de Investigación SRI en Australia

be feasible to use the inboard ISOFIX anchorages from each side, if a flexible form of LATCH system is used on a CRS in the centre seat. Before this is adopted, there is a need to conduct research to demonstrate the feasibility of the concept, and to review strength requirements of the anchorages (with three CRS across the back seat). Currently the US National Highway Traffic Safety Administration (NHTSA) advises against this configuration unless the vehicle manufacturer specifically states that this is acceptable. While ISOFIX lower anchorages should help to eliminate some forms of misuse in Australia, there is potential for new forms of misuse: 13 RACV RESEARCH REPORT NO 04/04

Page 21SAFETY INNOVATIONS FOR AUSTRALIAN CHILD RESTRAINTS 14 Loose lower attachments (if tensioning attachments are not included) Difficulty engaging and disengaging the lower attachments could decrease their use (hopefully the adult seat belt will be used where this happens) Any new system will take some getting used to. An advantage of current CRS systems in Australia is that they are very similar and parents are familiar with them - indeed, some young parents may have used the same style of CRS when they were children. Another potential problem with ISOFIX is extrication in an emergency. It is sometimes preferable that the child and child restraint be quickly removed from the vehicle together. This may be more difficult with some current LATCH attachments, compared with the current form of anchorage because there are more straps to undo. Notwithstanding this, harnesses are not undergoing change hence the primary form of removal through harness release remains unchanged. Emergency services often prefer to transport children in their child seat. This is because of a lack of child restraint systems in ambulances. It also means the child can be removed from the vehicle, without disturbing the child's posture. 4.2 Patent Searches The databases of the US Patent and Trademarks Office were searched for inventions concerning child restraints. A total of 97 granted patents and 10 patent applications were reviewed for innovative, worthwhile concepts. In short, there were none that are not already commercially

Page 29: Informe de Investigación SRI en Australia

disponible. Many of the reviewed inventions showed dismal lack of understanding of basic physics. Some inventions appeared to introduce unnecessary safety hazards. Of the reviewed devices, those deserving mention are commented upon in the Appendix A. 4.3 Commercial Developments NHTSA's website has comments about various child restraints on the market in the US. The notably innovative features of some of these restraints include: Level adjustment indicators for obtaining optimum angle of infant capsule Harness shoulder height adjustment linked to height adjustable back rest (or head restraint) Web tensioning systems Anti-tangle harness holder Chest clips. Some models of child restraints incorporating these types of features, as well as others available in other countries, are discussed in the following section. 4.3.1 US Models of Child Restraint Systems Britax (www.britaxusa.com) has a wide range of CRS models in North America. The Expressway, depicted in Figure 1, has rigid ISOFIX lower anchorages and a top tether. This model also has an anti- submarining, anti-rotation feature called “pivot-link” that compresses the seat cushion. This model can be used without a top tether, but Britax USA recommends that the top tether be used. La instalación manual illustrates the method of attaching to the ISOFIX lower anchorages and this appears to be simple and straightforward. No quantification on claimed performance improvement was available. The Britax King is designed for use with an adult seat belt anchorage system only. Tiene una mechanism to tension the seat belt but the method of installation appears cumbersome. N quantification on claimed performance improvement was available. To aid correct installation, Britax recently introduced “Perma-book” - a miniature, durable version of the instruction manual that is permanently attached to the CRS. As manuals are reportedly separated almost immediately from CRS, the advantages of this are obvious, and misuse surveys indicate potential benefits.

Página 22Fisher-Price and Cosco (www.coscoinc.com) have child seats available in North America with a vertically adjustable back piece that allows easy adjustment of shoulder harness height. This avoids the risk of the harness straps being incorrectly threaded when the height needs to be adjusted. Nuestro primer

Page 30: Informe de Investigación SRI en Australia

hand assessment confirmed the benefits of this design feature. An example seat is shown in Figure 2. New Lenox (www.smartchildseat.com) is about to market the Tattletale child seat in North America. This restraint has a sensor that measures the amount of tension applied by the adult seat belt. Otros 15 RACV RESEARCH REPORT NO 04/04 Figura 1 Britax Expressway child restraint available in América del Norte Figura 2 Fisher Price Grow With Me Child Restraint Figure 3a Romer ISOFIX Child Restraint Figure 3b Easy Shoulder Harness Tensor

Página 23SAFETY INNOVATIONS FOR AUSTRALIAN CHILD RESTRAINTS 16 sensors check that the harness is correctly buckled. Attempts to obtain a sample for assessment have not been successful as at September 2003. 4.3.2 European Models of Child Restraint Sistemas The Maxi-Cosi Priori XP (www.maxi-cosi.nl) has “side impact protection”, a seat belt tensioner system and easily adjustable shoulder harness de altura. The basis of the claim about side impact protection is not clear from available documentación. RÖMER (www.britax-roemer.de) markets a rigid ISOFIX child seat that also has easy shoulder harness height adjustment. This seat and its shoulder harness adjustment mechanism are shown in Figures 3a and 3b. StorchenMuehle (www.storchenmuehle.de) market an Air-Seat booster seat that has an air- filled cushion to improve comfort. The 3-point adult seat belt is used to restrain the child. Adjustable seat cushions are a possible comfort benefit but do not appear to offer a safety benefit. Recaro (www.recaro-seats.co.uk) market the Start Topline booster seat. It has a tubular aluminum

Page 31: Informe de Investigación SRI en Australia

frame that is claimed to absorb energy in a crash. The seat cushion is designed to resist submarining. However, it is not clear how an aluminum frame offers benefits over plastic shells. 4.3.3 Japanese Models of Child Restraint Systems OSA, the National Organisation for Automotive Safety and Victims Aid recently introduced a child restraint consumer evaluation program (www.osa.go.jp). Most of the child seats tested by OSA appear to be of European design. The Takata MILIB6000 is a new Japanese child seat that has a wheel to alter the tilt of the child seat and is shown above. This is the main feature promoted in their advertisement. 4.3.4 CRS Interaction with Airbags Problems with interactions between passenger side, frontal airbags and child restraints have led to a number of different airbag technologies. In North America, some vehicles are equipped with airbag switches which can be used to “turn off” an airbag in a position where a child restraint might ser utilizado. In addition, there has been a great deal of development in the area of 'smart airbags'. Estos airbags use different types of sensor technology to modulate airbag deployment depending on the type or position of the occupant in occupant positions adjacent to airbags (Chen, Breed, Xu, 2003, Breed, 1998). Breed (1998) explained how 'smart airbag' technology can analyse information such as the crash pulse, occupant sizes, positions, seat belt use, weight, and velocity data to control airbag implementación. Only a limited amount of research appears to have been conducted on the interaction between CRS and rear seat side airbags. Researchers in the US and Europe are currently conducting tests to determine whether a rigidly anchored CRS would expose the occupant to higher loads if a side airbag inflated against it, compared with a less rigid installation. It is assumed that airbag design will be modified if necessary. Figura 4 Takata MILIB6000 Child Restraint

Página 244.3.5 Countermeasures to Misuse NHTSA recently released results of an “ease of use” rating of child restraint systems. La calificación system involved child restraints being given an overall ease-of-use rating at the “A”, “B” or “C” level. Such letter grades are also used to rate seats in each of the following categories:

Page 32: Informe de Investigación SRI en Australia

Whether the seat is pre-assembled or requires assembly after purchase Clarity of labelling attached to the seat Clarity of written instructions on the seat's proper use Ease of securing a child in the seat The rating system does not assess the installation of child restraints in particular vehicles, but is rather a rating of child restraint design features. Australia, as part of the Child Restraint Evaluation Program (CREP) also conduct consumer orientated ease of use ratings. However, the rating included in CREP includes assessment of the ease of installation in a selection of popular vehicles. The International Standards Organization (ISO) has developed a standards orientated assessment método. This standard defines a specific protocol for assessing misuse potential in uniform anchorage systems. To our knowledge no-one has adopted the ISO misuse protocol in formal directrices. It is currently being reviewed and appears likely to become similar or equivalent to the Insurance Corporation British Colombia (ICBC) protocol on which the NHTSA protocol is based. There is no formal assessment (Standard or regulation) of misuse potential in Australia as it is no longer on the Standards Committee work program. Nevertheless all devices submitted for approval to the Australian Standard are supposed to have been assessed on behalf of their distributor for potential for misuse. The consumer program CREP attempts some assessment of misuse, however it requires updating, including a more objective approach. The ICBC Canadian and similar NHTSA misuse assessment method appear to be suitable protocols. A new child restraint product, the “Tattle Tale 5-point Talking Car Seat', is reportedly about to be launched in North America (www.smartchildseat.com). According to marketing material, this seat has a 5 point harness system and can be used in the rearward or forward facing modes . When inquiries were made at the 2003 May and September meetings of ISO CRS, and subsequently in visits to US experts in Washington and Philadelphia, researchers were unaware of this particular child restraint. The seat is claimed to assist correct installation by providing an audible warning system that:- Includes an audible voice announcement that tells you when the seat is properly installed Includes voice announcements that pinpoint any installation problem to allow necessary adjustments to be made

Page 33: Informe de Investigación SRI en Australia

Continually monitors the quality of installation and restraint of the child Warns if the child climbs out of the seat. It would be appropriate to monitor the development of this innovation. 4.4 Vehicle Seat Design A recent study conducted in the United Kingdom (Le Claire & Visvikis, 2003), highlighted the need to include vehicle interior design characteristics in programs aimed at improving the level of protection provided to children in dedicated child restraints. Dedicated is defined as designed to suit specific vehicles. This study investigated the reduction in the level of protection provided to 17 RACV RESEARCH REPORT NO 04/04

Página 25SAFETY INNOVATIONS FOR AUSTRALIAN CHILD RESTRAINTS 18 children in dedicated child restraints when significant loading to the child and the restraint is allowed to occur through the vehicle seat backrest. In particular, Le Claire and Visvikis (2003) investigated the effect of vehicle seat back motion on the risk of injury to restrained children. The study found that the greatest danger to the child does not generally arise due to the restraint actually being loaded and the loads transferring to the child, but is due to forward motion of the vehicle seat which results in extra forward motion of the child restraint and therefore the child's head. Sin embargo, para children in booster seats the danger does arise from direct loading because the child can be compressed between the loaded vehicle seat and the adult seat belt (Le Claire & Visvikis, 2003). According to Le Claire & Visvikis (2003), European regulations require vehicle seat backs to withstand a dynamic test simulating loading with 38kg of luggage. They suggest that this needs to be increased to a higher mass more representative of the loads that would be encountered in real world crashes. The existing regulation currently allows a specific amount of forward deformation when the seat is subjected to dynamic loading. On the basis of their results, Le Claire and Visvikis (2003) recommend this allowable forward deformation also be reduced. Contrary to common expectation, the back rests of car seats are not strong enough to restrain a rear seat occupant or luggage. The seats can withstand their own weight in a 20g impact. This perceived 'weakness' can and does allow unnecessary injury.

Page 34: Informe de Investigación SRI en Australia

The impetus for Le Claire and Visvikis' (2003) study was the observation of cases collected during a field study of children being injured as a result of luggage loading the rear seat. Similar loading through the back of the vehicle seat has been observed in Australia. In some instances this has led to significant injury where injury would not have otherwise occurred. Le Claire and Visvikis (2003) also observed that small vehicles with rear seats with a 'split' design sometimes posed a significant threat to rear seated children. The Australian Design Rules are not demanding in regard to seat strength and the whole area of adequacy of rear seat strength and split seats appears to be a potential problema. On the other hand, the low rate of reported problems may indicate that most manufacturers voluntarily design above minimum requirements and test for such situations. Occupant space for rear seated child occupants can be severely intruded by collapsing front seats. This is a particular issue for small vehicles were rear seat occupant space is already at a minimum. This is a contentious issue in US litigation. Saczalski, Sances, Kumaresan, Burton and Lewis (2003) conducted a study of the injury potential posed to children occupying rear seats from collapsing front seats. Various sized adult crash test dummies were placed in 'average' strength front seats and a Hybrid III 3 year old was placed in a booster in the rear seat directly behind the adult dummy. Each different adult test dummy/Hybrid III 3 year old configuration was subjected to 3 different severity impacts ranging between 22.5 and 42.5 km/h. Some studies suggest that soft tissue neck injury for adults in rear impacts can be reduced by seat back collapse. Downsides are:- It assists ejection of the adult which can lead to higher injury levels for the front seated adults, and Increased exposure to injury for rear seat child and adult occupants. 4.5 Improved Side Impact Protection The need to provide energy absorption in the side wings of dedicated child restraints and booster seats was mentioned previously. Although some work in studying the possible improved levels of protection was conducted by Brown and Griffiths at Crashlab in the early 1990's, none of this work was formally published. Elsewhere in the world, there has been very little attempted in this area. Un relatively recent paper, published in a biomedical journal, details a small test program studying the

Page 35: Informe de Investigación SRI en Australia

'biomechanical effects of padding in child seats' (Kumaresan, Sances, Carlin 2002). Infant dummy

Página 26head drop tests on to surfaces were used to represent the interior of child restraint side wings. Un variety of materials, ranging from no padding to 19mm polypropylene padding were investigated. Drop velocities of 2.2, 4.5 and 6.7m/s were used. The authors reported that the Head Injury Criteria (HIC), peak acceleration and angular acceleration were reduced by up to 91%, 80%, and 61%. Este indicates significant potential reductions in head injury. This substantiates the potential benefits of our proposal for improved side impact performance. Improved side impact test methodologies are currently under development or proposed in Europe, the US and Australia. Standards Australia is currently in the process of adopting a more stringent side impact test method. The increasing number of vehicles coming onto the market with side airbags has also raised some concern in the international community regarding, the influence these airbags are likely to have on child occupants. According to Weber (2000) less than 1% of these vehicles have airbags operating in the rear seats, but the proportion can be expected to increase. Weber (2000) also reports that there have been no studies reported to date that children properly restrained in child restraints of any type will be at any increased risk of injury. However, Weber (2000) does cite studies that have shown unrestrained children and out of position children could be injured by these devices. Recently, Tylko and Dalmotas (2003) reported on a test program involving child dummies seated in child restraints that where exposed to in-vehicle, static, side mounted airbag deployments as well as full scale side impact crash tests. The results suggested that properly restrained infants and children 'occupying age appropriate child seats' may receive some protective benefits provided the child seat and the child occupant are correctly positioned. The results from this work are being used by Transport Canada to develop some preliminary guidelines for parents and guardians carrying children in vehicles equipped with side airbags. As mentioned earlier, the interaction between rigidly anchored CRS and rear-seat side airbags needs further study.

Page 36: Informe de Investigación SRI en Australia

4.6 Improved Protection for Older Children There is scope for further work to improve the level of protection available for children in the 4 to 10 years age and size range. North American researchers have recently published a number of papers highlighting the low rate of booster use in this age group (Simpson, Moll, Kassam-Adams, Miller, Winston 2002; Durbin et al 2001; Winston et al 2001). This group is also working to increase the use of booster seats by children over 4 through education programs and lobbying for increased legislative coverage. Durbin, Elliot and Winston (2003) recently published the results of a study examining the effectiveness of belt positioning boosters in preventing injury compared to adult seat belts in children aged 4 – 7. They found the 'odds for injury' were 50% lower for children in the age range using booster seats compared to children in this age range using adult seat belts. They use these results to support calls for extension of child restraint laws in many states in the US from 4 years old to 7 years old. This is the one significant area where both Australian practice and current developments lag North Latina. North America has a large range of booster seats for children who have outgrown child seats. Simpson et al (2002) reported the findings of a study aimed at identifying 'barriers to booster seat use and strategies to increase their use'. The study found that behavioural type differences such as risk perception, awareness/knowledge, and parenting style existed in parents of children using boosters compared to parents of children using adult seat belts. They concluded that such findings were useful in providing the necessary background for the development of messages to parents aimed at encouraging booster use. They also noted the role the children actually play in the decision making process of the parent. While this work is not directly relevant to the primary discussions 19 RACV RESEARCH REPORT NO 04/04

Página 27SAFETY INNOVATIONS FOR AUSTRALIAN CHILD RESTRAINTS 20 included in this document, it highlights the gap in child safety related research currently in existence in Australia. No such work is currently being conducted, or has been conducted in

Page 37: Informe de Investigación SRI en Australia

Australia for at least a decade. A pilot research project examining the potential to improve booster seat design is underway in NSW. This work aims to demonstrate the potential improvement available by ensuring a child's head is contained by a booster in side impact. It is possible that the adoption of the new side impact test in the Australian Standard may have some effect on booster design in Australia. The Australian Standard CRS committee has discussed eventually including the new side impact test for boosters. This test will almost certainly remove backless boosters, or booster cushions from the market. Only boosters with large padded sidewings and lower anchorages are expected to be able to pass the test. Potential exists for much more work in this area. A consumer program could encourage earlier availability of better boosters offering side impact protection.

Página 28The high level of frontal protection mandated by the Australian Standard has resulted in international recognition as arguably the world's toughest Standard. It was also the first Standard to include a side impact test. Nevertheless, it was a simple test, and frontal protection is so effective that better side impact protection has become the next “frontier” to conquer. A new additional side impact test has been specified in the current revision of the Australian Norma. This test has been taken directly from the NSW CREP and differs from the present Standard in that it provides a dynamic test of the capacity of a child restraint to retain its occupant’s head during a 90 o side impact, and includes the inclusion of a door structure. The previous side impact test was carried out on an open test rig so that there was no impact with any structure during the critical phase of the event. The primary function of the old test was to assess for occupant retention versus ejection. The new test assesses head injury potential in side impacts. The current method of attaching child restraint systems involves the use of an adult seat belt as the means for tying the lower portion of a restraint system to a vehicle. The use of the adult seat belt as the lower anchorage is part of the current mandatory anchorage requirements. The issue of adoption or otherwise of ISOFIX or LATCH systems in Australia recently encountered an impasse. (June to December 2003). The only thing the various parties could agree upon was that

Page 38: Informe de Investigación SRI en Australia

further research would assist more informed identification of the best way forward for Australia. Research and development of a better side impact test to represent real crashes, encourage and fairly assess better side impact protection is underway in Europe, North America and Australia. Resultados are not expected for two to three years (as at December 2003). 5.1 Harmonisation of International Child Restraint Standards Australia's Child Restraint Standard AS1754 has some unique requirements and CRS that comply with ECE44 (the European regulations) or US standards will often not comply with the Australian Norma. The Australian Standard has evolved to address deficiencies that have been identified by researchers over the years, both in the field and in the laboratory. The Standard is seen by some as being design and trade restrictive, however, there is no evidence that Australian consumers have to pay any more for CRS than their European or US counterparts. There is good evidence that the design restrictions are giving superior protection. Perhaps just as important, the method of installing and using all models of Australian CRS is very similares. In overseas markets parents are faced with an overwhelming assortment of CRS configurations, methods of attaching CRS to vehicles and methods of securing the child in the CRS. This results in confusion and high misuse rates. Furthermore, many of the overseas systems are less tolerant to misuse and are more likely to be unsafe when misused. “Keeping it simple” sometimes means that regulators need to be design restrictive. Esto ha sido one of the lessons learnt from nearly three decades of CRS experience in Australia – sadly sometimes only after tragic events have occurred. 5.2 Location of Top Tether Anchorages In contrast to the US FMVSS 225, Australian Design Rule (ADR) 34/01 “Child restraint anchorages and child restraint anchor fittings” has relatively stringent locations and access requirements for top tether anchorage points. The ADR has evolved over two decades to address deficiencies in child 21 RACV RESEARCH REPORT NO 04/04 5. Australian Standards Developments

Página 29SAFETY INNOVATIONS FOR AUSTRALIAN CHILD RESTRAINTS 22

Page 39: Informe de Investigación SRI en Australia

restraint installations. Europe and the USA have had relatively little experience in top tethers and so the development of more lenient requirements in those regions has been of concern to Australian investigadores. As all vehicles sold in Australia are able to comply with the more tightly controlled requirements of the Australian Standard, there do not appear to be good reasons to experiment with children's health by allowing more liberal requirements. The Australian vehicle industry is proposing FMVSS 225 as an alternative to ADR34. Más research is required on this issue but it is likely to show that protection for child occupants may be reduced if the ADR was relaxed so as to allow a larger area for top tether mounting. The larger area would allow top tether straps to be mounted at large offset angles. This could allow more upper movement of the child restraint, and more potential exposure to head injury for the child occupant. Recent offset frontal crash testing by Australian NCAP revealed quite large forward excursions of child dummies in child seats where the top tether was attached to the back of the seat. En el marco del additional loading of the child restraint and dummy the seat bent forward substantially. Mientras que el location of the top tether anchorage on the seat back helps user with access and avoids interference from luggage, it is evident that more work is needed on the problem of excessive forward excursion. Luggage anchorages are also becoming common in some vehicles. These could be confused with top tether anchorages. Better identification may be needed. Head restraints for adult rear seat occupants are compounding problems of where to locate top tether anchorages, and how to connect the child restraint to them. There may be a need for a top tether guide mounted on top of the vehicle seat. 5.3 Australian Child Restraint Evaluation Program (CREP) Although Australian road safety professionals recognised the strength of the Australian Child Restraint Standard in terms of the level of protection provided approved CRS, researchers from the NSW RTA identified scope for improvement. Specifically, researchers carrying out routine Standards approval testing found that although all devices given the Standards mark passed the rigorous dynamic requirements, some devices achieved this in a manner that appeared to offer much higher levels of protection.

Page 40: Informe de Investigación SRI en Australia

Since the Australian Standard was already viewed as one of the most stringent child restraint Standards in the world, the NSW RTA, NRMA and the Australian Consumers' Association (ACA) pooled their resources in 1992 to establish the CREP. The purpose in establishing CREP was to overcome the undesirable variations in child restraint design and performance using consumer pressure rather than legislation. CREP has now been operating in Australia for a decade. In this program, child restraints are subjected to dynamic tests, some more severe than the Australian Standard and usability trials. La objective is to help consumers choose the most effective restraints. It was realised early in the development of CREP that it would not be valid to apply dummy injury performance limits to the ratings because of the lack of appropriate, proven injury criteria and child dummies. These injury measurements are considered during the assessment process, but are secondary factors. Características which limit head excursion and head contacts have higher priority. The dynamic assessments are based on the Australian Standard, but involve additional test procedures, a number of which produce higher crash forces. In addition to the AS 1754 tests referred to previously, a frontal test is conducted at a velocity 56km/h (the NCAP frontal crash test speed) and a deceleration of approximately 34g. A 90 o side and rear impact tests are conducted at the same velocity and with the orientation of the child restraint the same as for the Standards Australia tests. However, for the side impact test, a structure replicating the interior of a side door is added to the test configuration. Un additional side impact test is conducted at an impact angle of 45 degrees, with the door structure in su lugar. This measures the ability of the CRS to retain the child's head within the device.

Página 30Preparations for the initial series commenced in 1992, with the series being completed in 1994. This was followed by a second series in 1996 and the most recent series in 2000. Continuación del the initial series into an ongoing program is now managed and funded by the RTA, NRMA and RACV. The outcome is the publication 'Buyers Guide to Child Restraints' which awards a 'Preferred

Page 41: Informe de Investigación SRI en Australia

buy' rating to those restraints that comply with the CREP criteria. Care was taken in designing the guide not to diminish the value of the Standards Mark. Despite the success of CREP the authors of this report have reservations about the validity of the 2000 CREP ratings. It is these authors view that the evaluation process was flawed, and that some highly effective restraints have unfortunately missed out on a “preferred buy” rating. Los autores believe that the program needs a larger funding base, so that it can have access to more resources in the evaluation process. Objective “ease of use” tests need to be developed and included in CREP. Possible tests are being developed by NHTSA and ISO CRS. All evolved from the ICBC test: ICBC’s original contractor is chairing the ISO CRS sub-committee developing the ISO test. There is also a need to review the dynamic assessment procedures included in CREP. Reviewing the CREP methodology would be timely in light of:- The major steps forward in standardised misuse and compatibility methods developed internationally, and The potential of new restraint anchorage systems. CREP could play a role in educating consumers about the benefits of improved anchorage systems once the research has been conducted to identify the best development of ISOFIX/LATCH systems for Australia. Australia is unlikely to find any worthwhile crash performance benefit unless it adopts a tensioned form of flexible lower anchors. An important associated issue is that both ISOFIX and LATCH only allow for two CRS for each rear seat, whereas current anchorage arrangements allow tres. As it would be highly undesirable to push families into bigger vehicles (eg 4WD's) there is a need for an Australian development of three lower anchorage points. The Australian New Car Assessment Program (ANCAP) has been including child restraints and dummies (in line with the EuroNCAP protocol) in vehicles being tested in both offset frontal and side impacts since 1999. Unfortunately, the EuroNCAP CRS evaluation procedures are seriously flawed and lead to misleading reporting of CRS performance. Australian NCAP has made strong representations to EuroNCAP in this regard. The NHTSA has adopted a CRS consumer program based on ease of use alone. Their consumer program does not assess relative crash test performance on a sled. 23 RACV RESEARCH REPORT NO 04/04

Page 42: Informe de Investigación SRI en Australia

Página 31SAFETY INNOVATIONS FOR AUSTRALIAN CHILD RESTRAINTS 24 Of the safety innovations that have been reviewed in this report, the following are considered to provide reasonable improvements in safety for the Australian situation. 6.1 Visual Indicator Systems As reported earlier, child restraints in Australia offer high levels of protection, even in high-speed accidentes. This is particularly so when compared to some styles of child restraints sold in North América y Europa. There is, however, still scope for injury reduction through minimising misuse by the use of low-cost engineering means. For example, a readily visible signal on a conspicuous part of the child restraint could inform the carer whether the child restraint was correctly attached to vehicle, and whether the child was correctly harnessed into the child restraint. When the ISO CRS Committee met more than 10 years ago, and decided to create an International Standard for child restraints, members compiled a list of things that they thought must be included in any new Standard. This list included “visual indication” of correct attachment of the child restraint to the vehicle and the child restraint to the child. Unfortunately, somewhere along the way, this was dropped from the draft Standard. In Australia, child restraints are attached to vehicles:- At the base by the lap part of the adult seat belt, or, possibly in the future, two lower anchors, y At the top by the top tether strap. A system to detect correct installation should assess correct attachment at the base and the top. Children are attached to child restraints through a six point harness; however these harnesses have a single point adjuster so, in theory, only one sensor is needed. Correct use of the harness shoulder strap height setting should also be monitored. To monitor the engagement of the system it is necessary to have sensors to detect tension, or otherwise, at four points on the child restraint, namely: top tether, two lower anchorages, and single point harness adjuster. It is the authors view that to have the four sensors communicate their detection and firmness of engagement or otherwise to the equivalent of approximately four indicator lights (low energy light emitting diodes or LEDs) on the upper part of the CRS, where they are clearly visible to the carer.

Page 43: Informe de Investigación SRI en Australia

The detectors would be active and display both positive engagement and lack of engagement. La initial concept envisages something like 4 green lights for all okay and up to 4 red lights if part of the system is not okay. Power for the system should be self-contained - for example, a rechargeable battery could be coupled to a small solar panel on the CRS. There is potential that all of this can be done for about five dollars. A simple means of getting the system to be able to communicate with the vehicle dashboard display should also be considered. The idea being that if the vehicle manufacturer wanted such a system, they would allow for a signal overlaid on the existing wiring harness, or wireless transmission direct to dashboard sensor display. 6. Potential Safety Innovations for Australian Restraints

Página 326.2 User Manual Permanently Attached to CRS Britax in the USA recently introduced an abbreviated version of its manual in a durable paper. La manual is permanently attached to the CRS. It is common knowledge that the manual is usually separated from the child restraint as soon as the packaging is opened, so that manuals are rarely available for anyone other than the first user. The availability of a permanently attached manual on the child restraint has potential to assist better ongoing correct use of the child restraint. 6.3 Tensioned, Flexible LATCH-style Lower Attachments Late in the development of the ISOFIX system, US vehicle manufacturers proposed a flexible lower anchorage system called Universal Child Restraint Anchorage (UCRA). Several members of the ISO CRS Committee conducted laboratory testing of the various systems. Much of this comparative work was made available to the ISO CRS Committee, but was otherwise unpublished, particularly the Australian work. A consistent outcome from the work was that the more rigid the coupling of the child restraint to the vehicle, the better the performance of the child restraint, particularly in side impact crashes. En other words the rigid ISOFIX system offered the best performance, with the flexible lower rear coupling performance being dependent on how they were coupled to the vehicle. A moderate level of lower rear slack reduction can be gained by the use of retractors that apply

Page 44: Informe de Investigación SRI en Australia

tension to the lower straps. A system of this nature would require a mechanism to release the retractor when removing the CRS from the vehicle. A possible disadvantage would be the user had to overcome the tension in the retractor during installation and removal, but this could be overcome by careful design. Greater lower rear anchorage tensions could be achieved by the incorporation of mechanical tensioning devices in the base of the child restraint. These could be relatively low-cost, such as either an adaptation of load webbing tension ratchet devices, or a knob turning a thread which pulled on a saddle to tension the webbing. Such devices readily exist, are conducive to modification, and could be incorporated in the base of the child restraint. A major potential advantage of tensioned lower rear flexible anchorages is that they could allow the fitment of three child restraint systems in the rear seat of a vehicle, whereas the rigid ISOFIX system limits the number of child restraints to two. 6.4 Rigid ISOFIX Style Lower Attachments A few models of CRS in Europe have rigid attachments to ISOFIX anchorages. These may be simpler to use than flexible straps and may restrain the CRS more firmly, particularly in side impacts. However, in North America, these potential benefits were not seen as sufficient to preclude the use of flexible straps. Potential problems are that: Rigid designs appear to be more cumbersome and are more prone to installation difficulties in some vehicles It may be more difficult to use adult seat belts where there is no ISOFIX anchorage, and Only two rigid ISOFIX CRS can be used in the rear seat. 6.5 Side Impact Protection Methodology Research conducted in Australia has shown that Australian child restraints fitted with top tether straps offer very high levels of protection in frontal impacts, with no significant improvement in frontal crash performance to be gained by the use of more rigid lower anchorages. 25 RACV RESEARCH REPORT NO 04/04

Página 33SAFETY INNOVATIONS FOR AUSTRALIAN CHILD RESTRAINTS 26 However, there is considerable scope for improvement in side impact protection. The way that a child restraint can offer improved performance in side impacts is by: Preventing rotation of the child restraint to face the area of side intrusion

Page 45: Informe de Investigación SRI en Australia

Preventing sideways movement of the child restraint towards the area of side intrusion Keeping the child's head contained within the child restraint Providing energy absorbing padding in the shell of the child restraint, so that this energy absorbing material is interposed between the child's head and the area of intrusion. The question then arises, what is an appropriate test of child restraint performance in side impacts. As discussed earlier, the Australian consumer program CREP conducted a side impact test using a test bench seat with a side door and conducting impacts at 90 o and 45 o . This test is being considered for mandatory inclusion in the Australian Standard. The proposed side impact test in the ISO CRS Standard uses a hinged swinging door. No hay plans for this test's adoption in Australia or North America at the present time. Its potential adoption in Europe appears to be stalled waiting for development of injury criteria and possibly better test maniquíes. The US government is committed to introducing a side impact test. These authors investigations have indicated that they think the ISO CRS test is too complex, can be tuned for, and may not be representative. They are interested in finding out more about the Australian CREP test. Discussions with US researchers have indicated a common interest in developing a more universal side impact test with a flat faced intruding door. Possible Australian preliminary trial specifications for such a test are angle of 63 o , velocity change of 50 km/hr, and depth of intrusion to be determined from further research including sources such as recent IIHS full scale laboratory tests, Australian NCAP crash tests, Children's Hospital of Philadelphia in-depth side impact crash studies etc. The 63 o angle is the same as in the US moving barrier/side impact crash test for adult occupants. 6.6 Tensioning of Adult Seat Belt Britax have a design of CRS that automatically tensions the adult seat belt when the restraint is installed in the vehicle. The subsystem has not been tested in Australia. This is superseded by separate lower rear anchorages. It may have potential for carers seeking a more rigid restraint in vehicles where CRS continue to be attached by seat belts. 6.7 Easy Adjustment of Harness Shoulder Height

Page 46: Informe de Investigación SRI en Australia

Several overseas designs of CRS incorporate the harness shoulder slots in a back plate that can be adjusted vertically. This avoids the need to rethread the harness webbing when the harness height needs to be changed. This appears to be a particularly useful feature. It is not difficult to imagine the potential benefits, for example, where different children must use the same CRS. Even for one growing child, it eliminates the potential for misuse when harness webbing has to be rethreaded through different shoulder height slots. Further advantages are:- That height adjustment can be more gradual rather than in distinct steps, and The side impact protection and support for the child's head can maintain better optimal position with respect to the head. It would be useful to obtain a number of these devices and assess their ease of use in Australia.

Página 346.8 Anti-submarining Seat Design “Submarining” is the term used to describe an occupant sliding partially forward under a seatbelt, or the lap part of a seat belt sliding up off the bony pelvis, into the soft abdomen. Some European models claim that the seat of the CRS has anti-submarining features. Esto no es un significant issue with Australian CRS that use double crotch straps, as double crotch straps prevent submarining. However, this could have potential for booster seats which do not have crotch straps. 6.9 Chest Clips Many US and European CRS are supplied with chest clips that are intended to keep the shoulder straps in place. The Australian Standard requires CRS to meet rigorous performance requirements without chest clips. Australian researchers have traditionally regarded chest clips as a potential neck/breathing hazard. Since the mandatory introduction of double crotch straps, there is no known scientific material to support the ongoing banning of chest clips, however there is also no strong case for their introduction in Australia. At the present time there is no compelling evidence to review this situation. 6.10 Top Tether Guides The development of better head restraint systems for adult rear seat occupants in vehicles has in many cases:- Made it more difficult to attach the top tether strap, and Potentially lowered top stability of the CRS.

Page 47: Informe de Investigación SRI en Australia

Examples include top tethers which have to pass over the top of a head restraint, or top tethers which need a dual strap to go around head restraints. Such systems probably only have a moderate affect on frontal impact performance, however their inherent geometry is likely to allow significantly increased lateral deflection in side impacts. We are told that there has been some unreported sled test work in Australia which demonstrates this phenomenon. 27 RACV RESEARCH REPORT NO 04/04

Página 35SAFETY INNOVATIONS FOR AUSTRALIAN CHILD RESTRAINTS 28 An attachment here shows the kind of programs and rationale for current North American programs (GWU). They seem to be focussed on problem definition, whereas these authors believe we have progressed beyond that to a need for development of implementable solutions. Based on potential benefits in Australia and the state of available technology, these authors believe that the areas which offer potential for worthwhile improvement of Australian child restraints include:- Visual indicator systems to eliminate behavioural misuse through engineering means Development of a simpler, more universal side impact test incorporating some intrusion, and more biofidelic ways of assessing energy absorption for a child's head. Development and availability of tensioned lower rear flexible anchorages. Initially this will need to be an Australian initiative, because Europe is committed to rigid, and USA is in its early experience days with top tethers. Assessment and marketing of simpler height adjustment for shoulder straps Permanent attachment of user manuals to CRS. Incorporation of top tether guides on vehicle seat back tops for more rigid lateral attachment and hence better side impact performance. Adult head restraints may need a hole through them for top tether straps Improved booster seat design, with side impact protection, anti-submarining features, and separate attachment to car seat. 7. Safety Innovation with Greatest Potential for Australia

Página 368.1 CRS Design and Use Issues To justify changes to Standards, regulations and consumer test programs further research is

Page 48: Informe de Investigación SRI en Australia

recommended for most of recommended innovations. Further research priorities include:- 1) Developing a cost-effective visual indicator system for misuse reduction - this would involve mechatronics research and development of prototype systems, in consultation with CRS manufacturers and vehicle manufacturers. 2) Investigations of side impact issues - this would involve a range of sled tests to compare existing and conceptual CRS and a range of attachments to the vehicle. CHOP Traumalink USA has indicated they may be able to provide some virtual modelling to simulate other crash características. ANCAP side impact test data would also be useful to evaluate. 3) Acquiring and assessing a range of CRS with innovative features from around the world 4) Comparing CRS performance in severe frontal crashes - this would include a series of crash barrier tests using selected models of large and small cars. A repeat of the variable speed (from 40km/h to 100km/h) crash test conducted by Crashlab in the mid 1990's is proposed. Esto es partly in response to criticisms from Europe that vehicle bodies have become stiffer since those tests were conducted and therefore children in forward facing CRS could be exposed to higher fuerzas. ISOFIX/LATCH attachments could be compared alongside current Australian designs (top tether and adult seat belt) in these tests. 5) Use of the most recent, and biofidelic, Q-series child dummies in the test program. En particular, the prototype Q3S. For older children, the new Hybrid III 10 year old with slouch pelvis is most apropiado. Previous child dummies have severe limitations for prediction of injury risk. 6) A review of test and rating methods for CRS consumer programs currently operating in Australia and Japan and proposed programs in Europe and North America. 8.2 Vehicle Design Issues Vehicle design issues that may require further research are: Provision for ISOFIX anchorages in the ADR Routing top tethers around rear seat head restraints The top tether location requirements in the ADR could be tightened up to improve accessibility y el rendimiento Where a top tether depends on seat back strength then the seat back should be strong enough to prevent forward excursion of the CRS in a frontal crash. A recent ANCAP crash test revealed excessive excursion of the CRS where the top tether anchorage was located on the seat back. Luggage tie down anchorages in some vehicles could be confused with top tether anchorages

Page 49: Informe de Investigación SRI en Australia

There is a need to assess CRS to vehicle compatibility Rear seat (particularly split rear seats) and front seat (particularly in small cars) seat strength 29 RACV RESEARCH REPORT NO 04/04 8. Research Requirements

Página 37SAFETY INNOVATIONS FOR AUSTRALIAN CHILD RESTRAINTS 30 8.3 Consumer Programs Experience from the New Car Assessment Program (NCAP) has demonstrated that consumer information programs, when effectively operated, can significantly influence both the products that people buy and (possibly more importantly) the products on the market. The Australian Child Restraint Consumer Program was initiated by Michael Griffiths and Paul Kelly with the objective of ensuring there was no degradation in the levels of protection offered by child restraints sold in Australia. It was initially intended to update the program regularly. Unfortunately, the last iteration of the program saw the evaluation of the tests results performed with an evaluation on different biomechanical criteria than that used for the original tests. Este appeared to utilise unvalidated head injury criteria, rather than focus on the more important issue of head excursion. This program is overdue for an overhaul. It needs to be revised so as to represent current knowledge, and be structured so as to encourage new safety innovations. In addition to reviewing and upgrading the technical aspects of the Australian Child Restraint Evaluation Program, it would benefit from broadening its bases of supporters, and for improving its accessibility and usefulness to parents and carers. 8.4 Standards and Regulations Recommendations for amendments to the Australian Standard for Child Restraints and ADR for CRS anchorages would arise from further research. Nevertheless, the reality is that in 1989, Australian States ceded their power to make rules about vehicle construction to the Federal Government. This significantly reduced the ability of the States, and to a degree motoring organisations, to influence the Federal rule-making process. It was the lack of ability to influence development of Australian Standards and Design Rules which created the need for the child restraints consumer program CREP. 8.5 International Issues Australian field research with child restraint systems, and laboratory sled test research programs

Page 50: Informe de Investigación SRI en Australia

have historically had a significant influence on overseas developments in child restraints. Australia is still regarded as a world leader in the area of child restraints. The recent adoption of top tethers in the US, and ongoing alliances of Australian researchers with US researchers will continue to enhance the prospects of future harmonisation with North America. With the reduction in Government sponsored road safety research, particularly in the field of child occupant protection, there is a real danger of Australia falling behind in this field. If Australian children are to continue to be provided with world's best practice safety systems, then Australia will need to continue its lead role in this area. 8.6 Ongoing Monitoring The authors recommend that surveys and CRS sales data be evaluated to monitor the uptake of safety innovations (and CREP “Preferred buys”). This should be an ongoing function, undertaken every two years - possibly in conjunction with well-designed misuse surveys. CRS to vehicle compatibility should be assessed - possibly as part of the ANCAP consumer program. Trends with top tether location and confusion with luggage tie-downs could also be monitored. Ongoing monitoring of the outcome of both restrained and non restrained children in crashes is also importantes.

Página 38The main ways to implement innovative improvements to Australian CRS are through consumer test programs such as the CREP program and through changes to the Australian Standards and ADR34. Past experience has shown that the CREP program is the most effective way to encourage the introduction of new features. There is a considerable program of research to be conducted to truly progress Australian child restraint design and correct use. 31 RACV RESEARCH REPORT NO 04/04 9. Implementation Strategies

Página 39SAFETY INNOVATIONS FOR AUSTRALIAN CHILD RESTRAINTS 32 This review set out primarily to look at innovation and developments in child restraints, and child restraint attachments systems that could offer improved level of protection for Australian child car

Page 51: Informe de Investigación SRI en Australia

ocupantes. Areas for innovation this research project identified were:- Reduction in misuse through the introduction of visual indicator systems. A visual indicator system would be integrated into the child restraint system which indicated to the consumer whether the child restraint was correctly installed in the vehicle, and whether the child was correctly harnessed in the child restraint. Improved booster seat design for an older range of children, incorporating side impact protection and anti-submarining features. Provide better lower fixation of the child restraint system through the adoption of a variant of the North American system. This would use two flexible lower anchor straps, one for each lower rear corner of the child restraint, which are tensioned after installation so as to provide a near rigid installation Introduction of a more demanding side impact test for child restraints. To pass such a test, it is envisaged that a child restraint would require padded energy absorbing side wings, and the child's head be contained by the harness arrangement within these wings. Variable height shoulder harness adjustment to be achieved through a continuously variable system rather than the need for rethreading the harness straps through slots at different heights. Permanent attachment of user manuals to the child restraint system. In summary, in terms of relative levels of protection offered to vehicle occupants, children are well catered for in Australia. Nevertheless, there is scope for development of child restraint systems which offer even higher levels of occupant protection and, more importantly in the short term, scope to develop innovation in child restraint systems that greatly reduces the likelihood of incorrect installation. 10. Observaciones finales

Página 40Angran, P., & Winn, D. (1989) Injuries among 4 to 9 year old restrained motor vehicle occupants by seat location and crash impact site. American Journal of Diseases of Children, 143 (11), 1317-1321. Arbogast, KB, & Moll, EK (2001). Factors influencing paediatric injury in side impact collisions. Journal of Trauma-Injury Infection & Critical Care, 51 (3), 469-477. Bell, R., Burleigh, D., & Czerakowski, W. (1994). ISOFIX: The potential of a universal vehicle/child restraint interface for misuse reduction and performance enhancement. 38

Page 52: Informe de Investigación SRI en Australia

ª STAPP Car Crash Conference. Breed, D. (1998). A smart airbag system . Paper presented at the 16 ª International Technical Conference on the Enhanced Safety of Vehicles. Brown, J., Kelly, P., & Griffiths, M. (1997). A Comparison of Alternative Anchorage Systems for Child Restraints in Side Impact, SAE 973303. Paper presented at the Child Occupant Protection, 2 ª Symposium Proceedings Society of Automotive Engineers, Warrendale PA. Brown, J., Griffiths, M., & Paine, M. (2002a). Effectiveness of child restraints: The Australian experience. Research Report 06/02, Australian Automobile Association. Brown, J., & Bilston, L. (2003). Child occupant research project: Preliminary results. Paper presented at the Road Safer Kids Seminar, Sydney. Brown, J., & Bilston, L. (2002). Child restraint use and misuse. Paper presented at the Child Restraints Workshop, Road Safety Research, Policing and Education Conference, Adelaide. Carlsson, G., Norin, H., & Ysander, L. (1991). Rearward-facing child seat. The safest car restraint for children? Accident Analysis and Prevention, 23 (2-3), 175 - 182. Chen, T., Breed, D., & Xu, K. (2003). Development of an optical occupant position sensor system to improvement frontal crash protection. Paper presented at the 18 ª International Technical Conference on the Enhanced Safety of Vehicles. Durbin, DR, Kallan, MJ, & Winston, FK (2001). Trends in booster seat use among young children in crashes. Paediatrics, 108 (6):E109 Durbin, DR, Elliot, MR, & Winston, FK (2003).Belt-positioning booster seats and reduction in risk of injury among children in vehicle crashes . The Journal of the American Medical Association, 289 (21), 2835 – 2840              2835 – 2840      . Ebel, BE, Koepsell, TD, Bennet, EE, & Rivara, FP (2003). Too small for a seatbelt: Predictors of booster seat use by child passengers. Paediatrics , April 111 (4 pt 1), 323 - 327. Gotschall, CS, Better, AI, Bulas, D., Eichelberger, MR, Bents, F., & Warner, M. (1998). Injuries to children restrained in 2 and 3 point belts. Association for the Advancement of Automotive Medicine 42 ª AAAM, 29 - 43. Griffiths, M., Brown, J., & Kelly, P. (1994). Child restraint system development in Australia. Paper presented at the 14 ª

Page 53: Informe de Investigación SRI en Australia

International Technical Conference on the Enhanced Safety of Vehicles. Henderson, M. (1994). Children in car crashes; An in depth study of car crashes in which child occupants were injured. Child Accident Prevention Foundation of Australia, New South Wales Division. Henderson, M., Brown, J., & Paine, M. (1994). Injuries to restrained children. Paper presented at the Association for the Advancement of Automotive Medicine, 38 ª Conference AAAM Des Plaines IL. Henderson, M., Brown, J., & Griffiths, M. (1997). Children in adult seat belts and child harnesses: crash sled comparisons of dummy responses'. Proceedings of the 2nd Child Occupant Protection Symposium, SAE P-316. Insurance Institute for Highway Safety, (2003). LATCH kids in cars – but the task still isn'ta breeze. Status Report, 38 (5), 1. 33 RACV RESEARCH REPORT NO 04/04 11. Referencias

Página 41SAFETY INNOVATIONS FOR AUSTRALIAN CHILD RESTRAINTS 34 Isaksson-Hellman, I., Jakobsson, L., Gustafsson, C., & Norin, H. (1997). Trends & effects of child restraint systems based on Volvo's Swedish accident database, S AE 973 229. Child Occupant 2 ª Symposium Society of Automotive Engineers, Warrendale PA. Kelly, P., & Griffiths, M. (1996). Child restraint evaluation program . Proceedings of the 15 ª Internacional Technical Conference on the Enhanced Safety of Vehicles, Melbourne, Australia. Kelly, P., Brown, J., & Griffiths, M. (1995). The performance of rigid anchorage systems with and without top tether. International Conference on the Biomechanics of Impact Injury IRCOBI Switzerland, 75 - 93. Khaewpong, N., Nguyen, TT, Bents, FD, Eichelberger, MR, Gotschall, CS, & Morissey, R. (1995). Injury severity in restrained children in motor vehicle crashes, SAE 95271. Paper presented at the 39 ª STAPP Car Crash Conference, Society of Automotive Engineers. Warrendale PA . Kumaresan, S., Sances Jr, A., & Carlin, F. (2002). Biomechanical analysis of padding in child seats and head injury. Biomedical Sciences Instrumentation, 38, 453-458.

Page 54: Informe de Investigación SRI en Australia

Langweider, K., Hummel, T., Finkbeiner, F., & Roselt, T. (2003). The significance of ISOFIX in reducing misuse – Analysis of potential on the basis of field observations and sled tests. Paper presented at the 18 ª Internacional Technical Conference on the Enhanced Safety of Vehicles. Le Claire, M., & Visvikis, C. (2003). The influence of rear loading on the protection of child car occupants in child restraints . Paper presented at the 18 ª International Technical Conference on the Enhanced Safety of Vehicles. Lelande, S., Legault, F., & Pedder, J. (2003). Relative degradation of safety to children when automotive restraint systems are misused . Paper presented at the 18 ª International Technical Conference on the Enhanced Safety of Vehicles. Lowne, R., Roy, P., & Paton, I. (1997). A comparison of the performance of dedicated child restraint attachment systems (ISOFIX) . Paper presented at the Second Child Occupant Protection Symposium, November. Morris, SD, Arbogast, KB, Durbin, DR, & Winston, FK (2000). Misuse of Booster Seats. Injury Prevention, 6 (4), 281 - 284. National Highway Traffic Safety Administration. (2003). Available on: http://www.nhtsa.dot.gov/nhtsa/ announce/press/pressdisplay.cfm?year=2003&filename=pr24-03.html. Accessed 17 May, 2004. Paine, M. (1998). Child restraint surveys in New South Wales: 1998 . RTA Research Report 98/3 , November. Rattenbury, SJ, & Gloyns, PF (1993). A population study of UK car accidents in which restrained children were killed . Child Occupant Protection Symposium: San Antonio. Saczalski, KJ, Sances Jr., A, Kumaresan, S., Burton, JL, & Lewis Jr., PR (2003). Experimental injury study of children seated behind collapsing front seats in rear impacts. Biomedical Sciences Instrumentation, 39, 250 - 265. Simpson, EM, Moll, EK, Kassam-Adams, N., Miller, GJ, & Winston, FK (2002). Barriers to booster seat use and strategies to increase their use. Paediatrics, 110 (4) 729 - 736. Tylko, S., & Dalmotas, D. (2003). Side airbags: Evaluating the benefits and risks for restrained children. Paper presented at the 18 ª International Technical Conference on the Enhanced Safety of Vehicles. Weber, K. (2000). Crash protection for child passengers: A review of best practice. UMTRI Research Review, 31 (3), 1-25.

Page 55: Informe de Investigación SRI en Australia

Weinstein, EB, Sweeney, MM, Garber, M., Eastwood, MD, Osterman. JG, & Roberts, JV (1997). The effect of size appropriate and proper restraint use on injury severity of children. Paper presented at the Child Occupant 2 ª Symposium Society of Automotive Engineers, Warrendale PA. Winston, FK, Durbin, DR, Kallan, MJ, & Moll, EK (2000). The danger of premature graduation to seat belts for young children. Paediatrics, 105 , 1179 - 1183.

Página 42Application 20020047252 “Supplementary Restraint System” proposes to use an airbag built into a jacket that is worn by the child. It appears that the technology is unproven (it is likely to be difficult to develop). Application 20020024205 “Belt Force Sensor” is a strain gauge sensor device that attaches to belt webbing and measures belt tension. Better devices are already available. Application 20020175546 “Kinetic child restraint device” is an infant with transverse and longitudinal axes of rotation - the intention being to “automatically pivot a child forward, rearward and sideways to position the head, neck and back of the child perpendicular to the impact force”. It is imaginative but the effects of inertia appear to have been ignored. Patent 5,549,356 “Child restraint system” uses a retractor mechanism for harness shoulder straps associated with a T-shield system. Not applicable to Australia, where shields are not used. Patents 6,030,047 and 6,491,348 “Child vehicle seat with child restraint harness adjustment mechanism” has a mechanism to allow vertical adjustment of the back portion of the child seat, together with the shoulder straps. This avoids the need to re-route the harness straps to adjust their height. La Cosco Alpha Omega child seat incorporates this design (Cosco was an assignee to the patent). Patent 5,839,793 “Child seat harness clip” and 5,902,016 “Child restraint harness clip” are different designs of clip to link the shoulder straps in front of the child's chest. Such clips are not normally used Australia. Patent 6,390,560 “Motorized rigid child restraint seat anchor” (assignee Toyota) appears to be a motorised mechanism to give improved access to ISOFIX style lower anchorages. The need for such a mechanism is questionable.

Page 56: Informe de Investigación SRI en Australia

Patent 6,354,648 “Mounting for child restraint system in a vehicle” is an adaptor plate that clips onto a floor-mounted plate and provides a pair of ISOFIX anchorage points. The need for such a device is questionable. 35 RACV RESEARCH REPORT NO 04/04 Appendix A: Patent search results 6,491,348 2002017546

Página 43SAFETY INNOVATIONS FOR AUSTRALIAN CHILD RESTRAINTS 36 Patent 6,155,638 “Child restraint seat having amplified motion harness adjuster” (assignee Fisher-Price) is a somewhat complicated mechanism for adjusting the height of harness correas. Patent 6,485,055 “Anchorage system and apparatus for a child safety seat and method of using same” (assignee Honda) is a design of mounting plate for an ISOFIX style lower anclaje. Patent 5,135,285 “Twin shoulder belt adjustment mechanism for a child restraint system” (assignee Chrysler) is an early and cumbersome device for adjusting harness shoulder height. Better designs were subsequently developed. Patent 4,822,102 “Seat belt buckle for child restraint” (assignee General Motors) is a modification to an adult seat belt buckle to allow attachment of a dog-clip style CRS strap. La description does not indicate what method of attachment should be used for the other side, where there is no buckle. Patent 4,762,364 “Child restraint device” incorporates a swivel base in the CRS. Apparently this is to make it easier to place the child in the CRS. There is at least one CRS available in Australia with a swivel base. It appears to have no safety benefits. Patent 4,681,368 “Child restraint bassinet” (Assignee Safe-N-Sound) covers the innovative infant capsule that was invented in Australia. Patent 4,345,791 “Child restraint system for motor vehicle” (assignee Ford Motor Company) covers a rearward facing CRS that can be detached from its base. 6,354,648

Page 57: Informe de Investigación SRI en Australia

6,390,560 4,681,368

Página 44Royal Automobile Club of Victoria (RACV) Ltd ABN 44 004 060 833 550 Princes Highway Noble Park North, Victoria 3174 Australia Telephone (03) 9790 2863              (03) 9790 2863       Facsimile (03) 9790 2629 www.racv.com.au

Page 58: Informe de Investigación SRI en Australia
Page 59: Informe de Investigación SRI en Australia
Page 60: Informe de Investigación SRI en Australia
Page 61: Informe de Investigación SRI en Australia
Page 62: Informe de Investigación SRI en Australia