Top Banner
INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0600 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
143

INFORMATION TO USERS - Brown University€¦ · Methods". Proceedings of IEEE Visualization 2001. San Diego. CA. October 2001. Other Conference Publications (Extended Abstracts Refereed):

Oct 19, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • INFORMATION TO USERS

    This manuscript has been reproduced from the microfilm master. UMI films

    the text directly from the original or copy submitted. Thus, some thesis and

    dissertation copies are in typewriter face, while others may be from any type of

    computer printer.

    The quality of this reproduction is dependent upon the quality of the

    copy submitted. Broken or indistinct print, colored or poor quality illustrations

    and photographs, print bleedthrough, substandard margins, and improper

    alignment can adversely affect reproduction.

    In the unlikely event that the author did not send UMI a complete manuscript

    and there are missing pages, these will be noted. Also, if unauthorized

    copyright material had to be removed, a note will indicate the deletion.

    Oversize materials (e.g., maps, drawings, charts) are reproduced by

    sectioning the original, beginning at the upper left-hand comer and continuing

    from left to right in equal sections with small overlaps.

    ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

    800-521-0600

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • Tow ard D y n a m ic S p e c tr a l /h p R efinem ent: A lg o r ith m s and A p p lica t io n s to F lo w -S tru ctu r e In teraction s

    byR o b e rt M . K ir b y I I

    Se.M .. C o m p u te r Science. B ro w n U n iv e rs ity 2001 S c.M .. A p p lie d M a th e m a tic s . B ro w n U n iv e rs ity 1999

    B .S .. M a th em a tics and C o m p u te r and In fo rm a tio n Sciences. T he F lo r id a S ta te U n iv e rs ity 1997

    Thesis

    S u b m itte d in p a r t ia l fu lf i l lm e n t o f th e requ irem en ts fo r the degree o f D o c to r o f P h ilo so ph y

    in th e D iv is io n o f A p p lie d M a th e m a tic s a t B ro w n U n iv e rs ity

    M a y 2003

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • UMI Number: 3087288

    __ ®

    UMIUMI Microform 3087288

    Copyright 2003 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against

    unauthorized copying under Title 17, United States Code.

    ProQuest Information and Learning Company 300 North Zeeb Road

    P.O. Box 1346 Ann Arbor. Ml 48106-1346

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • © C o p y r ig h t

    by

    R o b e rt M . K ir b y I I

    2003

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • T h is d is s e rta tio n by R ob e rt M . K ir b y I I is accepted in its present fo rm by th e D iv is io n o f A p p lie d M a th e m a tic s as s a tis fy in g the

    d is s e rta tio n re q u ire m e n t fo r th e degree o f D o c to r o f P h ilo so p h y

    D a t e I 1 k ( "LO ^ 2^G eorge Em K a rn ia d a k is . D ire c to r

    R ecom m ended to tin* G ra d u a te C o u n c il

    D a te 0 8 / t ___________________D a v id G o tt l ie b . Reader

    D ate 0 ? / l b / V-CC ^ - v ___^— Jan S. H t's thaven . Reader

    A p p ro ved by th e G ra d u a te C o u n c il

    n„„ 1Peder J . E s tru p /

    Dean o f th e G ra d u a te School and Research

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • T h e V ita o f R o b e rt M . K irb y I I

    C itizenship:

    U n ite d S tates o f A m e rica

    Education:

    • B ro w n U n iv e rs ity . M as te r o f Science degree in C o m p u te r Science. M ay 2001.

    P ro je c t T it le : "V is u a liz in g F lu id F lo w D a ta : F rom the C anv;is to the C’ave"

    A d v is o r: P rofessor A n d rie s van D am

    • B ro w n U n ive rs ity . M as te r o f Science degree in A p p lie d M a th e m a tic s . M ay 1999.

    A d v is o r: P rofessor G eorge E m K a rn ia d a k is

    • T h e F lo r id a S ta te U n ive rs ity . B ache lo r o f Science degree: M a jo rs : A p p lie d M a th e

    m a tics and C o m p u te r and In fo rm a tio n Sciences: G ra d u a te d Sum m it C um Lauda.

    P ub lica tions

    Book

    1. George E m K a rn ia d a k is and R o b e rt M . K irb y . Para l le l S c ie n t i f ic Com p a t in if in C-r +

    and M P I . C a m b rid g e U n iv e rs ity Press. J u ly 2002.

    Book C hapters:

    1. R .M . K irb y . G .E . K a rn ia d a k is . O . M ik u lc h e n k o and K . M a y a ra m . " In te g ra te d S im u

    la t io n fo r M E M S : C o u p lin g F lo w -S tru c tu re -T h e rm a l-E le c tr ic a l D o m a in s ". The C R C

    Handbook o f M E M S . C R C Press. B oca R a ton . F L . 2001. E d ito r : M . G a d -e l-H ak

    2. R o b e rt M . K ir b y and George E m K a rn ia d a k is . "U n d e r-R e s o lu tio n and D iagnostics

    in S p e c tra l S im u la tio n s o f C o m p le x -G e o m e try F lo w s". T urb u len t F low C om pu ta t ion .

    K lu w e r A cadem ic P ub lishers . T h e N e the rla nd s . 2001. E d ito rs : D. D rik a k is and B.

    G e u rts

    iv

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • P eer-R ev iew ed Journal P ub lications:

    1. I. L o m te v . R . \ I . K irb y , and G .E . K a rn ia d a k is . "A D is co n tin u o u s G a lo rk in A L E

    M e th o d fo r C om press ib le V iscous F low s in M o v in g D o m a in s ''. J o u rn a l o f C o m p u ta

    t io n a l Physics. Vo l. 155. 128-159. 1999.

    2. R .M . K irb y . T .C . W a rb u rto n , I. L o m te v . and G .E . K a rn ia d a k is . "A D is c o n tin u

    ous G a lo rk in S p o c tra l/h p M e th o d on H y b r id G r id s " . J o u rn a l o f A p p lie d N u m e rica l

    M a th e m a tic s . .‘13:393-405. 1999.

    3. R .M . K irb y . G .E . K a rn ia d a k is . O . M ik u lc h e n k o . and K . M a ya ra m . "A n In te g ra te d

    S im u la to r fo r C ou p le d D o m a in P rob lem s in M E M S ” . J o u rn a l o f M ic ro e le c tro m e

    chan ica l System s. Vol. 10. 3:379-399. 2001.

    P eer-R eview ed C onference P ublications:

    1. R .M . K irb y . H. M a rm a n is and D .H . L a id la w . "V is u a liz in g M u lt iv a lu e d D a ta from

    2D Incom pre ss ib le F low s U s ing C oncep ts fro m P a in t in g " . P roceed ings o f IE E E V i

    su a liz a tio n 1999. San F rancisco. C A . O c to b e r 1999.

    2. G-S K a ram anos . C. E vange linos. R .C . Boes. R .M . K irb y a nd G .E . K a rn ia d a k is .

    "D ire c t N u m e ric a l S im u la tio n o f T u rb u le n c e w ith a P C /L in u x C lu s te r: Fact o r

    F ic t io n ? " . P roceedings o f S u p c rC o m p u tin g 1999. P o rtla n d . O R . N ovem ber 1999.

    3. A . Forsberg. R .M . K irb y . D .H . L a id la w . G .E . K a rn ia d a k is . A. van D am . and .1. E lio n .

    "Im m e rs iv e V ir tu a l R e a lity fo r V is u a liz in g F low T h ro u g h an A r te r y " . P roceedings

    o f IE E E V is u a liz a t io n 2000. S a lt Lake C ity . U T . O c to b e r 2000.

    4. D .H . L a id la w . R .M . K irb y . J.S . D av idson . T .S . M ille r . M . d a S ilva . W .H . W arren ,

    and M . T a r r . "Q u a n t ita t iv e C o m p a ra tiv e E v a lu a tio n o f 2D V e c to r F ie ld V is u a liz a t ion

    M e th o d s ". P roceedings o f IE E E V is u a liz a t io n 2001. San D iego. C A . O c to b e r 2001.

    O ther C onference P u b lica tion s (E x ten d ed A bstracts R efereed):

    1. T .C . W a rb u rto n . I. L o m te v . R .M . K ir b y a nd G .E . K a rn ia d a k is . " A D iscon tinu ou s

    G a le rk in M e th o d fo r th e C om press ib le N av ie r-S tokes E q u a tio n s o n H y b r id G r id s " .

    v

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • P roceedings o f th e T e n th In te rn a tio n a l C onference on F in ite E lem ents in F lu id s .

    Ja n u a ry 1997.

    2. I. Lom tev . R .M . K irb y , and G .E . K a rn ia d a k is . "A D isco n tin u o u s G a le rk in M e th o d in

    M o v in g D o m a in s ". In D iscon t inu ou s G a le rk in Methods: Theory, C om pu ta t ion and

    A p p l ica t ions . Eds. B. C o c k b u rn . G .E . K a rn ia d a k is . and C.-VV. Shu. S p rin ge r-V e rla g .

    N Y . 1999.

    3. R .M . K irb y . I. L o m te v . C. Evange linos. G-S K a ram an os and G .E . K a rn ia d a k is .

    "P a ra lle l D N S o f F lo w -S tru c tu re In te ra c tio n s " . P roceed ings o f th e D oD H P C M P

    Users G ro u p C onference. June 7-10. 1999.

    4. I. Lom tev . R .M . K irb v . and G .E . K a rn ia d a k is . "A D isco n tin u o u s G a le rk in A r b it ra ry

    L a g ra n g ia n E u le r ia n F o rm u la tio n fo r V iscous C om pre ss ib le F lo w s ". P roceedings o f

    th e 2nd In te rn a tio n a l C onference on D N S /L E S . June 7-9. 1999.

    5. R .M . K irb y . T .C . W a rb u rto n . S.J. S h e rw in . A . Beskok and G .E . K a rn ia d a k is . "T h e

    N e k ta r C ode: D y n a m ic S im u la tio n s w ith o u t R em esh ing ". P roceed ings o f th e 2nd In

    te rn a t io n a l C onference on C o m p u ta tio n a l Techno log ies fo r F ln id /T h e rm a l/C h e m ic a l

    System s w ith In d u s tr ia l A p p lic a tio n s . A u g u s t 1-5. 1999.

    5. R .M . K irb y . Y . D u . D . Luco r. X . M a. G-S K a ram anos a nd G .E . K a rn ia d a k is . "P a r

    a lle l D N S a nd LES o f T u rb u le n ce and F lo w -S tru c tu re In te ra c t io n s " . P roceedings o f

    th e D oD H P C M P Users G ro u p C onference. June 5-8. 2000.

    7. .J. Boyan. A . G reenw a ld . R .M . K ir b y and .1. R e ite r. "B id d in g A lg o r ith m s fo r S im n l-

    taneous A u c tio n s " . P roceedings o f I . IC A I W o rksho p on E co no m ic Agents. M ode ls ,

    and M echan ism s, pages 1-11. 2001.

    8. I. P iv k in . R .M . K irb y , and G .E . K a rn ia d a k is . "H ig h -o rd e r D iscon tinu ou s G a le rk in

    M e th o d : S im u la tio n o f C o il F lo w s ". D N S /L E S : Progress and Challenges. T h ir d

    A F O S R In te rn a t io n a l C onference. A r l in g to n . T X . A u g u s t 5-9 2001.

    9. R o b e rt M . K irb y and George E m K a rn ia d a k is . "A D y n a m ic S p e c tra l V a n ish in g

    V is co s ity M e th o d fo r L E S " . A IA A 40f/l Aerospace Sciences M e e tin g and E x h ib it .

    v i

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • Reno. Nevada. Ja n u a ry 14-17. 2002.

    C onference A bstracts:

    1. R .M . K irb y . T .C . W a rb u rto n . I. L o m te v . and G .E . K a rn ia d a k is , " A D is c o n tin u

    ous G a le rk in S p e c tra l/h p M e th o d on H y b r id G r id s -’ . P resented a t the In te rn a tio n a l

    C onference on S p ec tra l and H igh O rd e r M e th od s . June 1998.

    2. R .M . K irb y . A . Beskok. T . W a rb u r to n and G .E . K a rn ia d a k is . "F lo w P ast a C y l in

    der w ith a F le x ib le S p lit te r P la te ” . Presented a t the 51st A n n u a l M e e tin g o f the

    A m e rican P hys ica l S oc ie ty 's (A P S ) D iv is io n o f F lu id D yna m ics . N ovem ber 1998.

    8. I. L om tev . R .M . K irb v . and G .E . K a rn ia d a k is . "A D iscon tinu ou s G a le rk in F o rm u

    la t io n for C om press ib le F low s Past a .'ID F le x ib le W in g ” . Presented a t the F if th

    O ff ic ia l Congress o f th e U.S. A sso c ia tio n fo r C o m p u ta tio n a l M echan ics (U S A C M ).

    A u gu s t 4-6. 1999.

    4. J. A lle n . G .E . K a rn ia d a k is . R .M . K ir b y and A . S m its . "P ie zo -e le c tr ic Eels as Power

    G enera to rs ." Presented a t th e 52nd A n n u a l M e e tin g o f the A m e ric a n P h ys ica l So

    c ie ty 's (A P S ) D iv is io n o f F lu id D yna m ics . N ovem ber 21-23. 1999.

    5. G. K a ram anos. R .M . K irb y , and G .E . K a rn ia d a k is . "A S p e c tra l V a n ish in g V isco s ity

    M e th o d fo r L E S -F E M ". Presented a t F in ite E lem ents in F lo w P ro b lem s . A u s tin .

    T X . A p r i l 30 - M ay 4. '2000.

    6. D. X iu . R. M . K irb y , and G . E. K a rn ia d a k is . “ A S e m i-La g ra ng ian S p e c tra l/h p E le

    m ent M e th o d fo r A d v e c t io n -D iffu s io n " . Presented a t F in ite E lem ents in F lo w P ro b

    lems, A u s tin . T X . A p r i l 30 - M ay 4. 2000.

    7. A . Forsberg. A . van D am . R .M . K ir b y and G .E . K a rn ia d a k is . "S im u la tio n S tee ring

    in C F D ." P resented a t th e U ndersea W eapon S im u la tio n Based D esign W orkshop .

    June 7-9. 2000.

    8. R. M . K irb y and G. E. K a rn ia d a k is . "F lo w Past a B lu f f B o d y w ith a R ig id and a

    F le x ib le S p lit te r P la te " . Presented a t IU T A M S ym p o s iu m on B lu f f B o d y Wakes and

    V o rte x -In d u ce d V ib ra tio n s . June 13 - 16. 2000.

    v ii

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • A cknow ledgm ents

    A cknow ledgm en ts are those th in g s w h ich are o fte n w r it te n la s t b u t are p resented firs t

    in th e docum en t. I am t r u ly blessed to have had the o p p o r tu n ity to in te ra c t w ith m any

    people in m y quest fo r advanced degrees in A p p lie d M a th e m a tic s and C o m p u te r Science,

    a nd fo r th is I am t r u ly g ra te fu l.

    F irs t o f a ll. 1 m ust express m y g ra t itu d e to Professor G eorge E m K a rn ia d a k is . m y

    P h .D . a d v iso r in A p p lie d M a th e m a tic s . T h ro u g h o u t m y five years a t B ro w n , he has

    been a fa ith fu l a d v iso r and m e n to r, re fin in g m y s k ills as a s im u la t io n s c ie n tis t. I am

    a lso g ra te fu l to h im fo r a ffo rd in g me the o p p o r tu n ity to w o rk on an advanced degree in

    C o m p u te r Science w h ile also w o rk in g on m y P h .D . in A p p lie d M a th e m a tic s . He has b o th

    encouraged and su p p o rte d m y c o lla b o ra tio n w ith sc ien tis ts in C o m p u te r Science and in

    o th e r fie lds. I look fo rw a rd to c o n tin u in g o u r p ro fess iona l re la t io n s h ip as c o lla b o ra to rs

    and scholars, and c o n tin u in g o u r persona l re la tio n s h ip as fr iends .

    Secondly. I w ou ld like to th a n k Professor A n d rie s van D am . m y a d v is o r in C o m p u te r

    Science. F rom the ve ry b e g in n in g . A n d y m ade me feel "p a r t o f th e te a m ": I was no t

    considered an A p p lie d M a th e m a tic ia n t r y in g to do C o m p u te r Science, b u t ra th e r I w;is

    respected and encouraged as a s im u la tio n sc ien tis t w ho co u ld co m b in e s k ills in b o th areas.

    A n d y c o n tin u a lly encouraged me to seek o u t those th in g s w h ich I do w e ll, and do them

    b e tte r : to o b je c t iv e ly see those areas w h ich need im p ro ve m e n t, a nd to re fine th em . H is

    m e n to r in g is ve ry m uch a pp re c ia te d .

    T h ird ly . I w ou ld like to th a n k P rofessor D a v id L a id la w o f C o m p u te r Science. I have

    had the o p p o r tu n ity to in te ra c t w ith D a v id on m any d iffe re n t levels as a s tu d e n t in the

    c lassroom , as co -a u th o r on several papers, as c o n s u lta n t on a v a rie ty o f p ro je c ts , and m ost

    im p o r ta n t ly , tis a fr ie n d . H is s c ie n tif ic in s ig h t, his hum or, h is ca n d o r, and m ost o f a ll h is

    fr ie n d s h ip are g re a tly a pp re c ia te d .

    A m o ng the A p p lie d M a th e m a tic s fa cu lty . I w ou ld s p e c ific a lly like to th a n k several

    professors w ho have in flu en ced me as a sc ien tis t. F irs t. I w ou ld lik e to th a n k Professor

    C h i-W a n g Shu fo r p ro v id in g me w ith b o th gu idance and m e n to r in g as a s tu d e n t. I w ou ld

    lik e to th a n k Professor Jan H esthaven fo r be ing a fa ith fu l so u n d in g b oa rd fo r m y ideas

    v i i i

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • and p ro v id in g co rrec tio ns to m y w ayw a rd th o u g h ts as needed. Las tly . I w ou ld like to

    th a n k P ro fessor D a v id G o tt l ie b fo r a llo w in g me to q ues tion h im co nce rn ing the d e ta ils o f

    m a th e m a tic a l ideas, to w h ich he a lw ays p ro v id e d ins ig h t.

    G ra d u a te s tu d e n t experiences are crea ted no t o n ly d u r in g research and in the class

    roo m . Q u ite o fte n a s ig n ific a n t p a r t o f the g ra du a te school experience consists o f th e

    people w ho m you meet a long th e way. I am th a n k fu l to have been p a r t o f the a m az ing

    C R U N C H g roup , d ire c te d by G eorge K a rn ia d a k is . F irs t. I w ou ld like to acknow ledge th e

    a lu m n i m em bers o f the g ro u p fro m w ho m I have gained m uch adv ice and s u p p o rt: D r.

    A l i Beskok. D r. Spencer S h e rw in . and D r. Igo r L om tev . I th a n k D r. T im W a rb u rto n

    fo r b e in g m y g ra d u a te s tu d e n t m e n to r d u r in g m y firs t years in the C R U N C H g ro u p and

    fo r p re p a rin g me to co n tin u e th e deve lopm ent o f A/"e n ' T a r : I th a n k D r. H a ra lam bos

    M a rm a n is fo r o u r w o n d e rfu l d iscussions a b o u t a m u lt itu d e o f th in g s b o th s c ie n tific and

    o th e rw ise : I th a n k D r. C 'onstan tinos Evange linos fo r a lw ays b e ing w ill in g to p rov ide com

    p u t in g assistance: and I th a n k D r. M a X ia fo r a lways be ing w ill in g to lend a h e lp in g

    hand . I w ou ld also like to acknow ledge sp e c ifica lly those in the lab w ith w hom I have

    in te ra c te d d a ily - D id ie r L u co r. D o n g b in X iu . and Ig o r P iv k in - each person c o n tr ib u t in g

    to m a k in g la b -life s u rv iva b le . L a s tly . I acknow ledge a ll those g ro up m em bers w ith w ho m I

    have in te ra c te d - some o n ly b r ie f ly and some fo r p ro longed am oun ts o f t im e - each person

    has in flu en ced m y experience here a t B row n .

    I w o u ld like to acknow ledge and th a n k the fo llo w in g fo r th e ir he lp in va rious capac ities

    as I a tte m p te d to fin ish m y degrees: A n d y Forsberg. Sam Fu lcom er. George Lorio t.. L o r in g

    H o lden . M e lih B it im . and Joe L a V io la .

    I w an t to acknow ledge and th a n k those fu n d in g agencies w h ich have s u p p o rte d the

    research presented in th is thesis:

    • A F O S R A ase rt: F 49620 -96-1-0267

    • A F O S R : F49620-98-L-0315

    • A F O S R : F 49620-01-1-0035

    • D A R P A / IL L : 98-240

    ix

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • L a s tly , b u t c e r ta in ly n o t least, I w o u ld like to th a n k m y lo v in g w ife A lis o n . She has

    s u p p o rte d me c o n s ta n tly and w a ite d p a tie n t ly (w e ll, m ost o f th e tim e ) w h ile I s low ly

    m oved to w a rd m v goa l o f a P h .D . I am th a n k fu l to her for her pers is tence th ro u g h th is

    p a r t o f o u r jo u rn e y to ge th e r, a nd loo k fo rw a rd to the m any new b eg in n in gs th a t aw a it us.

    x

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • C ontents

    A cknow ledgm ents viii

    1 In troduction 1

    1.1 O b je c t iv e s ..................................................................................................................................... 3

    1.2 O u tlin e ........................................................................................................................................ 4

    2 D iscontinuous G alerkin M eth od S tu d ies 6

    2.1 E x a m in a tio n o f the S te n c i l ................................................................................................... (J

    2.2 E x a m in a tio n o f the E ig c n s p e c t ru m ................................................................................. 10

    2.3 Convergence S t u d ie s ............................................................................................................... 15

    2.3.1 A S tu d y o f h -C o n v e rg e n c e ...................................................................................... 15

    2.3.2 A S tu d y o f p -C o n v e rg c n c e ...................................................................................... 10

    2.-1 E x a m in a tio n o f S ta b il iz a t io n F a c t o r s ............................................................................. 19

    2.-1.1 Test Ouse: V iscous B u rge rs E q u a tio n w ith u = l ( ) “ ‘ / 7 r ................................ 20

    2.4.2 Test Case: E le m e n ta l In te rfaces w ith V a ria b le p - O r d e r ..................................21

    3 A rbitrary L agrangian-E ulerian Form ulation for C om pressib le F low s 25

    3.1 D iscon tinu ou s G a le rk in A L E fo r A d v c c tio n ....................................................................26

    3.2 G r id V e lo c ity A lg o r i t h m ............................................................................................................ 28

    3.3 F lo w S im u la t io n s ........................................................................................................................... 30

    3.3.1 2D F lo w A ro u n d a P itc h in g A i r f o i l .........................................................................30

    3.3.2 3D F lo w A ro u n d A W in g w ith E n d p la t e s .......................................................... 33

    x i

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • 4 F lu id -S tru ctu re In teraction for C om pressib le F low s 36

    4.1 T h e S tru c tu ra l S o lve r - S tressC heck .................................................................................. 37

    4.2 F lu id -S tru c tu re C o u p lin g ........................................................................................................38

    4.2.1 O ne-w ay C o u p l i n g ..........................................................................................................38

    4.2.2 T w o -w ay C o u p l in g ..........................................................................................................42

    4.3 O pen Is s u e s ..................................................................................................................................... 43

    5 P olynom ial D e-a liasing 44

    5.1 A ccuracy. S ta b il i ty a n d O v e r - In te g ra t io n .......................................................................... 45

    5.2 O v e r- in te g ra tio n S tu d y u s ing B u rge rs E q u a t io n ........................................................... 47

    5.2.1 C o n tin u o u s G a le rk in M e t h o d ....................................................................................48

    5.2.2 D iscon tinu ou s G a le rk in M e th o d ................................................................................ 51

    5.3 P o ly n o m ia l D e -A li; is in g in F lo w S im u la t io n s ...................................................................52

    5.3.1 T ra n s it io n a nd T u rb u le n c e in a T r ia n g u la r D u c t ........................................... 52

    5.3.2 2D F low A ro u n d a P itc h in g A i r f o i l .........................................................................54

    6 S p ectra l V anishing V isco sity 58

    6.1 S V V fo r the C o n tin u o u s G a le rk in M e t h o d .......................................................................60

    6.1.1 New S V V F o rm u la t io n fo r C G M ........................................................................... 61

    6.1.2 N u m e rica l E x a m p le D e m o n s tra tin g C G M - S V V ............................................... 63

    6.2 SVV ' fo r the D isco n tin u o u s G a le rk in M e th o d ................................................................64

    6.2.1 S V V F o rm u la t io n fo r D G M ........................................................................................64

    6.2.2 N u m e rica l E x a m p le D e m o n s tra tin g D G M - S V V ............................................... 65

    6.3 D yn a m ic S V V ...................................................................................................................................68

    6.3.1 B u rge rs E q u a t io n .............................................................................................................. 68

    6.3.2 A lte rn a t iv e LE S Im p le m e n ta t io n ............................................................................. 71

    6.4 Use o f S V V in F lo w S im u la tio n s ..................................................................................... 72

    6.4.1 S V V -L E S C oarse R e so lu tio n S im u la tio n s ...........................................................72

    6.4.2 2D F low A ro u n d a P itc h in g A i r f o i l ......................................................................... 75

    6.4.3 D yn a m ic S V V Used fo r 2D F low A ro u n d a N A C A 0012 A ir fo i l . . . 77

    x i i

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • 7 N on-C onform ing D iscretiza tion s 80

    7.1 N o n -C o n fo rm in g D is c re tiz a tio n s W h ic h M a in ta in

    p-C onvergence ........................................................................................................................... 82

    7.2 N o n -C o n fo rm in g D is c re tiz a tio n s U s ing F in ite Vo lum e h -R e f in e m e n t........................85

    7.2.1 N u m e rica l E x p e rim e n ts U s ing F in ite Vo lum e h-R efinem ent. .......................88

    7.2.2 F lo w S im u la t io n s ............................................................................................................ 95

    8 Sum m ary 100

    A D o cu m en ta tion o f th e C om pressib le A f e k ’T olt C ode 103

    A . l In t r o d u c t io n .....................................................................................................................................108

    A .2 C o m p ila tio n G u id e ...................................................................................................................... 104

    A .2.1 V e c l i b .................................................................................................................................105

    A .2.2 H l i b .................................................................................................................................... 105

    A .2.8 Source D i r e c t o r ie s .......................................................................................................105

    A .8 E xe cu tio n G u i d e ..........................................................................................................................106

    A .8.1 T h e rea F i le ..................................................................................................................... 106

    A .8.2 R u n n in g th e C o d e .......................................................................................................109

    A .4 P ro g ra m m in g G u id e ' .................................................................................................................. 109

    A.4.1 M isce llaneous P ro g ra m m in g N o t e s .......................................................................110

    x i i i

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • List o f Figures

    2.1 L D G and B a um a nn -O de n s tenc ils ( le ft) and B assi-R ebay s te n c il ( r ig h t) .

    T h e e lem ent c o n ta in in g the b lack d o t denotes the e lem ent on w h ich the

    s o lu tio n is be ing co m p u te d , and shaded areas denote th e e lem ents from

    w h ich in fo rm a tio n is req u ired fo r c o m p le tin g th a t c o m p u ta t io n .............................. 9

    2.2 E igenvalues o f the o p e ra to r .4 in e q u a tio n (2 .9 ) w hen us ing Bassi-R ebay

    fluxes to fo rm u la te .4. Ten e lem ents were used in a ll cases: each p lo t denotes

    a different, value' o f the num be r o f m odes (A f) . T h e o rd in a te is the com p lex

    im a g in a ry axis, and the abscissa is tin * co m p le x rea l a x is ........................................... 11

    2.4 E igenvalues o f the o p e ra to r .4 in e q u a tio n (2.9) w hen us ing L D G fluxes

    to fo rm u la te .4. Ten e lem ents were used in a ll cases: each p lo t denotes a

    d iffe re n t va lue o f the n um be r o f m odes ( 4 / ) . T h e o rd in a te is the com p lex

    im a g in a ry axis , and the abscissa is th e co m p le x rea l a x is ........................................... 12

    2.4 E igenvalues o f the o p e ra to r .4 in e q u a tio n (2.9) w hen us ing B a um ann -O den

    fluxes to fo rm u la te .4. T en e lem ents were used in a ll cases: each p lo t denotes

    a d iffe re n t value o f the n um be r o f m odes (A /) . T h e o rd in a te is the com p lex

    im a g in a ry axis, and the abscissa is th e co m p le x rea l a x is ........................................... 13

    2.5 M o d u lu s o f the m a x im u m eigenvalues versus the n u m b e r o f m odes per e l

    em ent fo r Bassi-R ebay ( le ft) . L D G (ce n te r), and B a um a nn -O de n ( r ig h t) .

    T h e sym bo ls denote the a c tu a l m o d u lu s o f the e igenvalue, and th e so lid

    line denotes a least-squares A / 1 f it w here A/ is the n u m b e r o f m odes used

    per e le m e n t........................................................................................................................................ 14

    x iv

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • 2.6 C o m p a riso n o f th e ra te o f convergence fo r Bassi-R ebay ( le f t ) . L D G (cen te r),

    and B a u m a n n -O d e n ( r ig h t) fluxes fo r tw o modes (M = 2 ) a nd th re e modes

    ( \ I = 3 ) p e r e lem ent. T h e Lo e rro r is g iven on the o rd in a te , a nd th e num be r

    o f e lem ents is g iven on the abscissa, k denotes the m a g n itu d e o f th e slope. . 16

    2.7 C o m p a riso n o f the ra te o f convergence fo r Bassi-R ebay ( le f t ) . L D G (cen te r),

    and B a u m a n n -O d e n ( r ig h t) fluxes fo r viscous B u rge rs e q u a tio n w ith v =

    10~‘ / t t . S ix u n ifo rm a lly spaced e lem ents were used. T h e L > e rro r is g iven

    on the o rd in a te , and the num be r o f m odes per e lem ent is g iven on th e abscissa. 18

    2.8 E xact s o lu tio n u (s . t j ) = s in (2 T rx )s in (2 n y ) o f d if fe r in g p -o rd e r tos t p ro b le m

    ( le ft) : O n e -d im e n s io n a l s lice o f the exact s o lu tio n sh ow ing th e e lem en ta l

    d eco m p o s itio n in the x -d ire c tio n ( r ig h t ) ................................................................................21

    2.9 T he f irs t co lu m n denotes e lem en t-w ise values o b ta in e d fo r (dem ent tw o.

    and th e second co lu m n denotes e lem en t-w ise values o b ta in e d fo r ('lenient,

    th ree. T h e e rro r ( to p row ) a nd L> e rro r (b o tto m row ) are g iven on

    the o rd in a te , and the va lue o f the r/t, p a ram e te r in the s ta b il iz a t io n fa c to r

    is g iven on the abscissa (and is deno ted as the re sca lin g ). T h e sym bo ls are

    e xp la in e d in the te x t .................................................................................................................. 23

    3.1 N o ta tio n fo r a tr ia n g u la r e le m e n t.............................................................................................27

    3.2 G ra p h sh ow ing ve rtices w ith associated ve loc ities and edges w ith associated

    w eights ..............................................................................................................................................29

    3.3 F u ll d o m a in ( le ft) and loca l te sse lla tio n ( r ig h t) fo r th e s im u la t io n a round

    the N A C A 0015 p itc h in g a ir fo il . A l l d im ens ions are in u n its o f chord le n g th . 31

    3.4 C o m p a riso n o f the l i f t coe ffic ien t versus ang le o f a tta c k in degrees fo r the

    9(/l o rd e r case (so lid line ) versus th e c o m p u ta tio n a l a nd e x p e rim e n ta l resu lts

    presented in [71] (sym b o ls ). T h e chord R eyno lds n u m b e r is Re = 45 .000.

    and th e M ach n um be r is M a = 0 .2 ..........................................................................................32

    3.5 D e n s ity co n to u rs fo r angles o f a tta c k a - 10.4 ( le ft) , n — 26.1 (ce n te r), and

    a = 52.2 ( r ig h t ) ................................................................................................................................. 33

    xv

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • 3.6 Ske leton mesh fo r How past a th re e -d im e n s io n a l N A C A 0012 a ir fo i l w ith

    endp la tes ( to p and m id d le ). Iso -co n tou rs fo r x -c o in p o n e n t o f m o m e n tu m

    fo r M — 0.5 How past a th re e -d im e n s io n a l N A C A 0012 a ir fo il w ith e ndp la tes

    (b o t to m ) ................................................................................................................................................34

    3.7 In i t ia l c o n fig u ra t io n ( le ft) and de flec ted ( r ig h t) N A C A 0012 w in g section

    between tw o e nd -p la tes . Iso -con tou rs o f s tream w ise m o m e n tu m are show n. . 35

    4.1 D iag ra m sh ow ing th e one-w ay c o u p lin g o f A /*etc7_Q r w ith S tressC heck. . . 39

    4.2 Screen snap -sho t sh ow ing th e m od e l crea ted in S tressC heck ( le ft) ; Screen

    snap-shot, sh ow ing th e d e fo rm a tio n o f the s tru c tu re based u p o n u n it n o rm a l

    load ing on one sub -pane l o f the s tru c tu re ( r ig h t) .........................................................40

    4.3 T im e h is to ry o f the d isp lacem en t o f a p o in t on the a ir fo il . D isp lacem en t

    and tim e are b o th in n o n -d im e n s io n a l u n its ........................................................................41

    4.4 T im e h is to ry o f th e coeffic ien t o f l i f t fo r a s ta tio n a ry a ir fo i l c o n fig u ra tio n

    (so lid ) versus the H u id -s tru c tu re m ode l (c lashed)............................................................. 41

    4.5 D iag ram sh ow ing th e tw o -w ay c o u p lin g o f A /*£ K 7 *Q r w ith S tressC heck. . . 42

    5.1 C om pa riso n o f th e d iffe rence in m o d a l coe ffic ien ts w hen d iffe re n t num bers

    o f q u a d ra tu re p o in ts are used. Q u a d ra tic n o n lin e a r ity is show n on th e le ft

    and cub ic n o n lin e a r ity is show n on th e r ig h t ...................................................................... 48

    5.2 S o lu tio n o f th e v iscous B urgers e q u a tio n w ith u - 10“ ° e va lua te d a t T -

    0.5. In .4. Q = 24 q u a d ra tu re p o in ts are used fo r in te g ra t in g b o th the

    advection and d iffu s io n te rm s: and in D . Q — 24 q u a d ra tu re p o in ts are

    used fo r th e a dve c tion te rm , and o n ly Q — 17 p o in ts are used fo r the

    d iffu s io n te rm s ................................................................................................................................... 49

    5.3 S o lu tio n o f th e v iscous B u rge rs ecp ia tion w ith u = 10_ 2/ 7r eva lua ted at

    T = 0.5. In .4. Q = 17 q u a d ra tu re p o in ts are used fo r in te g ra t in g b o th the

    advec tion and d iffu s io n te rm s: in B . Q = 24 q u a d ra tu re p o in ts are used

    fo r in te g ra tin g b o th the a dve c tion and d if fu s io n te rm s: and in C . Q = 24

    q u a d ra tu re p o in ts are used fo r th e a d ve c tio n te rm , and o n ly Q = 17 p o in ts

    are used fo r the d iffu s io n te rm s ................................................................................................. 50

    x v i

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • 5.4 S o lu tio n o f th e in v is c id B u rge rs e q u a tio n eva lua ted a t T = 0.5. F ive equal

    spaced e lem ents were used w ith 16 modes in each e lem en t. O n th e o rd in a te

    we p lo t the L > n o rm o f th e s o lu tio n , and on th e abscissa we p lo t the n um be r

    o f q u a d ra tu re p o in ts used fo r n um erica l in te g ra tio n . U n s ta b le so lu tio n s are

    deno ted by *. O bserve th a t a fte r Q — 24 po in ts , th e L > n o rm o f th e s o lu tio n

    does no t change.................................................................................................................................52

    5.5 M o d a l coe ffic ien ts in th e m id d le e lem ent o f the in v is c id B u rge rs s o lu tio n a t

    tim e T = 0.35. O v e r- in te g ra tio n us ing Q = 3 A //2 q u a d ra tu re p o in ts leads

    to a s tab le s o lu tio n u n lik e th e Q = A / + 1 case................................................................. 53

    5.6 D u c t flow d om a in : T h e cross-section is an e q u a la te ra l tr ia n g le and the

    s tream w ise len g th is th re e tim es the tr ia n g le edge. O n th e le ft we show

    a fram e o f the e n tire d o m a in w ith flood c o n to u r cu t-p la n e s o f the f lu id

    v e lo c ity in t in ' s tream w ise (w ) d ire c tio n . In the cen te r and on the r ig h t we

    present flood c o n to u r c u t-p la n e s o f the flu id v e lo c ity in the s tream w ise (w )

    d ire c t io n w ith a rrow s d e n o tin g the ve lo c ity in th e crossflow (u .v ) d ire c tio n s

    a t : = 1 and : — 2 re s p e c tiv e ly ............................................................................................. 54

    5.7 W a ll shear forces as a fu n c t io n o f t im e fo r (a) (Q = M + 1): (b ) {Q = 2 A /) :

    and (c) {Q = 3 A / /2 ) ........................................................................................................................55

    5.8 F u ll d o m a in ( le ft) and loca l tr ia n g u liz a t io n ( r ig h t) fo r th e s im u la tio n a ro un d

    th e N A C A 0015 p itc h in g a ir fo i l . A l l d im ensions are in u n its o f chord le n g th . 56

    5.9 C o m p a riso n o f the l i f t co e ffic ie n t C /. versus ang le o f a tta c k in degrees fo r

    Cases A -C ( le ft) and Case A com pared w ith the c o m p u ta tio n a l and e xp e r

    im e n ta l resu lts p resented in [71] ( r ig h t ) ................................................................................ 57

    6.1 S o lu tio n o f in v isc id B u rge rs e q u a tio n a t t im e T = 0.5 u s in g co n tin uo us

    G a le rk in w ith o u t ( to p ) and w ith (b o tto m ) S V V . F ive e q u a lly spaced ele

    m ents sp an n ing [—1. 1] were used, each o f w h ich co n ta ine d 16 m odes................. 63

    6.2 C o m p a riso n o f e ig e n sp e c tru in o f the tw o ope ra to rs 5V 'V 'i and S V V ' i . D e ta ils

    o f th is case are presented in the te x t ......................................................................................65

    6.3 S o lu tio n o f in v is c id B u rge rs e q u a tio n a t tim e T = 0.5 u s in g the d is c o n tin

    uous G a le rk in m e th o d w ith o u t ( to p ) and w ith (b o tto m ) S V V ..................................66

    x v i i

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • 6.4 M o d a l coe ffic ien ts in the m id d le e lem ent o f the in v is c id B u rge rs s o lu tio n a t

    tim e T — 0.35. B o th o v e r- in te g ra tio n and S V V lead to a s ta b le s o lu tio n

    u n lik e th e c o llo c a tio n a p p ro a ch ............................................................................................

    6.5 M o d a l co e llic ie n ts in the m id d le e lem ent o f the in v is c id B u rge rs s o lu tio n a t

    t im e T — 0.35. R esu lts fo r S l 'V 'i and S V 'V j are p resen ted .....................................

    6.6 P lo t o f th e dynam ic: coe ffic ien t c ( x . t ) a t the fin a l t im e T = 0.5. T h e th ree

    eases are e xp la in ed in the te x t ..............................................................................................

    6.7 Segm ent o f the u n s tru c tu re d mesh fo r flow past an a ir fo il a t 10 degrees

    ang le o f a tta c k and Re = 10 .000 ..........................................................................................

    6.8 A m p litu d e ' a t one' t im e ins tance o f s p e c tra l va n ish in g v iscos ity in How p ;is t

    an a ir fo il at 10 degree's ang le o f a tta c k and Re — 10 .000 ........................................

    6.9 M esh in the- crossflow p lane fo r tu rb u le n t, channel flow a t R eT : 180 . . . .

    6.10 M e a n -ve lo e ity p ro file fo r th e tu rb u le n t channe l flow . T h e sym bo ls co rre

    spond to the b enchm ark s o lu tio n s o f K im . M o in & M oser [46]. T h e s o lid -lin e

    co rresponds to the unde r-reso lved D N S. the d o tte d - lin e to ( M s v v — f —

    1 /8 ) . the d o t-d a sh e d -lin e to (A /.v t'V = 5.e = 5 /8 ) . and the dashed -line to

    ( A / . s r r = 5 . f = 9 /8 ) ..................................................................................................................

    6.11 T u rb u le n ce in te n s itie s fo r th e tu rb u le n t channel flow . T he sym bo ls co rre

    spond to the b enchm ark s o lu tio n s o f K im . M o in &: M oser [46]. T h e s o lid - lin e

    co rresponds to the under-reso lved D N S. the d o tte d - lin e to (A / .v v f = 2 . f =

    1 /8 ) . the d o t-d a sh e d -lin e to ( M s \ \ ' = 5.e — 5 /8 ) . and th e dashed -line to

    ( A / s i t = 5. e = 9 /8 ) ..................................................................................................................

    6.12 F u ll d o m a in ( le ft) and loca l te sse lla tio n ( r ig h t) fo r th e s im u la tio n a ro un d

    th e N A C A 0015 p itc h in g a ir fo il . A l l d im ensions are in u n its o f chord le n g th .

    6.13 C o m p a riso n o f the l i f t coe ffic ien t C /. versus ang le o f a tta c k in degrees fo r

    S V V (s o lid ) , o ve r-in teg ra te d (dashed), and th e c o m p u ta tio n a l (c irc le ) and

    e x p e rim e n ta l (as te risk ) resu lts presented in [71]..........................................................

    6.14 C o n to u rs o f ins tan taneous s tream w ise m o m e n tu m fo r d y n a m ic S V V s im u

    la t io n a t tim e T = 131.5...........................................................................................................

    x v i i i

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • 6.15 C o n to u rs o f in s tan taneous s tream w ise m o m e n tu m fo r s im u la tio n w ith over-

    in te g ra tio n a t t im e T = 131.5.....................................................................................................78

    6.16 T im e h is to ry o f l i f t coe ffic ien t ( C l ): T h e so lid line co rresponds to over

    in te g ra tio n a n ti th e d o tte d lin e to d y n a m ic S V V ............................................................. 78

    6.17 T im e h is to ry o f d ra g coeffic ien t ( C / j ): T h e so lid line co rresponds to over

    in te g ra tio n and the d o tte d lin e to d y n a m ic S V V ..............................................................79

    7.1 D ia g ra m sh o w in g how n o n -c o n fo rm in g d is c re tiz a tio n s are "m o rta re d " to

    gether. N o ta t io n used in th e d ia g ra m is e xp la ined in the te x t .................................. 83

    7.2 T h re e d if fe re n t d is c re tiz a tio n s used fo r d e m o n s tra tin g the e ffectiveness o f

    'h ' n o n -c o n fo rm in g and *p ’ n o n -c o n fo rm in g d is c re tiz a tio n s . T h e th re e cases

    A -C ( le ft.c e n te r, and r ig h t resp ec tive ly ) are discussed in the te x t ........................... 84

    7.3 E r ro r in th e b roken H \ n o rm versus the n um be r o f modes p e r element, fo r

    d is c re tiz a tio n s 7.2. T h e sym bo ls fro m ease A and B o v e rla p ......................................84

    7.1 D ia g ra m sh o w in g th e s p li t t in g scheme fro m a tr ia n g le i l h a v in g a P \ o rde r

    p o ly n o m ia l to a co lle c tio n o f .U 2 f in ite vo lum es D j. FT1 and IT2 represen t the

    fo rw a rd a nd b ackw ard tra n s fo rm a tio n s resp ec tive ly fo r th is s p l i t t in g scheme. 86

    7.5 D ia g ra m sh o w in g th e s p li t t in g scheme fro m a q u a d r ila te ra l H h a v in g a P \

    o rd e r p o ly n o m ia l to a c o lle c tio n o f A /2 f in ite vo lum es f l j . n l a n d n 2 rep re

    sent the fo rw a rd and backw ard tra n s fo rm a tio n s resp ec tive ly fo r th is s p li t

    t in g schem e......................................................................................................................................... 86

    7.6 O r ig in a l fo u r ('lenient, mesh w ith 7tfl o rd e r p o ly n o m ia ls pe r e lem en t ( le ft) :

    o r ig in a l mesh p a r t it io n e d in to e ig h t f in ite vo lum es per e lem en t (cen te r):

    o r ig in a l m esh p a r t it io n e d in to 32 f in ite vo lum es per e lem ent ( r ig h t ) ......................89

    7.7 L~c e rro r versus th e n um be r o f f in ite vo lum e e lem ents per s ide ( M ) in to

    w h ich each m acro -e lem ent was p a r t it io n e d ......................................................................... 90

    7.8 M acro-e lem ent, d is c re t iz a tio n co n s is tin g o f tw o tr ian g le s , each w ith 7tho rd e r

    p o ly n o m ia l expansions ( le f t ) . F in ite vo lum e p a r t it io n in g c o n s is tin g o f 49

    f in ite vo lum es p e r m acro-e lem ent (cen te r). R econstruc ted s o lu tio n using

    n 2 o p e ra to r ( r ig h t ) ..........................................................................................................................91

    x ix

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • 7.9 M acro -e lem en t d is c re t iz a tio n co n s is tin g o f fo u r q u a d r ila te ra ls , each w ith 7th

    p o ly n o m ia l expansions ( le ft) . F in ite vo lum e p a r t it io n in g co n s is tin g o f 04

    f in ite volume's per m acro -e lem ent (cen te r). R econs truc ted s o lu tio n using

    n J o p e ra to r ( r ig h t ) ..........................................................................................................................91

    7.10 M acro -e lem en t d is c re t iz a tio n co ns is ting o f fo u r q u a d r ila te ra ls , each w ith 7tk

    p o ly n o m ia l expansions ( le ft) . F in ite vo lum e p a r t it io n in g c o n s is tin g o f 49

    f in ite vo lum es per m acro -e lem ent (cen ter). R econs truc ted s o lu tio n using

    n J o p e ra to r ( r ig h t ) ..........................................................................................................................92

    7.11 D ia g ra m show ing w h ich d is c re t iz a tio n m ethods were used in the s o lu tio n o f

    th e p ro b le m discussed above ........................................................................................................ 93

    7.12 C o m p a riso n o f the e xact s o lu tio n to the th ree cases d iscussed in the te x t

    eva lua ted a t T = 0 .3 .......................................................................................................................94

    7.13 F u ll d o m a in ( le ft) and loca l te sse lla tio n ( r ig h t) fo r the supe rson ic s im u la tio n

    a ro u n d the N A C A 0015 a ir fo il. A l l d im ensions arc; in u n its o f cho rd leng th . 95

    7.14 F u ll d o m a in ( le ft) and loca l tesse lla tion ( r ig h t) fo r the supe rson ic s im u la

    t io n a ro u n d the N A C A 0015 a ir fo il a fte r n o n -co n fo rm in g re fin em en t h;us

    been accom plished. N o n -c o n fo rm in g re finem en t fo r case one is show n. A ll

    d im ens ions are in u n its o f chord le n g th ................................................................................ 96

    7.15 D ia g ra m show ing w h ich d is c re t iz a tio n m ethods were used in th e s o lu tio n o f

    th e p ro b le m discussed be low . A l l d im ensions are in u n its o f cho rd len g th . . 96

    7.16 D e n s ity con tours fo r supe rson ic How past a N A C A 0015. T h e f in ite vo l

    um e s o lu tio n us ing 12.000 q u a d r ila te ra ls ( le ft) and the case tw o m ixed

    n o n -c o n fo rm in g f in ite v o lu m e /h ig h -o rd e r e lem ent c o m p u ta tio n ( r ig h t) are

    p resen ted ..............................................................................................................................................97

    7.17 M ach n um be r co n to u rs fo r supe rson ic flow past a N A C A 0015. T h e fin ite

    vo lum e s o lu tio n us ing 12.000 q u a d rila te ra ls ( le ft) and th e case tw o m ixed

    n o n -co n fo rm in g f in ite v o lu m e /h ig h -o rd e r e lem ent c o m p u ta tio n ( r ig h t) are

    p resen ted ..............................................................................................................................................98

    7.18 L in e slices o f the d e n s ity ( le ft) and M ach num be r ( r ig h t) taken a t y = 0

    (w here th e a ir fo il ce n te rlin e is a t y = 0. A l l fo u r c o m p u ta tio n s are presented. 99

    x x

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • 7.19 D en s ity co n to u rs fo r th re e d im e n s io n a l superson ic flow past a N A C A 0015.

    O n th e le ft we present lin e co n to u rs o f th e d en s ity a t tw o p o s itio n s on the

    w in g (a t 20% and 80% o f th e le n g th ). T h is is done so th a t tin? ftd l le n g th

    o f the w in g can be seen. O n th e r ig h t, we present a Hood c o n to u r c u t-p la n e

    o f the d en s ity taken a t th e m id d le o f th e w in g ..........................................................

    A . I T h e c u rre n t fu n c t io n a lity tree fo r the com pressib le A f e n . 'T a r code. . . .

    x x i

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • List o f Tables

    2.1 Proposed D G m e thodo log ies fo r e l l ip t ic p rob lem s and the f lu x choice's th e y

    rep resen t........................................................................................................................................... 8

    2.2 L> e rro r and va lue o f | '^ j(0 ) | fo r th e Bassi-R ebay. L D G . and O d e n -B a u m a n n

    fluxes. T h e test p ro b le m is e x p la in e d in the te x t ......................................................... 18

    2.3 P aram ete rs used fo r the resu lts presented in tab le 2 .4 .................................................. 20

    2.4 R esu lts fo r B tiss i-R ebay f lu x w ith s ta b il iz a tio n and o r s ta b il iz a t io n lis t'd . 20

    2.5 L-y and terrors fo r d if fe r in g values o f p\ and p>. T h e d e fin it io n s o f p\

    and p-y are d iscussed in the te x t ................................................................................................ 22

    3.1 S im u la tio n pa ram ete rs fo r com press ib le flow past a N A C A 0012 a ir fo il w ith

    e nd p la tes ...............................................................................................................................................33

    5. 1 N u m b e r o f q u a d ra tu re p o in ts necessary fo r G a uss -Lo b a tto -Le ge nd re q u a d ra

    tu re to be exact fo r g iven p o ly n o m ia l orders o f the in te g ra n d ................................... 45

    5.2 N um be r o f q u a d ra tu re p o in ts necessary fo r G a uss -Lo b a tto -Le ge nd re q u a d ra

    tu re to be exact, in te rm s o f th e n um be r o f modes for th e o r ig in a l expans ion

    fo r g iven p o ly n o m ia l o rders o f th e in te g ra n d ......................................................................40

    5.3 Param ete rs used fo r the re su lts presented in figure 5 .2 ................................................. 49

    5.4 E rro r in the d isc re te n o rm fo r th e th ree cases presented above ........................51

    5.5 M ean shear forces on each w a ll versus the q ua d ra tu re ' o rd e r em p loyed. . . . 54

    5.6 P o ly n o m ia l o rd e r p e r tenso r p ro d u c t d ire c t io n and n u m b e r o f q u a d ra tu re

    p o in ts per d ire c t io n used fo r cases A -C .................................................................................56

    x x ii

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • 6.1 C o m p a riso n o f L± and L ^ e rro rs fo r th e in v is c id B u rge rs e q u a tio n us ing

    d y n a m ic S V V (S V 'V 'i) w ith M s \ \ ■ = 8 and e = 1 /1 6 ................................................. 70

    6.2 C o m p a riso n o f L > and L zc e rro rs fo r the in v is c id B u rge rs e q u a tio n using

    d y n a m ic S V V ( S l ’ lV ) w ith M s \ \ ' = 8 and e = 1 /1 6 ................................................. 70

    x x i i i

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • C h ap ter 1

    Introduction

    M o st o f th e num erica l ana lys is w o rk fo r e ng in ee rin g a p p lic a tio n s over th e last. 41) years

    have' been geared tow ards the developm ent, o f m ethods w h ich are tier urate., f lex ib le , and

    robust. M ost m ethods have ;is th e ir p r im a ry focus one o f these* c r ite r io n . a nd fo r some

    m e th od s even tw o o f tlie'se c r ite r ia are m et. However, th e c o m p u ta tio n a l m e th o d w h ich

    encapsu la tes a ll thre*e c r ite r ia is q u ite e lus ive, fo r s a tis fy in g a ll th ree goals q u ite o ften

    requ ires com prom ise . We w ill now present a b r ie f (and c e rta in ly incomplete?) ove rv iew

    o f some? o f the a tte m p ts th a t have been made! to meet the! th ree goals m en tion ed above',

    anel w i l l show how. in th is thesis, we have a tte m p te d tej design a m e th o d o lo g y fo r the

    s o lu tio n o f the llu ie l-s tru c tu re in te ra c tio n p rob lem s w h ich con ta ins th e c u lm in a t io n o f a ll

    th ree ideas.

    In th e se?arch fo r accura te m e thods , the g lo b a l sp e c tra l m ethods o f G o tt l ie b and O rszag

    [34] are th e ieie'al m e th od fo r s o lv in g sm oo th p rob lem s in regu la r geom etries. G ive n su f

    ficient. re g u la r ity o f the s o lu tio n , increas ing th e num ber o f degrees o f freedom in the ap

    p ro x im a tio n leads to e xp o n e n tia l convergence to the exact, so lu tio n . In a d d it io n , it. has

    been a rgued by Kre iss e t a l. [49] th a t fo r th e lo n g -tim e in te g ra tio n o f t im e dependent

    s o lu tio n s , h ig h -o rd e r m ethods are th e m ost cost-e ffective in te rm s o f a m o u n t o f w o rk p e r

    fo rm ed to a tta in a g iven level o f e rro r . In te rm s o f f lu id s im u la tio n s , s p e c tra l m ethods

    have been successfu lly used in th e d ire c t n u m e ric a l s im u la tio n s o f tu rb u le n c e [34. 16]. A l

    th o u g h m ee ting one o f the goals above, g lo b a l sp ec tra l m ethods are ra th e r re s tr ic t iv e in

    th a t o n ly w ith g reat e ffo rt, i f a t a ll. can th e y be a pp lie d to com p lex geom etries. Secondly.

    1

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • the convergence p ro p e rtie s o f those m ethods req u ire h ig h re g u la r ity o f th e s o lu tio n . W hen

    a re d u c tio n in th e re g u la r ity o f th e s o lu tio n occurs, such as w ith shocks in a com press ib le

    How. w igg les m ay deve lop w h ich ren de r the m e th o d uns tab le .

    In th e search fo r f le x ib le m e thods , f in ite e lem ent and f in ite vo lum e m ethods p ro v id e a

    trem endous a m o u n t o f f le x ib i l i ty in h a n d lin g co m p le x g eo m e try dom a in s . T ra d it io n a lly ,

    b o th o f these; m ethods have used lo w -o rd e r p o ly n o m ia l expansions fo r c o n s tru c tio n o f th e ir

    loca l bases. lin e a r modes in the case o f f in ite e lem ents and constan ts in th e case o f f in ite

    vo lum es. In a d d it io n , the use o f th e low -o rde r bases tends to make th e m ethods som ew ha t

    ro b u s t. In te rm s o f f lu id s im u la tio n s , these types o f d is c re tiz a tio n s have been successfu lly

    a p p lie d to a e ro d yn a m ic p ro b le m s [41]. A lth o u g h fle x ib le , s ta n d a rd f in ite e lem ents and

    f in ite vo lum es e x h ib it ra th e r s low convergence as th e n u m b e r o f (dem ents increases com

    pared to the p re v io u s ly m en tioned sp e c tra l m ethods. T h is re s tr ic t io n m an ifests its e lf in

    p rob lem s like' e lec trom agne tics in w h ich fo r lo n g -tim e in te g ra tio n o f h ig h -fre q u e n cy wave;

    s o lu tio n s a p ro h ib it iv e ly large n u m b e r o f e lem ents is needed to reduce the d is s ip a tio n and

    d isp e rs io n effects o f the lo w -o rd e r schemes.

    T h e confluence o f those tw o concepts, the h p ve rs ion o f the fin ite ’ e lem ent m e th od , was

    p ioneered by B .A . Szabo. Seeking to m erge the s tre n g th s o f th e sp e c tra l and f in ite (dement,

    m ethods. Szabo fo rm u la te d a m e th o d o lo g y w h ich a llow ed th e f le x ib i l i ty o f a s ta n d a rd f in ite

    e lem ent m e th o d to be com b ined w ith the convergence p ro p e rt ie s o f a sp ec tra l m e th od .

    Ins tead o f re s tr ic t in g onese lf to a lin e a r basis as in the s ta n d a rd f in ite element, m e th od .

    Szabo fo rm u la te d a new hp f in ite e lem ent m e th o d w h ic h accom m oda tes h ighe r o rd e r p o ly

    n o m ia l expansions on each e lem ent. T h is new hp m e th o d o lo g y a llow ed fo r a dua l p a th to

    convergence - a llo w in g an increase in p o ly n o m ia l o rd e r (p re s o lu tio n ) w hen the re g u la r ity

    o f th e s o lu tio n is h ig h w h ile s t i l l m a in ta in in g th e f le x ib i l i t y o f an /(-d is c re tiz a tio n b o th in

    m o d e lin g co m p le x geom etries and in s o lu tio n reg ions o f low re g u la rity . Several versions o f

    th is a pp roach have been successfu lly a pp lie d to b o th s o lid m echanics a nd f lu id d yna m ics

    [5. 4. 61. 44],

    T h e d isco n tin u o u s G a le rk in m e thods p rov ides a h ig h -o rd e r e x tens ion o f the f in ite vo l

    um e m e th o d in m uch the same w ay as Szabo's w o rk ex ten de d s ta n d a rd f in ite e lem ents. In

    th e ir o ve rv ie w o f the deve lopm en t o f the d isco n tin u o u s G a le rk in m e th o d (D G M ). C ock-

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • 3

    b u rn et a l. [19] trace th e deve lopm ents o f D G M and p ro v id e a su cc in c t d iscuss ion o f th e

    m e rits o f th is e x tens ion to f in ite vo lum es. T h e D G m e th o d o lo g y also a llow s fo r the d u a l

    p a th to convergence, m a k in g i t h ig h ly d es ira b le fo r c o m p u ta tio n a l a e rod yna m ics p rob lem s.

    I t has been proven th a t D G M satisfies a ce ll e n tro p y in e q u a lity (w h ic h is s tro n g e r th a n L~

    s ta b il i ty ) fo r genera l sca lar n o n lin e a r conse rva tions law s in m u lt ip le space d im en s ion s [42].

    and D G M satis fies L 1 s ta b i l i ty fo r general sca la r c o n v e c tio n -d iffu s io n e qua tions in m u lt i

    d im ens ions [20]. T h o u g h b o th accura te and fle x ib le , th is m e th o d is no t a lw ays ro b u s t.

    T he m e th o d o lo g y is conse rva tive , b u t n o t a lw ays m o n o to n ic ity -p re s e rv in g .

    In th is w o rk , we focus on th e use o f the d isco n tin u o u s G a le rk in m e th o d fo r s o lv in g

    the com press ib le N av ie r-S tokes equa tions fo r m o v in g geom etries. F o llo w in g the w o rk o f

    L o m te v e t a l. [52]. we e m p lo y th e a rb it ra ry L a g ra n g ia n -E u le r ia n m e thod fo r s o lv in g flow

    p rob lem s in m o v in g geom etries. We fu r th e r ex ten d L o m te v 's w o rk by a c c o m p lis h in g the

    f iu id -s t ru c tu re c o u p lin g w ith th e / ip -F E M code S tressC heck deve loped under the d ire c t io n

    o f B .A . Szabo. In a d d it io n to th is e x tens ion , we a t te m p t to address some o f th e ro b u s t

    ness issues o f the d isco n tin uo u s G a le rk in m e th o d in fo u r ways: th ro u g h an e x a m in a tio n

    o f th e fluxes used in the d isco n tin uo u s G a le rk in fo rm u la t io n , th ro u g h an e x a m in a tio n o f

    o v e r- in te g ra tio n as a means o f a lle v ia t in g th e effects o f p o ly n o m ia l a lia s in g , th ro u g h an

    e x a m in a tio n o f the use o f s p e c tra l va n ish in g v isco s ity as a means o f m a in ta in in g m o n o to n ic

    ity . and th ro u g h an e x a m in a tio n o f the use o f n o n -c o n fo rm in g f in ite vo lum e d is c re tiz a tio n s

    fo r s o lv in g p rob lem s w h ich c o n ta in shock d is c o n tin u it ie s . In the next sec tion , we present

    the e x p lic it goals o f th is thesis.

    1.1 O b je c t iv es

    T h e goals o f th is thesis are:

    • To exam ine th e ra m ific a tio n s o f d iffe re n t f lu x choices w hen s o lv in g e ll ip t ic and

    p a ra b o lic p rob lem s us ing the d isco n tin u o u s G a le rk in m e th od .

    • To e x ten d th e a rb it ra ry L a g ra n g ia n -E u lc r ie n (A L E ) w o rk o f L om tev et a l. [52] to

    encom pass a ll e lem ent types by fo rm u la t in g a genera lized g raph th e o ry a lg o r ith m

    fo r mesh m ovem ent.

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • 4

    • T o coup le the s p e c tra l/h p e lem ent f lu id code {J\[ekT cit ) w ith the h p -F E M s tru c tu ra l code S tressC heck.

    • T o u n d e rs ta n d th e ro le o f p o ly n o m ia l a lia s in g in the s im u la tio n o f h ig h R eyno lds

    n um be r f lu id flow co m p u ta tio n s .

    • T o p ro v id e a fo rm u la tio n o f sp ec tra l v a n ish in g v iscos ity (S V V ) fo r the s o lu tio n o f

    th e inco m p ress ib le N avie r-S tokos equ a tio ns in w h ich the f i lte r in g a llow s fo r scale-

    sepa ra tion .

    • T o fo rm u la te d S V V fo r the d isco n tin uo u s G a le rk in m e th od , and d e m o n s tra te its use

    in the s o lu tio n o f the com pressib le N av ie r-S tokes equations.

    • T o im plem ent, n o n -co n fo rm in g d is c re tiz a tio n s w ith in th e d isco n tin uo u s G a le rk in fra m e

    w o rk fo r so lv in g the com pressib le N av ie r-S tokes equa tions unde r supe rson ic c o n d i

    tions .

    1.2 O u tlin e

    T h is w ork is o rgan ized as fo llow s. In ch ap te r tw o we present a co lle c tio n o f s tud ies o f d i f

    fe ren t fluxes fo r s o lv in g e ll ip t ic and p a ra b o lic p ro b le m s us ing the d isco n tin uo u s G a le rk in

    m e th o d . In ch ap te r th ree we present th e a rb it r a ry L a g ra n g ia n -E u le ria n fo rm u la tio n fo r

    th e d isco n tin uo u s G a le rk in fo rm u la tio n o f th e com press ib le N avie r-S tokes e qua tions , and

    present a genera lized g ra ph th e o ry a lg o r ith m fo r c o m p u tin g the mesh m ovem ent. In chap

    te r fo u r we present th e co u p lin g o f the f lu id so lve r A f £ K l ~ a r us ing the A L E a lg o r ith m

    w ith th e h p -F E M s tru c tu ra l so lve r S tressC heck. In ch ap te r five we exam ine p o ly n o m ia l

    a lia s in g and its effect on b o th incom press ib le and com press ib le flow s im u la tio n s . In ch ap te r

    s ix we present a sp e c tra l va n ish in g v iscos ity fo rm u la t io n fo r b o th the co n tin uo us G a le rk in

    a nd d isco n tin uo u s G a le rk in fo rm u la tio n s , a nd p ro v id e b o th incom press ib le and com press

    ib le How exam ples resp ec tive ly w h ich d e m o n s tra te S V V 's effectiveness. In ch a p te r seven

    we present a n o n -co n fo rm in g im p le m e n ta tio n o f th e d isco n tin uo u s G a le rk in fo rm u la tio n

    fo r the com press ib le N av ie r-S tokes. and p ro v id e c o m p u ta tio n a l exam ples d e m o n s tra tin g

    its use fo r th e s im u la tio n o f superson ic flow s a ro u n d a ir fo ils . We conclude in ch a p te r seven

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • b y s u m m a r iz in g w h a t was accom p lished in th is w o rk , p o in t in g o u t th e re levan t in d iv id u a l

    c o n tr ib u t io n s th a t were made.

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • C h ap ter 2

    D iscontinuous Galerkin M ethod

    Studies

    A lth o u g h the o r ig in a l th ru s t o f m ost d isco n tin uo u s G a le rk in research was in so lv in g h y

    p e rb o lic p rob lem s, the genera l p ro life ra t io n o f the D G m e th o d o lo g y has also spread to th e

    s tu d y o f p a ra b o lic and e ll ip t ic p rob lem s. For exam p le , w orks such as [7]. in w h ich th e

    viscous com press ib le N av ie r-S tokes e qua tions were so lved, re q u ire d th a t a d isco n tin uo u s

    G a le rk in fo rm u la tio n be ex ten de d beyond the h y p e rb o lic adve e tio n te rm s to the viscous

    te rm s o f th e N avie r-S tokes e qua tions . C o n c u rre n tly , b o th in [20] and [10] o th e r d is c o n tin

    uous G a le rk in fo rm u la tio n s fo r p a ra b o lic and e ll ip t ic p ro b le m s were proposed. In an e ffo rt

    to c la ss ify a ll th e e ffo rts m ade to w a rd th e use o f D G m e thods fo r e ll ip t ic p rob lem s. A rn o ld

    e t a l.. f irs t in [2] a n il then m ore fu l ly in [3j. p u b lish e d a u n ifie d ana lys is o f d isco n tin u o u s

    G a le rk in m ethods fo r e ll ip t ic p rob lem s.

    In [3] a m a th e m a tica l fra m e w o rk is p ro v id e d fo r s tu d y in g a v a r ie ty o f the d iffe re n t

    d isco n tin u o u s G a le rk in approaches fo r e ll ip t ic p rob lem s. In an a tte m p t to ascerta in w h ich

    fo rm u la t io n was a p p ro p r ia te fo r us to use in the s o lu tio n o f th e viscous com press ib le N av ie r-

    Stokes equa tions , we set o u t to s tu d y several o f th e d iffe re n t fo rm u la tio n s presented in [3].

    T o accom p lish th is goal, we f irs t recognize from [3] th a t th e p ro b le m o f s o lv in g

    6

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • 7

    — A u = f i n H ( 2 . 1)

    u = 0 on Oi1

    can be fo rn n ila te t l in t l ie d iscre te case as fo llow s.

    Assum e we are g iven a tesse lla tion 7j, = { A '} o f the d o m a in i l . W e define the fo llo w in g

    tw o spaces

    w here P( K ) = P f,(A ') is th e space o f p o ly n o m ia l fu n c tio n s o f degree a t m ost p > 1 on K

    and (C(A’) = [P ;,( K) ]~ . F o llow in g [3] we now define the d isc re te s o lu tio n o f e q u a tio n (2.1)

    as th e p ro b le m o f f in d in g iq, G \ ' n and

  • 8

    M e th o d UK ° KBassi-R ebav [7] { “ /»} { a h )

    B rezz i et al. [15] { “ /.} {(7/ J - a r ([[(q ,]])L D G [20] { u h } - 3 • [[iq,]] W h } + f3- [[

  • 9

    In th is ch a p te r, we w il l exam ine a v a r ie ty o f fac to rs such as th e s te n c il w id th , e igenspec-

    t ru m . h -convergence p ro pe rtie s , and p-convcrgence p ro p e rtie s o f the d iffe re n t n u m e rica l

    fluxes to exp lo re th e d ifferences betw een th e d iffe ren ce choices presented.

    2.1 E x a m in a tio n o f the S ten c il

    T h e f irs t o b se rva tio n th a t can be m ade im m e d ia te ly upion e x a m in a tio n o f e q u a tio n (2.7)

    is th a t b o th L D G and B aum ann -O den have s h o rte r s tenc ils th a n Bassi-R ebay. L D G and

    B a n m a n n -O d e n req u ire in fo rm a tio n o n ly fro m nearest n e ig h b o rin g e lem ents, hence p ro

    d u c in g a th re e e lem ent s te nc il, w h ile B ass i-R ebav requ ires w h a t equates to a five e lem en t

    s te nc il. In the tw o -d im e n s io n a l case, as show n in figu re 2.1. L D G and B a u m a n n -O d e n

    re q u ire o n ly lo ca l e lem en ta l c o m m u n ic a tio n , w h ich fo r tr ia n g u la r meshes re q u ire o n ly a

    fo u r e lem ent s te n c il. For Bassi-Rebay. how ever, in fo rm a tio n fro m as m any as ten e lem ents

    m ay be req u ired fo r the c o m p u ta tio n o f th e s o lu tio n on a s ing le e lem ent.

    F ig u re 2.1: L D G and B a um a nn -O de n s te n c ils ( le f t ) a n d B assi-R ebay s te n c il ( r ig h t) . T he e lem ent c o n ta in in g the b lack d o t denotes the c le m e n t on w h ich th e s o lu tio n is be ing c o m p u te d , and shaded areas denote th e e lem en ts fro m w h ich in fo rm a tio n is re q u ire d fo r c o m p le tin g th a t c o m p u ta tio n .

    T h is fac t conce rn ing the d iffe re n t m e th o d s is im p o r ta n t w hen co ns ide rin g p a ra lle l

    c o m m u n ic a tio n costs: d epend ing on th e w ay in w h ic h the c o m m u n ica tio n s are im p le

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • 10

    m ented. the Bassi-R ebay m e th od req u ires tw ic e th e c o m m u n ica tio n its b o th th e L D G and

    B a um a nn -O de n m ethods.

    2.2 E x a m in a tio n o f th e E ig e n sp e c tr u m

    To u nd e rs ta nd th e ra m ific a tio n s o f choos ing each typ e o f flu x , we beg in by s tu d y in g the

    one -d im ens iona l p a ra b o lic e qu a tio n

    On 0~u „- — v — r = n u e n . u > o ( 2 .8 )Ot Ox-

    on [0 . 1] w ith p e r io d ic b o u n d a ry c o n d it io n s . We w r ite o u r n u m e ric a l a p p ro x im a tio n o f

    e qu a tio n (2 .8 ) in th e fo llo w in g fo rm :

    d i i

    d t" - A u „ (2.9)

    where ii,; denotes t in ; co nca ten a tion o f m o d a l co e ffic ien ts o f each e lem ent (hence i f g iven

    N e lem ents, each h av ing M m oda l co e ffic ie n ts , th e size o f i i g is N x .V /). and .4 is a

    s ize (u 9) x s ize (iiy ) square m a tr ix . We now e xa m in e the eigenvalues o f the o p e ra to r .4 fo r

    th e th ree d iffe re n t fluxes fo r the case in w h ic h v = 1. and ten e q u a lly spaced e lem ents

    are used. E ig en spe c tra o f .4 fo r one to n in e m odes per e lem ent are p resented fo r the

    Bassi-R ebay (B R ). L D G (L D G ). and B a u m a n n -O d e n (B O ) fluxes in figures 2.2. 2.3. and

    2.4 respective ly .

    E x a m in a tio n o f th e e igenspec trum leads to th e fo llo w in g obse rva tions :

    • B o th the B assi-R ebay and L D G fluxes are p u re ly d iffus ive (a ll e igenvalues lie on the

    negative rea l ax is ) up to m ach ine p re c is io n . T h is is cons is ten t w ith th e fa c t th a t fo r

    b o th B ass i-R ebay and L D G the m a tr ix .4 is b o th real a nd s y m m e tr ic . T h e use o f

    B a um a nn -O de n fluxes fo rm s a rea l, n o n -s y m m e tr ic o p e ra to r .4. w h ich is e v id e n t by

    eigenvalues w h ich have non-zero im a g in a ry com ponents.

    • W hen using o n ly one m ode ( f in ite vo lu m e s). B a um a nn -O de n reduces to an in co n

    s is ten t scheme, w h ich is deno ted b y a ll th e eigenvalues ly in g a t (0 .0 ) . For m odes

    g rea te r th a n o r equal to tw o. B a u m a n n -O d e n fluxes p ro v id e a cons is ten t scheme.

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • 11

    M = 1 M = 2 M = 3

    o coo on j

    -15 -10

    'p

    M = 4200

    100

    E

    -100

    - 200 '— -2000 -1000 -4000

    M = 7

    1

    0.5

    0

    -0.5

    M = 5400

    200

    -200

    -400-2000Re(X)

    M = 8

    -1000-10000

    *300 00308)

    -400

    M = 6

    -5000

    M = 92000 4000 5000

    20001000

    -1000 -2000

    -4000 -5000-5000 -2

    -2 0 0 0 -----10000

    CEO

    Re(/i) x 10 x 10

    F ig u re 2.2: E igenvalues o f th e o p e ra to r A in e q u a tio n (2.9) w hen u s ing Bassi-R ebay fluxes to fo rm u la te A. Ten e lem ents were used in a ll cases: each p lo t denotes a d iffe re n t va lue o f the n u m b e r o f m odes (A /) . T h e o rd in a te is the co m p le x im a g in a ry ax is , a nd th e abscissa is th e co m p le x rea l axis.

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • 12

    -15

    E

    M = 1 M = 2 M = 31 1 1

    0.5 0.5 0.5._„

    l 0o o 3 o o r 3 0 GDO O CO 0DCQ t 0 CEGD G E d )

    -0.5 -0.5 -0 .5

    -1 -1 -1-10 -100

    M = 4

    -50 Re(A.)

    M = 5

    -400

    M = 7

    Re(A)

    M = 8

    -200

    M = 6

    M = 9

    200 400 1000

    100 200 500

    -100 -200 -500

    -10 00 -2000 -5000-400 '—

    -4000-1 0 0 0 -----

    -10000

    2000 4000 5000

    1000 2000

    0 oa>

    -1000 -2000

    - 2000 '— -10000

    -4000 -5000-5000 0 -2

    4 4x 10 x 10'

    F ig u re 2.3: E igenvalues o f th e o p e ra to r .-1 in e q u a tio n (2 .9 ) w hen us ing L D G fluxes to fo rm u la te .4. Ten e lem ents were user! in a ll cases: each p lo t denotes a d iffe re n t va lue o f the n um be r o f modes (A / ) . T h e o rd in a te is the com p lex im a g in a ry ax is , and the abscissa is th e com p lex rea l axis.

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • 13

    M = 1 M = 2

    r <

    E

    -100

    -10000

    M = 4200

    100

    Eo n i

    -100

    - 200 '— -2000 -1000 0

    M = 7

    -400 -4000

    GE

    -200

    M = 6

    Q X D I I CHOC I

    -500

    -5000

    M = 92000 4000 5000

    pi1000 2000 %

    a.©

    'X 0 OCCD « t 0 OSD C ► 0 m o c ic

    -1000 -V -2000 f 9a y ■*y'

    -2000 -4000 -5000-5000 -1

    Re(>i)-3 -2

    x 10

    -1 0

    x 104

    F ig u re 2.4: E igenvalues o f the o p e ra to r .4 in ec jua tion (2.9) w hen us ing B a u m a n n -O d e n fluxes to fo rm u la te .4. Ten elem ents were used in a ll cases: each p lo t denotes a d iffe re n t va lue o f th e n um be r o f modes (A /) . T h e o rd in a te is the co m p le x im a g in a ry ax is , and the abscissa is the co m p le x real axis.

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • 14

    • T h e B a u m a n n -O d e n Hux. a lth o u g h d ispers ive , does n o t show s ig n ific a n t d ispers ion

    fo r low n um be r o f modes (M odes = 2 .3). I t is conce ivab le th a t th is fac t can be ex

    p lo ite d to crea te a s y m m e tr ic p re c o n d itio n e r w h ich w o u ld acce le ra te th e convergence

    o f im p lic i t m e th od s w h ich use B a um a nn -O de n fluxes.

    • C om pa riso n o f the e ig ne spe c trum o f th e o pe ra to r fo rm ed u s ing L D G fluxes and the

    o p e ra to r fo rm ed u s ing B assi-R ebay fluxes shows th a t L D G requ ires a m ore s tr in g e n t

    tim e step i f an e x p lic it t im e s te p p in g m e thod is used fo r the advancem ent o f the

    O D E system g iven by e q u a tio n (2.9). In one -d im ens ion , th is fa c t can be ra tio n a lize d

    by e xa m in in g th e w id th o f the s te n c il th a t is crea ted (as is done in [65]) bv the tw o

    m ethods cons ide red . As [ jo in te d o u t ea rlie r, fo r L D G th e w id th o f the s tenc il is

    three*. where;is fo r B assi-R ebay the w id th o f the s te n c il is five. Hence the effective*

    A x fo r the L D G o p e ra to r is s m a lle r th a n th a t o f the B ass i-R ebay o p e ra to r. T h is fact

    re*quires th a t whe*n us ing an e x p lic it t im e s te pp ing scheme, th e tim e step o f the L D G

    m ethod w il l be s m a lle r th a n th a t e>f the; Bassi-R ebay m e th o d so th a t the* d iffu s io n

    num be r l im it can be* m a in ta in e d .

    • In figure 2.5 we* p lo t the m o d u lu s o f th e m a x im u m e igenva lue versus the* num ber

    o f modes pe*r e lem ent fo r Bassi-R ebay ( le ft) . L D G (cen te r), and B a um ann -O den

    ( r ig h t) .

    —. f; • t

    F ig u re 2.5: M o d u lu s o f the m a x im u m eigenvalues versus th e n u m b e r o f m odes per e lem ent fo r Bassi-R ebay ( le ft) . L D G (ce n te r), a nd B a u m a n n -O d e n ( r ig h t) . T h e sym bo ls denote th e a c tu a l m od u lu s o f the e igenvalue, and th e so lid lin e denotes a Ieast-squares A/ 1 fit w he re M is the n um be r o f m odes used per e lem ent.

    A l l th ree Hux choices show a A/ 1 sca lin g where M is th e n u m b e r o f m odes used per

    e lem ent, how ever th e co e ffic ie n t is d iffe re n t between th e fluxes. For b o th Bassi-R ebay

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • 15

    and B a um a nn -O de n . th e lea d in g coe ffic ien t in the least-squares a p p ro x im a tio n is 1.35

    whereas in the case o f L D G , th e lea d in g coeffic ien t is a ro u n d 4.1.

    2.3 C on vergen ce S tu d ies

    T o con tin ue o u r s tu d y , we now exam ine th e convergence p ro p e rtie s b o th fo r h-convergence

    and p-convergence.

    2 .3 .1 A S tu d y o f h -C o n v e r g e n c e

    T o s tu d y the h-convergence o f the Bassi-R ebay. L D G . O d e n -B a m n a n n fluxes, we cons ider

    th e one -d im ens iona l p a ra b o lic e qu a tio n

    i)'n d 211 ~—------- v — 7 = 0 v € TZ. v > 0Ot O x1

    on [0. 1] w ith p e r io d ic b o u n d a ry co n d it io n s . A n in i t ia l c o n d it io n o f u (x ) = sin(2Trx)

    was used, and th e e rro r was e xam ined a t T = 0.1. T o d e te rm in e th e convergence ra te

    fo r each flu x choice, we h o ld the n u m b e r o f modes per e lem ent fixed (b o th M = 2 and

    . \ [ = 3 m odes) w h ile successive ly d o u b lin g the num be r o f e lem ents used in the sp a tia l

    d is c re tiz a tio n . A p lo t o f th e L < e rro r versus the num be r o f e lem ents is presented in figure;

    2.6 .

    O bserve th a t b o th B ass i-R ebay and O d en -B au m an n have d if fe re n t convergence rates

    d e p en d in g on w h e th e r th e n u m b e r o f m odes is o dd o r even w h ile L D G m a in ta in s a cons tan t

    convergence ra te . T h is b e h a v io r is cons is ten t w ith the resu lts show n in [65]. Bassi-R ebay

    achieves M tlx o rd e r convergence w hen A / is oven and (A / — I)* * o rd e r convergence when

    M is odd . B a u m a n n -O d e n achieves (.V/ — I ) ' 7* o rd e r convergence w hen \ [ is even and

    M lfl o rd e r convergence w hen M is o dd . L D G achieves A [ lfl o rd e r convergence fo r b o th

    o d d and even A /. In th is exam p le , fo r an o d d num be r o f m odes. A / = 3. B ass i-R ebay and

    L D G have the same convergence ra te a nd have s im ila r a bso lu te e rro rs . T h e L D G Hux.

    in genera l, shows s u p e rio r p e rfo rm an ce to b o th the B assi-R ebay and th e B a um a nn -O de n

    fluxes in th a t i t has a co ns is te n t convergence ra te n o t d ependen t o n th e p a r ity o f the

    p o ly n o m ia l o rd e r em p loyed.

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

  • 16

    B o s M -R c b jv Baumann-Oden

    jk=|slopc|

    M * 2 M » 3

    F ig u ro 2.6: C o m p a riso n o f tin* ra te o f convergence fo r B ass i-R ebay ( le ft) . L D G (cen ter), and B a nm a nn -O de n ( r ig h t) fluxes fo r tw o m odes ( \ I = 2 ) a nd th re e m odes ( \ I = 3 ) per e lem ent. T h e L-> e rro r is g iven on th e o rd in a te , and th e n u m b e r o f e lem ents is g iven on th e abscissa, k denotes th e m a g n itu d e o f the slope.

    2 .3 .2 A S tu d y o f p -C o n v e r g e n c e

    T o fu r th e r o u r e x a m in a tio n o f d iffe re n t flu x te rm s used fo r d if fu s io n in the d iscon tinuous

    G a le rk in m e th od , we e xam in e d the s o lu tio n o f viscous B u rge rs e q u a tio n :

    as a test p ro b le m in [6 ] fo r e v a lu a tin g the effectiveness o f d if fe re n t s p a tia l d isc re tiza tio ns .

    centered a t th e o r ig in a ro u n d th e tim e t, = 1/ t t (an a p p ro x im a tio n w h ich comes from the

    in v is c id th e o ry fo r B u rge rs e q u a tio n ), and the m a x im u m g ra d ie n t o f th e s o lu tio n occurs a t

    a p p ro x im a te ly 0.5. As in [6 ]. th e C ole tra n s fo rm a tio n is used to o b ta in th e exact s o lu tio n

    to e qu a tio n (2 . 10):

    On 1 ch i* d 2u

    d t 2 Ox Ox2( 2 . 10 )

    For th is , . l ent . th e v iscos ity is taken to be u = 10 2/ 7t. T h is p ro b le m was used

    As is p o in ted in th a t pape r, fo r u = 10 2/ ~ the s o lu tio n deve lops in to a sa w too th wave

    u (x . t ) = —J-Ztc s in (7 r(x - q ) ) f ( x - t } ) e xp ( — T]2 / - j u t ) dr]

    J T x f ( x ~ n) c x p ( - r ] '2/ 4 u t ) drt(2 . 11)

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

    88

  • 17