Top Banner

of 67

Inequation & Equation Solutions Final

Apr 14, 2018

Download

Documents

akshay patel
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/29/2019 Inequation & Equation Solutions Final

    1/67

    Inequation & Equation Solutions

    Ex.1(A)

    1.1 5

    21

    xx

    x x

    5121

    x x

    x x

    2(2x + 1) = 5 1 x x

    4(2x + 1)2 =x (x +x 2)

    16 x2 + 4 + 16x = 25x +x2

    9x2 + 9x 4 = 0

    (3x 1) (3x + 4) = 0

    1

    3x

    only satisfies

    Ans (b)

    2. logx(x + 3)2

    x = 16

    log2

    3 16xx

    x

    (x + 3)2 = 16

    x2 + 6x 7 = 0

    (x+ 7) (x 1) = 0

    x = 7 , 1

    According to definition of logarithm no value satisfies.

    Ans : (d)

    3. 3 910 10

    log ( 1) log ( 1)x x

    3 3

    10 10

    1log ( 1) log ( 1)

    2x x

    1/23 9

    10 10

    log ( 1) log ( 1)x x

    (x 1) > (x 1)1/2

  • 7/29/2019 Inequation & Equation Solutions Final

    2/67

    (x 1)2 > (x 1)

    (x 1)2 (x 1) > 0

    (x 1) [x 2) > 0

    Using wavy curve method,

    x (, 1) u (2, )

    Ans : (a)

    4. log4((x 1) = log2((x 3)

    1

    2log2(x 1) log2(x 3) = 0

    21

    log 0

    3

    x

    x

    1

    13

    x

    x

    x 1 = (x 3)2

    x2 7x + 10 = 0

    x = 5, 2

    According to the definition of logarithm x = 2 is rejected.

    x = 5 is the only solution

    Ans : (b)

    5. f(n) = log2002n2

    Now, N = f(11) + f(13) + f(14)

    = log2002(112) + log2002(13)

    2 + log2002(14)2

    = log2002(112. 132. 142)

    = 2 log 2002

    Case 1 : x - 4

    -(x + 4) (5 x) = 9

    -9 = 9 (haha..)

    no solution in this region - 1Case II

    -4< x 5

  • 7/29/2019 Inequation & Equation Solutions Final

    3/67

    (x + 4) + (5 x) = 9

    9 = 9 (always true)

    all value satisfies

    x > 5 (3) From 1, 2, 3 x [5, ] Ans : (b)

    6. Given root are 1, i 5

    We know that complex root always exists as a pair.

    3rdroot is also present and its-i 5

    (x 1) (x + i 5 ) (x - i 5 ) = 0

    (x 1) (x2 + 5) = 0 [ i2 = -1)

    x3 x2 + 5x 5 = 0

    Ans : (d)

    7. |x 1| + |5 2x| = |3x 6|

    The options are such that, we can do by guess work.

    Put x = 0 (simplest)

    It stratifies [active method is given in Q.1]

    Ans : (d)

    8. |x + 4| - |5 x| = 9

    Here, x = -4 and x = 5 are the critical point

    9. x + y = 1 (1)

    x3 + y3 = 19 (2)

    squaring (1), x2 + y2 + 2xy = 1

    x2 + y2 = 1 2xy ..(3)

    For xy,

    (2) (x + y)3 3xy (x + y) = 19

    1 3xy = 19

    xy = -6

    (3) x2 + y2 = 13

  • 7/29/2019 Inequation & Equation Solutions Final

    4/67

    ans : (d)

    10. 3x + 1 =62log6

    3x + 1 =62log6 [ log

    xba = log

    abx ]

    x + 1 = 62log

    x = 62log 1

    = 6 22 2log log

    = 26

    log2

    = 32log

    Ans (a)

    11. log111

    13

    + log111

    14

    + . + log1

    1242

    = log112

    3

    + log113

    4

    + .. log11241

    242

    = log112 3 4 241

    . . . ...........3 4 5 242

    = log112

    242

    = log111

    121

    = log111(121)

    = -2 log11

    = -2

    Ans (b)

    12. a = log35 and b = log1725

    a =5

    1

    log 3and b =

    5

    2

    log 17

    in a denominator is a faction and in b denominator is greater than 1

    a> b

    13. 2 log2(x2 + 3x) 0

  • 7/29/2019 Inequation & Equation Solutions Final

    5/67

    2 log2(x2 + 3x)

    4 x2 + 3x

    x2 + 3x 4 0

    (x + 4) (x 1) 0

    x [-4, 1] .(1)

    According the validity of log function,

    x2 + 3x > 0

    x(x + 3) > 0

    x (-, -3) U (0, ) (2)

    From (1) & (2)

    x [-4, 3] U [0, 1]

    Ans (b)

    14. for s1

    x = 11log 7 ; y = 7log 11

    xy = 1 x =1

    y

    y in 7 x in 11

    =1

    11yIn Inye

    =

    2 7 11y In In

    ye

    =

    7log 11 log7 11In

    y

    e

    =ln7 11ln

    ye

    = e0

    = 1

    Ans (T)

    For S1 : Take any freetion from given method Ans : F

    For S2 : by25(2 + tan2) = 0.5

    2 + tan2 = (25)1/2

  • 7/29/2019 Inequation & Equation Solutions Final

    6/67

    tan2 = 3

    tan2 = tan21

    2

    = n 2

    15. y =1

    2

    2

    | log |

    log

    x

    x

    = 2

    2

    | 1 log |

    log

    x

    x

    = 2

    2

    | log |

    log

    x

    x

    For 0 < x < 1, log2x < 0

    y = -1 And for x > 1, log2x > 0

    y = -1 for x = 1, its undefined

    Ans : (c)

    16. |x 1| 3 and |x 1| 1

    -3 x 1 3 x 1 - 1 or x 1 1

    -2 x 1 3 x 0 or x 2

    -2 x 4 ..(4) x (-, 0) U [2, ] . from (1) & (2)

    17. if log27 =p

    q(a rational)

    7 = 2p/q

    Right hand side will need K odd

    contradictory

    Itss andirrational

    Ans : (c)

    18.

    3 5

    log2 2 log 24 4

    2 ......(1)

    x x

    x

    at log2x = t

  • 7/29/2019 Inequation & Equation Solutions Final

    7/67

    (1) 23 5

    1/24 4 2t t

    x

    23 5

    1/24 42log log 2

    t t

    x

    23 5 1

    4 4 2t t t

    (3t2 + 4t 5) t = 2

    3t2 + 4t2 5t 2 = 0

    (t 1) (3t2 + 7t + 2) = 0

    (t 1) (3t + 1) (t + 2) = 0

    t = +1,3

    4

    , -2

    For t = 1, log2x = 1 x = 2

    For t =3

    4

    , log2x =

    3

    4

    x =

    1

    3 2

    Fro t = -2, log2x = -2 x =1

    4

    19. 2 log10x logx(0.01) = 2log10x logx(102

    )

    = 2 log10x + 2logx10

    = 2[log10x + logx10]

    4 [A.M G.M]

    Ans : (d)

    20. log0.4(x 5) < log0.16(x 5)

    Log0.4(x 5) < log(0.4)(x 5)

    x 5 > 5x

    (x 5)2 > x 5

    x2 11x + 30 > 0

    x (-, 5) U (6, )

    Ans : (d)

    21. log16x + log4x + log2x = 7

  • 7/29/2019 Inequation & Equation Solutions Final

    8/67

    1

    4log2x +

    1

    2log2x + log2x = 7

    1

    1/242log . . 7

    x x x

    77

    4 2x

    4

    7 472 2 x

    x = 16

    22. log3(x + 2) (x + 4) + log1/3(x + 2)3

    1log 7

    2

    3

    ( 2)( 4)log 0( 2)7

    x x

    x

    ( 4)

    17

    x x < 3 ..(1)

    From definition of log, x + 2 > 0

    x > - 2 ..(2)

    23. conceptual

    24. 7 7log log 7 7 7

    = log7(log77)

    = log71

    = 0

    25. Take x + y + z = loga(bc) + logb(ca) + logc(ab)

    = not matching

    - 1

    Take (1 + x) 1 + (1 + y) 1 + (1 + 3) 1

    = (1 + logabc) 1 + logbca) 1 + (1 + logcab) 1

    = (logaa + logabc) 1 + (logbb + logbca)

    1 + (logcc + logcab) 1

    = logabca + logabcb + logabcc

    = logabcabc

    = 1

  • 7/29/2019 Inequation & Equation Solutions Final

    9/67

    26. 1 + abc = 1 +log12 log 24 log 36

    log 24 log36 log 48

    = 1 + log4812

    = log4848 + log4812

    1 + abc = log48(48 12) = log48(24)2

    Now, option (c) =log 24 log 36

    2log 36 log 48

    = 2 log4824

    = log48(24)2

    27. x = log5(100) y = log72058x = 3 + log58 ..(1) y = 3 + log76 .(2)

    from (1) & (2) it obvious

    x > y

    Ans (a)

    28. 271/x + 121/x 2.81/x =

    1/ 1/27 8

    1 2. 0

    12 12

    x x

    1/ 1/

    9 21 2. 0

    4 3

    x x

    21/ 1/3 2

    1 2 02 3

    x x

    Put

    1/3

    2

    x

    t

    2 32

    1 0 2 0 t t tt

    (t 1) (t2 + t + 2) = 0

    t = 1

    1 10

    3 3 31

    2 2 2

    x x

    10 . x no solution

    x

  • 7/29/2019 Inequation & Equation Solutions Final

    10/67

    29.2

    12

    4 9

    x

    x

    1

    144x2 16x4 + 81 + 72x2

    16x4 72x2 + 81 0

    (4x2 9)2 0

    Its always true.

    option (A) is correct.

    30. 11

    | 1 .( 1)

    xx

    x xx x

    ( 1)

    .( 1)

    x

    xx

    0

    2( 1)x

    x 0

    1

    x 0

    x > 0

    x (0, ) U {- 1} Ans (b)

    31.1

    72 1 13 . 13 3

    x

    0

    721

    13 . 1

    3

    x

    72 1

    3 1

    x

    713 1 x

    71 03 3 x

    71 0 x

    71x

    2(71)x

    0 x < (71)2

  • 7/29/2019 Inequation & Equation Solutions Final

    11/67

    32. 5x + 2

    2 3x

    - 169 > 0

    5x + 12x > 132

    We know that 52 + 122 = 132

    for x > 2,

    5x + 12x > 132

    Ans (2, )

    Ex.1(B)

    1. 184x 3 = 3 4

    54 2x

    184x 3 = 3 4

    2 9 3 2

    x

    184x 3 = 3 4

    18. 18x

    184x 3 =

    3 43

    218

    x

    4x 3 = 3

    3 42

    x

    x = 6

    2. Use rule of divisibility

    3. x2 6x 15x 15|- 5 = 0

    Case 1 Case 2

    5x 15 0 5x 15 < 0

    x 3 (i) x < 3 ... (i)

    a. x2 6x (5x 15) 5 = 0 x2 6x + (5x 15) 15 = 0

    x2 11x + 10 = 0 x2 x 20 = 0

    (x 10) (x 1) = 0 (x 5) (x + 4) = 0

    x = 10, 1 ..(ii) x = 5, -4 (ii)

    From (1) & (2) from (i) & (ii)

    x = 10 x = -4

  • 7/29/2019 Inequation & Equation Solutions Final

    12/67

    l = 1 & m = 1

    4. Conceptual

    5. 11

    1log ( 0.5)

    log ( 0.5)

    x

    x

    xx

    2

    1log 0.5 1 x x

    logx + 1(x 0.5) = 1

    Logx + 1(x 0.5) = 1 logx + 1(x 0.5) = -1

    1

    12

    x x 1 1

    2 1

    x

    x

    1

    12

    21

    12 2

    x

    x x

    1

    12

    23

    02 2

    x

    x

    1 5

    2 22

    x

    3, 1

    2

    xx

    But according to the definition of log

    X + 1 > 0 and1

    02

    x

    x > 1 and1

    2

    x

    x = 1 is the only solution

    6. log[11/5 + (32)1/5 + (243)1/5]

    = log[1 + 2 + 3]

    = log 6

    option (c)

    Take option (D) = 1

    5(log 1 + log32 + log 243)

  • 7/29/2019 Inequation & Equation Solutions Final

    13/67

    =1

    5log (32 243)

    =1

    5log(65) = log6

    option (D) is also correct.

    7. x3 2x + 3 = 0

    L + + = 0 .. (1)

    = - 2 .. (2)

    = -3 .. (3)

    At y =1

    Y =1

    { + + = 0}

    =1

    is the root of x3 2x + 3 = 0

    33

    2 3 01 1

    y y

    y y

    3

    3

    23 0

    11

    y y

    yy

    - y3 + 2y (y + 1)2 + 3(y + 1)3 = 0

    -y3 + 2y3 + 4y2 + 2y + 3y3 + 3 + 9y2 + 9y = 0

    4y3 + 13y2 + 11y + 3 = 0

    Transformed equation is

    4x3 + 13x2 + 11x + 3 = 0

    It root are , ,1 1 1

    13

    1 4

    Similarly check the other options.

  • 7/29/2019 Inequation & Equation Solutions Final

    14/67

    8. S1 :|x| + 1 = 0

    Case 1 Case 2

    Of x > 0 of x < 0

    Then x2 + x + 1 = 0 x2 x + 1 = 0

    D < 0 D < 0

    no real solution.

    For S2: x2 5|x| + 6 = 0

    |x|2 5 |x| + 6 = 0

    (|x| - 3) (|x| - 2) = 0

    |x| = 3 or |x| = 2

    x = 3 or x = 2

    For S3: x2 - |x| - 2 = 0

    |x|2 - |x| - 2 = 0

    |x| = 2 or |x| = -1

    x = 2 (Rejected).

    9. 51 log 0.04 xx

    51 log 25 xx

    51 log 25 5log log 5 x

    x

    (1 - log5x) log5x = -2

    Put log5x = t

    (1 t) = -2

    t t2 + 2 = 0 t2 t 2 = 0

    (t 2) (t + 1) = 0

    t = 2 or -1

    Log5x = 5 log5x = -1

    x = 25 x =1

    5

  • 7/29/2019 Inequation & Equation Solutions Final

    15/67

    10. 102/x + 251/x = 1/17

    504

    x

    1 1

    1/17100 75 50

    4

    xx x

    11100 75 17

    50 50 4

    x

    x

    1 11 172

    2 4

    x x

    Put1

    2 x t

    t +1 17

    4 t

    t

    4t2 17t + 4 = 0

    (4t 1)(t 4) = 0

    t =1

    4or 4

    122 2 x

    122 2x

    1 2 x

    1 2x

    x =1

    2

    x =

    1

    2

    11. Case1 x2 + 4x + 3 0 (x + 3) (x + 1) 0

    x (-, -3) U (-1, ) .. (1)

    G.E (x2

    + 4x + 3) + 2x + 5 = 0

    x2 + 6x + 8 = 0 (x + 4) (x + 2) = 0

    x = -4, -2

    x = -4

    Case2 x2 + 4x + 3 < 0 x (-3, -1)

    G.E -(x2 + 4x + 3) + 2x + 5 = 0

    -x2 - 2x + 2 = 0

    x2 + 2x 2 = 0

  • 7/29/2019 Inequation & Equation Solutions Final

    16/67

    x =2 4 8

    2

    = 1 3

    But x 1 3 is rejected not bounding

    x 1 3

    12.1

    2log0.1x 2

    1

    2log101x and 1

    2

    log 2x

    1

    2log10

    1

    x

    and 101

    log 2

    x

    1/21 10x

    and1

    100x

    1

    10x and

    1

    100x

    13. log2(32x + 2 + 7) = log24 + log2(3

    x 1 + 1)

    2 2

    1

    3 7log 2 04 3 1

    x

    x

    2 2

    1

    3 71

    4 3 1

    x

    x

    32x.9 + 7 =3

    4 43

    x

    Put 3x = t

    9t2 + 7 =4

    43

    t

    27t2 + 21 = 4t + 12

    27t2 4t + 9 = 0

    D < 0

    no soln.

  • 7/29/2019 Inequation & Equation Solutions Final

    17/67

    14. loga1a2 a1 = 4

    1

    14

    log 1 2

    aa a

    loga1(a1 a2) =1

    4

    1 + loga1a2 =1

    4

    loga1a2 =3

    4

    Now,

    1 2 1 2 1 2

    1/3

    1

    1/2

    2

    1 1log log 1 log 2

    3 2

    a a a a a a

    aa a

    a

    1 1 2

    1 1 143 2 log

    a a a

    2 1

    4 1 1.

    3 2 1 log

    a a

    4 1 1

    43 2 13

    4 3

    3 2

    17

    6

    < 3

    PASSAGE 1

    (i), (ii), (iii) Very trivial just observation.

    PASSAGE 2

    N = 727

    log 7log 9007 900 900 30 N

    A = 2 2 2 2log 4 log 4 log 2 log 32 3 4 4

    = 4 + 9 + 4 9

    A = 8

  • 7/29/2019 Inequation & Equation Solutions Final

    18/67

    D = (log549) (log7125)

    =2 log 7 3log 5

    log5 log 7

    D = 6

    (i) logAD = a

    Log86 = a 1

    3log26 = a log26 = 3a

    Now, log612 = log6(6 2) = 1 + log62

    = 1 +1

    3a=

    3 1

    3

    aa

    (ii) Here, m = n = 3, N = 30

    Take option (A) log303 < log330 = log330

    log303 < log330

    Its true

    (iii)530

    810

    log 30 8 6 3 3 log 2

    = log550 log52

    PASSAGE 3

    y = 4 14x2 - 91

    (i) B1co3 of mod max.valur of y = 4 for |4x2 9| = 0 & there is no limit for any bigger we can subject

    from 4.

    y (-, 4]

    (ii) -3 = 4 |4x2 9|

    |4x2 9| = 7

    4x2 9 = 7

    4x2 = 9 7

    4x2

    = 16 4x2

    = 2

    x = 2 x =1

    2

  • 7/29/2019 Inequation & Equation Solutions Final

    19/67

    (iii) y = |Z| + 4 |Z| = y 4

    Z = (y 4)

    Z = y 4 Z = 4 y

    Z = -|4x2 9| Z = |4x2 9|

    Z takes all-ve values. Z akes all the value

    Infinite (x, Z)

    But for every x there are two values of Z

    Two ordered points.

    PASSAGE 4

    (i) 4 x > 0 .. (1) x< 4

    x> 0 . (2)

    x + 1 . (3)

    2 + x > 0 .. (4) x> - 2

    For answer (1) (2) (3) (4)

    x (0, 4) {,}

    (ii) 03

    x

    x.. (1)

    log 2 03

    x

    x. (2) 1

    3

    x

    x

    Froans (1) (2) 3 03 x

    x (-, -3)

    (iii)4

    01

    x

    x (1)

    x 1 0 . (2) x 1

    (1) (2) x [1, )

    -3 0

    -4 -1

  • 7/29/2019 Inequation & Equation Solutions Final

    20/67

    Assertion & Reasons

    (1) Conceptual

    (2) log3(x2 + 1) + |log4y

    2| = 0

    log3(x2 + 1) + |log24| = 0

    Both terms are positive on L + s.

    x2 + 1 and log24 has to be O.

    But x2 + 1 > O

    students (1) False

    (3) 10 110

    log 13 12 log 14 13

    10 10 1log 13 12 log 14 13

    10 10log 13 12 log 14 13

    13 12 14 13

    Its true

    statement 1 is true

    And statement 2 is true theory

    option (A)

    Matrix-Match Type

    (1) (A)

    21 1 2

    05

    x x x

    x

    x [-1, 2] (5, )

    (B)

    | | 50

    2

    x x

    x

    5

    02

    x

    x[ |x| 0]

    -1 1 2 5

    2 5

  • 7/29/2019 Inequation & Equation Solutions Final

    21/67

    (C) at Q = log1010 = 1

    Q = log1099 < 2 Q [1, 2)

    P = log109999 < 4 p [3, 4)

    P Q [1, 2) [3, 4)

    (D)

    21 1 20

    5

    x x x

    x

    x (-, -1] [1, 5)

    (2) (A) 2 23 7 7log 5 8log (5 4log 7 | | k

    log39 = |k|

    |k| = 2 k = 2

    (B) 2

    0.5 1

    2

    log 4 log 4 | 2 | 2

    (C) logx(x2 1) = 0

    x> 0 .. (1)

    x 1 . (2)

    x2 1 > 0 (3)

    and x2 1 = x0

    x2 = 2

    x = 2 . (4)

    For Ans (1) (2) (3) (4)

    x = 2

    (D) 9 77 x

    21 2

    11

    x

    x

    =2

    1 42 4

    11 x

    x

    -1 1 2 5

  • 7/29/2019 Inequation & Equation Solutions Final

    22/67

    =1 4

    9 77 411 9 77

    = 4 9 771

    9 77 411 4

    = 1

    9 77 9 77 411

    = 2

    EXRECISE -1 (c)

    Subjective solutions

    1.2

    2

    X 5x 4

    x 4

    = 1

    2

    2

    X 5x 4

    x 4

    = 1

    2

    2

    X 5x 4

    x 4

    = 12

    2

    X 5x 4

    x 4

    = -1

    X2- 5x + 4 = x2- 4 X2 5 x + 4 = - x2 + 4

    5x = 8 2x2- 5 x = 0

    X= 85

    x (2x 5) = 0

    x = 0, 52

    2. 2x 3 = x 3 - (I)

    Validity conditions

    2x -3 0 x 32

    - (1)

    x 3 ,2

    .

    x + 3 0 x -3 - (2)

    verify (I), we set 2x 3 = x + 3

    x = 6

  • 7/29/2019 Inequation & Equation Solutions Final

    23/67

    X = 6 E3

    ,2

    Ans. x = 6

    3. 26 4x x = x + 4

    6 4x x2 = (x + 4)

    6 4x x2 = x2 + 16 + 8x

    2x2 + 12 x + 10 = 0

    x2+ 6x + 5 = 0

    (x + 5) (x + 1) = 0

    x = -5, -1

    Validity conditions (i) 6 - 4x x2 0

    x2 + 4x -6 0

    X 2 10 X 2 10 0

    X E 2 10 , 2 10 - (1)

    (ii) x + 4 0 x -4 - (2)From (1) & (2)

    XE 4, 2 10

    X = -1 only E 4, 2 10

    Ans. x = 1

    4. |log x log x2

    | = -x

    LHS is positive

    RHS has to be positive

    x< 0

    But x cannot be negative in log x

    No values satisfies

    5. 4 log 2 7 + log23. Log 3

    5. Log 52 + 6

    2 log 2(74) + log3 log 5 log 2 + 6

  • 7/29/2019 Inequation & Equation Solutions Final

    24/67

    = 74 + 1 + 6

    = 2408

    6. x2 - |5x + 8| > 0

    Case 1 Case 2

    % 5x + 8 0 % 5x + 8 < 0 x 0

    Now < 0

    X2 (5x + 8) > 0

    X2 5x - 8 > 0 No real root

    5 57 5 57

    x x2 2

    > 0 XER

    x5 57 5 57

    , u ,

    2 2

    - (ii)

    From (i) & (ii)

    Ans : x5 57 5 57

    , u ,2 2

    (7)2

    |x 3|2. 0

    x 5x 6

    Validity x 3, 2

    2

    |x 3|2. 0

    x 5x 6

    |x 3|

    2 0x 3 x 2

    Case 1 Case 2

  • 7/29/2019 Inequation & Equation Solutions Final

    25/67

    x-3 0 x-3 < 0 x < 3 (i)

    x 3 (i) G.1

    2 0x 2

    x 32 0

    x 3 x 2

    12 o

    x 2

    12 o

    x 2

    2x 30

    x 2

    1 2x 40

    x 2

    3x ,2

    2

    -(ii)

    2x 50

    x 2

    From (i) & (ii)

    3x ,2

    2

    From (i) & (ii)

    No sol.

    For final answer :

    (Case 1 ) u (Case 2) 3

    x ,2

    2

    8. |x-2| |x+4|

    |x-2|2 |x+4|2

    x +1 0

    x -1

    9. |2x-4| < x-1

    Case 1 Case 2

    2x-4 0 2x-4 < 0 x 0

    x< 3 _ (ii) x > 53

    - (ii)

    From (i) & (ii) From (i) & (ii)

  • 7/29/2019 Inequation & Equation Solutions Final

    26/67

    X 2,3 -(1) X (5, 3) (2)

    From (1) & (2) & (Case1) U (Case 2) (7)X 5

    ,33

    10. 2|x+1| > x+4

    Case 1 Case 2

    X+1 0 x +1 < 0 x x+4

    G.E 2 (x+1) > x+4 3x 0 x< - 2 (ii)

    x> 2 (ii) (i) (ii) gives

    (i) (ii) gives

    x 2, -(1) X , 2 -(2)

    (Case1) U (Case 2)

    x , 2 U (Case 2)

    11. |x + 2| - |x 1| < x -3

    2

    Case I : of x - 2 -(i)

    Then G.E -(x + 2) + (x-1) < x -3

    2

    x >3

    2 - (ii)

    (i) (ii) x _(1)

    Case (1) : -2 < x < 1 -(i)

    G.E. x + 2 + (x-1) < x -3

    2

  • 7/29/2019 Inequation & Equation Solutions Final

    27/67

    x 9

    2(ii)

    (i) (ii) x9

    ,2

    -(3)

    For final answer ; (Case I) U (Case II) U ( Case III)

    x9

    ,2

    12.| 2|

    02

    x

    x

    |x-2| is always positive

    G.E.1

    02x

    x> 2

    13.2

    14x

    2

    14x

    2 > |x-4|

    Case 1 Case 2

    x-4 o x-4 < 0 x -2

    x< 6 (ii) x > 2 _(ii)

  • 7/29/2019 Inequation & Equation Solutions Final

    28/67

    (i) (ii) (i) (ii)

    X (4, 6) -(1) X (2, 4) -(2)

    (Case1) U (Case 2)

    (2, 4) U (4, 6)

    From validity x 4

    Ans : X (2, 4) U (4, 6)

    14.2 1

    21

    x

    x

    2 1 21

    x

    x

    or 2 1 21

    x

    x

    2 1

    2 01

    x

    x

    2 12 0

    1

    x

    x

    2 1 2 2

    01

    x x

    x

    10

    1x

    4 3

    0

    1

    x

    x

    x> 1 (2)

    (1) U (2)

    X3

    ,14

    U (1, )

    15.1 1

    3 2x

    2 1 03x

    Case 1 Case 2

    X 0 (i) x < 0 (i)

    G.E 23x

    -1 < 0 G.E 23x

    -1 < 0

  • 7/29/2019 Inequation & Equation Solutions Final

    29/67

    5

    03

    x

    x

    21 0

    3x

    5

    03

    x

    x

    50

    3

    x

    x

    x (- , 3) U (5, ) -(ii) x (- , 5) U (-3, ) -(ii)

    (i) (ii) (i) (ii)

    x (0 , 3) U (5, ) -(1) x (- , -5) U (-3, 0) -(2)

    (1) U (2)

    x (- , -5) U (-3, 3) U (5, )

    Exercise -2 A

    1. x3 + 2x2 3 x -1 =0

    Transforming x =1

    ywe get.

    Y3 + 3y2 2y -1 = 0 (1)

    1

    ,1

    ,1

    y

    are the roots of the above eqn.

    1

    +

    1

    +

    1

    y= -3,

    12

    ,

    11

    y

    2 2221 1 1 1 1 1 1

    2y y

    = 9 + 4 = 13

    1

    ,

    1

    ,

    1

    ysatisfy eqn. (1)

    3 2

    1 3 21 0

    3 2

    1 1 13 2 1 0

    2

    31 3(13) 2( 3) 3 0

    3

    142

  • 7/29/2019 Inequation & Equation Solutions Final

    30/67

    4 3 2

    1 1 1 13 2 0

    S + 3 (-42) 2 (13) (-3) = 0

    2. Let the root be diminished by h

    Let y = -h

    = y + h

    2 (y + h)3= 9 (y + h)2 -6 = 0

    Given that the second term is missing

    2 (3h) 9 = 0

    H =

    3

    2

    3. Let y = y

    Y = y -

    Y = p - . = p y

    The transformed eqn. is

    (p y)3 p (p y)2 q (p y) r = 0

    q3 3p2y + 3py2 y3 q3 + 2p2y py2 + pq - qy r = 0

    Y3 2py2 + (p2 + q) y + (r pq) = 0

    4. Let y =11 3 1y

    y

    4

    y

    Transformed eqn

    3 2

    64 32 203 0

    y y y

    3y3 20y2 + 32y 64 = 0

    5. f(x ) = x3 3x2 + 4

    f(x) has a repeated root, f (x) and f1(x) have a common root

    f1(x) = 3x2 6x = 0 x = 0, 2

  • 7/29/2019 Inequation & Equation Solutions Final

    31/67

    Clearly x = 2 satisfies

    6. x = 3 2

    X2 = 3 + 2 - 2 6

    (x2 5) = - 2 6

    (x2 5)2 = 24

    X4 10 x2 + 1 = 0

    7. 1 1 4 1x x x

    Squaring on both sides we get.

    (x+1) + (x-1) -

    2 21 4 1x x

    1-2x = 2 2 1x

    1-4x + 4x2 = 4x2 4

    8.2 9

    3log 2log1x x

    x

    Clearly, x >0 ; x 1

    2 9

    3log 2log 7x

    x

    Put log 3x = t

    2t -4

    t=7

    2t2 7t -4 = 0

    2t2 8t + t -4 = 0

    t =1

    2

    , 4

    Two solutions

    9.3

    2 22

    xx

    Observe that x < 2

    3 - 2

    2 2 2x x

  • 7/29/2019 Inequation & Equation Solutions Final

    32/67

    2

    2 2 2 3 0x x

    2 1x

    2-x > 1

    X < 1

    10. Let y = r1 + 2

    R1 = y 2

    (y-2) 2 (y-2)2 + 4 (y-2) + 5074 = 0

    The above eqn. has r1 + 2, r2 + 2 and r3 + 2 as the roots.

    (r1 + 2) (r2 + 2) (r3 + 2) = product of roots = -5050

    11. 2log 2x = log (x2+ 75),

    Clearly x > 0 and 4x2 = x2 + 75 x2 = 25

    x = 5 only (x = -5) rejected)

    12.

    28 15

    2

    x x

    x

    |x-| =1

    Notice that x 2.

    Now obvious solution is |x-3| =1

    x = 4, (x = 2 rejected)

    And also2

    8 152

    x xx

    = 0

    X = 5, 3

    But x = 3 rejected Base becomes

    So, final answer is x = 4, 5

    13. log2x (x2- 5x + 6) > 1

    x is prime x > 1

  • 7/29/2019 Inequation & Equation Solutions Final

    33/67

    x2 5x + 6 > 2x

    X2 -7x + 6 > 0

    (x-1) (x-6) > 0

    x (- , 1) (6, )

    14. Gives y2

    7 12x xy

    = 1 and x + y = 6

    (6 - x) (x + 4) (x + 3) = 1

    This is true when x = 5 ( Base is 1)

    X = -3, -4 (Exponent gero)

    X = 7 ( -ve power ever)

    But x > 0 x = 5 ; x = 7

    15. xy + 3y2 x + 4y -7 = 0 -(1)

    2 x y + y2 2x 2y + 1 = 0 -(2)

    (2) 2x (y 1) + (y 1)2 = 0

    ( y 1) (2x + y -1) = 0

    When y = 1 eqn. 91) is always true XER

    Options b, c, d

    When 2x + y -1 = 0 ;eqn (1) x = 2 ; y = -3 , (a)

    16. 2| 2| 3 9x y

    Now L.H.S. 3

    ` and R.H.S. 3

    Equality exists only when L.H.S. L. H. S. = R. H. S. = 3

    2| 2| 3 9x y = 3

    x = -2 ; y = 0

    17. log10 (-x) = 10log | |x

    Clearly x < 0

    Given eqn log 10 (-x) = 10log ( )x

  • 7/29/2019 Inequation & Equation Solutions Final

    34/67

    t = t

    t = 0 or 1

    log10 (-x) = 0 or 1

    X = -1 or -10

    18. Given logx2 . log2x

    2 = log 4x2

    base> 0, 1 x > 0 ; x 1,1 1

    ,2 4

    Given eqn2 4

    2 2 2

    1 1

    log .log logx x x

    22 2

    1 1

    2 loglog . 1 logxx x

    Put log2x = t

    t = 2

    log2x = 2

    X = 2 22 ,2

    19.2

    3 3

    1 1

    log (2 1) log (2 1)x

    x

    Observe that x > 0. And R.H.S. is always +ve

    , Both L.H.S and R.H.S. +ve.

    log3 (22x-1) < log3 (2

    x+1)

    22x 1 < 2x + 1

    (2x + 1) (2x 2) < 0

    2x (-1, 2)

    x (- , 1) -(1)

    But for both to be +ve.

  • 7/29/2019 Inequation & Equation Solutions Final

    35/67

    Log3(22x -1) > 0 22x> 2 x >

    1

    2

    20.2

    2 1 30

    log log logx ax a x

    a a a

    Put log ax = t

    2 1 20

    1 2t t t

    2 (1 + 1) (2 + t) + (2 + t) + 2t (1 + t) = 0

    2t2 + 6t + 4 + 2t + t2 + 2t + 2t2 = 0

    5t2 + 9t + 4 = 0

    (5t + 4) (t + 1) = 0

    t = -1;4

    5

    Two solutions

    21.135 5

    3 3

    3 3

    15 405

    log

    log log

    log

    = (log3135). (log3

    15) (log35) (log 3

    405)

    = (3+ log35) (1 + log35) (log35) (4+ log35)

    = 3

    22. Let N = 12300

    Log 10 N = 300 (log 1012)

    = 300 (2 log 102 + log 10

    3)

    = 300 (0.602 + 0.4771)

    Log10N = 323.73

    N has 324 digits

    23.( 3)

    log ( 2 4 3)1

    110

    x

    x x

    log(x-3)(x2-4x +3) 0

    1 + log (x+3)(x-1) 0

    log(x-3)(x-1) -1

  • 7/29/2019 Inequation & Equation Solutions Final

    36/67

    Given x is integer

    x-11

    3xwhich is not possible for on

    24. log102 = 0.3010 log210 =

    1

    0.3010

    1+ log25=

    1

    0.3010 log2

    5 =1

    10.301

    =699

    301

    Log 52 =

    301

    699

    Log 564 = 6 log 52= 6 x 301 602699 233

    25. log2 x + 3 (6x2 + 23 x + 21 ) = 4 log 3x-7 (4x

    2 + 12 x + 9)

    1 + log 2x+3 (3x + 7) = 4 2 log 3x + 7 (2x + 3)

    Put t = log 2x+3 (3x + 7)

    1 + t = 4 -2

    t

    Solving t = 1; t = 2

    When t = 1 log 2x+3 3x + 7 = 1 x = -4

    t = 2 log 2x+3 3x + 7 = 2 (3x + 7) = (2x + 3)2

    x = -2,1

    1

    26. 2 log10 3 3 = 3 k log 102

    2 log3

    23

    10= 3 k log 10

    2

    2 log3

    23

    2 . Log. 102 = 3 k log 10

    2

    2

    23 102 10

    logloglog 3

    22 3k

    2 log3

    23

    2. = 3 k

    3

    23 = 3 k

  • 7/29/2019 Inequation & Equation Solutions Final

    37/67

    k = 32

    27. 2( 1)

    2log

    5x

    x

    ( 1)

    2log

    2 5x

    x

    (x 1)2> x + 5 x2 3 x 4 > 0

    (x-4) (x + 1) > 0 x > 4 or x < -1 (reject)

    28. x = log 10005

    = 3 log 510 = 3 + 3 log 5

    2

    = 3 + 3 log 58

    Y = log 7 2058 = log 7 (73 . 6) = 3 + log 7

    6

    Clearly log 58> 1 x > 4

    And log 76 < 1 y < 4

    x > y

    29. Given eqn. 2 log xa + log ax

    a + 3 log a2xa = 0

    2 1 3

    0log 1 log 2 log

    x x x

    a a a

    Put log ax = t

    2 1 3

    01 2t t t

    2 (2 + 3t + t2) + 2t + t2 + 3t + 3t2 = 0

    6t2 + 11t + 4 = 0

    30. Let 1x t x = t2 + 1 (Remember t 0)

    2 21 3 4 1 8 6 1t t t t

    |t-2| + |t-3| = 1

    2 t 3

    2 1 3x

    5 x 10

  • 7/29/2019 Inequation & Equation Solutions Final

    38/67

    31. The given equation can be written as

    2x+1 21

    4x

    = 2 |x-3| 24 1x

    = 4. 2 |x-3| 21

    4x

    2x-1 = 2 |x-3|( XEI 2 14

    x

    is cancelled.)

    X-1 = (x-3) X=2 No ve integral value.

    32. Clearly, x, y are roots of the eqn.

    Log2t + log t

    2 =10

    3

    Log2t= 3 ;

    1

    3

    t = 8 ;1

    32

    x = 8, y =1

    32

    x + y = 8 +1

    32

    33. The required a satisfies the inequality

    2a2 2 (2a + 1) a + a (a + 1) < 0

    a2 + a > 0

    a (- , -1) (0, )

    34. When x 0 2x + 2x 2 2

    2x 2 2 x 1

    2

    When x < 0 2x + 2-x 2 2

    2

    22 2 2 1 0x x

    2 2 1 2 2 1 0x x

  • 7/29/2019 Inequation & Equation Solutions Final

    39/67

    2 2 1 2 2 1x xor

    - < x log 2 2 1 only 0x

    x 2 1,log 2 1 ,2

    35. Let y =1

    1

    By C & D 1

    1

    y

    y

    =1

    Or =1

    1

    y

    y

    Satisfies the eqn. x3 x- 1 = 0

    3- -1 = 0

    3

    1 11 0

    1 1

    y y

    y y

    (y 1)3 (y 1) (y + 1)2 (y + 1)3 = 0

    y3

    + 7y2

    y + 1 = 0

    36. Given , , are the roots of

    X3 + 2x2 + 3x + 2 = 0.

    2; 3; 2

    Let y = 3

    = 23 3

    Y =2

    3

    = ?

    37. 1 4 2 3x x x x

    Squaring on both sides we get

    2 21 4 1 4 2 3 2 3x x x x x x x x

    Squaring again 4 = 6 No solution.

  • 7/29/2019 Inequation & Equation Solutions Final

    40/67

    38. xx-y = y x+y and 1x y

    2

    1x

    y

    22

    11

    2

    1y

    yy

    yy

    y

    2y 2 2

    2 1,y

    y y

    y

    y =1 or 2y -2 2

    2 1y

    y y y3 =3

    39. log2x = log4

    y + log4(4-x)

    Log2x = log4

    y(4-x)

    X2 = y (4-x) _(1)

    Given eqn. log3 (x+y) = log 3x log3

    y

    x + y =x

    y-(2)

    From (1)and (2)

    X2 = y (4-x) and x =2

    1

    y

    y-(3)

    4 2

    24

    11

    y yy

    yy

    3

    24 4

    1

    yy y

    y

    y3 = 4 4y y2 -4y + 4y2 + y3

    3y2 -8y + 4 = 0

    Y =

    40. 2 x+1 = y2 + 4 and 2 x-1 y

    Y2 = 2x+1 4

    2

    4

    y= 2 x-1 -1 y 1

    Y2 4y + 4 0

    y =2

  • 7/29/2019 Inequation & Equation Solutions Final

    41/67

    41. Cos 2x >3

    4

    Cos2 x > Cos26

    Thus, for3

    2 2x

    x5 7

    , ,6 6 6 6

    42. x8 x5 + x2 x + 1 > 0

    For x > 1 x8 x5>0 ; x2 x > 0 thus always true

    0 < x < 1 -x5 + x2>0 ; -x + 1 > 0

    For x< 0 ; always true.

    43. x2 + y2 xy x y + 1 0

    X2 x (y + 1) + (y2 y + 1) 0

    D = (y + 1)2 4 (y2 y + 1) = -3 (y 1)2 0

    Q.E in x is always > 0

    44. x2 + (a. log (1 a2) ) x + (1 a2 ) = 0

    Clearly 1 a2 has to be greater than gero for log to be defined.

    And Product of roots be less than gero for roots to be of opposite .

    Both cant happen simultaneously.

    Hence, .

    45. Given xy (x + y) = 0

    x = 0 OR y = 0 OR x + y = 0

    When x = 0 |y| = k y = k

    When y= 0 |x| = k x = k

    When x + y = 0 |x| + | -x | =2

    k x = 2

    k

    Y = 2

    k

  • 7/29/2019 Inequation & Equation Solutions Final

    42/67

    Solutions of (x, y) are ( k, 0) , (0, k) , (2

    k,

    2

    k,

    46. x1, x2 are the roots of the eqn x2 -2m x + m = c

    x1 + x2 = 2m x1 x2 = m

    x12

    + x22

    (x1 + x2)2

    2 x1 x2 = 4m2

    2m

    Also x13 + x2

    3 = (x1 + x2) (x12 + x2

    2 x1 x2) = 2m (4m2 3m)

    Given x12 + x2

    2 = x13 + x2

    3

    4m2 2m = 2m (4m2 3m)

    m = 0 OR 2m 1 = 4m2 3m

    4m2 5m + 1 = 0

    Sum of roots =5

    4

    47. Let , , , be the roots.

    Given 4

    , , , = 1

    We know that 44

    And equality exists when

    Hence, = 1 is the only possibility

    Now a = 6

    B = 4

    48. |x2 + 3x| = 2 x2

    Clearly, 2 x2 has to be positive

    x (- 2 , 2 )

    Case (i) 2 0x

    -x2 -3 x = 2 x2

    x = 23

  • 7/29/2019 Inequation & Equation Solutions Final

    43/67

    Case (ii) 0 < x < 2

    x2 + 3 x = 2 x2

    2x2 + 3 x 2 = 0

    x =1

    2

    , -2 (reject).

    x = 2 1,3 2

    49. ax + by = 1 and px2 + qy2 = 1 have only one solution

    px2 + q2

    11

    ax

    b

    should have D = 0

    (pb2

    + qa2

    )x2

    2aqx + (q b2

    ) = 0

    D = 0

    4a2q2 = =4 (pb2 + qa2) (q b2)

    Pq2 on both sides

    2 2 2 2

    1a b a b

    p q p q

    On, Simplifying2 2

    1a b

    p q

    50. Given 4 32x y

    y x

    5

    2

    x y

    y x -(1)

    And

    Also log3 (x y) = 1 log3 (x + y)

    x2 y2 = 3 -(2)

    And from (1) we get 2x

    y OR

    1

    2

    Case (i) 2x

    y

    x = 2y and x2

    y

    2

    = 3

    y2 = 1 y = 1

    solutions (x, y) (2, 1) ; (-2, -1) (reject) as x + y > c

  • 7/29/2019 Inequation & Equation Solutions Final

    44/67

    Case (ii)1

    2

    x

    y

    x =y

    zthen from (2) we get not possible.

    51. a> 1

    Log x + ax 2 log a

    x

    log 2log

    log( ) log

    x x

    x a a

    1 2

    log 0log( ) log

    xx a a

    log 2log( )

    log 0log( ).log

    a x ax

    x a a

    x> 0 ; a > 1

    x + a > 1 and also a > 1

    2

    loglog log 0

    ( )

    ax

    x a

    log x 0 x 1

    52. log3(x + 2)> log x + 2

    81

    log3(x + 2)>

    2

    3

    4

    logx

    But x < - 1 x + 2 < 1 log3(x + 2)< 0

    But log3(x + 2)= t. we get t =

    4

    t

    t (-2, 0) log3(x + 2)> -2

    53. 4

    4

    1 1

    1 log 3log

    2

    x x

    x

    One can easily evaluate the possible values of x (-3, -2) (-1, ) to make log defined.

    For x (-3, -2)

  • 7/29/2019 Inequation & Equation Solutions Final

    45/67

    1

    12

    x

    x

    L.H.S. is +ve

    And x + 3 < 1 R.H.S is ve

    , x (-3, -2).

    Now when , x (-1, -).

    L.H.S is ve and R.H.S +ve

    Always true.

    54. We know min value of in4

    D

    a

    X2 + 2x (y 3) + (3y 2 + 6y) has a min value of

    2 24( 3) 4(3 6 )4 4

    y y yD

    a

    = 2y2 + 12y 9

    This also attains its min at4

    D

    a

    = -2.

    55. Given x1 + x2 x3x4 = 1 (1)

    x1 + 2x2 + 3x3 x4 = 2 -(2)

    3x1 + 5x2 + 5x3 3x4 = 6 -(3)

    Eqn. (1) + 2 x (eqn (2)) gives us

    3x1 + 5x2 + 5x3 3x4 = 5 which is a

    56. p = a log10b = b log10

    a

    CONCEPTUAL

    P

    Exercise 2 (B)

    1. (X2 -1) 2 2 0X X -(1)

    Feasible region : x2 x -2 0

    (x -2) (x + 1) 0

    ( -, -1] (2, )

  • 7/29/2019 Inequation & Equation Solutions Final

    46/67

    Now, (1) x2 1 0 x( -, -1] (1, )

    , x( -, -1] (2, )

    2.2

    2 15 170

    10

    x x

    x

    -(1)

    Feasible region : 2x2

    + 15 17 0

    x 17

    , 1,2

    Now , (1) 10 x > 0 x < 10

    , x 17

    , 1,102

    3.2

    8 2 6 3x x x

    Feasible region : 8 +2 x x2 0 x2 2x -8 0

    (x -4) (x +2) 0

    x [-2, 4]

    When R.H.S is ve i.e., 6 -3 x 0 x 2 -(1)

    It is always true

    When R.H.S is +ve i.e., x 2

    Squaring on both sides, we get

    8 + 2x x2> 36 36x + 9x2

    10x2 38x + 28 < 0

    5x2 19x + 14 < 0

    5x2 5x 14 x + 14 < 0

    (5x 14) (x 1) < 0

    x14

    1,5

    , x (1, 2] - (2)

    Final answer (1) (2)

    x (1, 4]

    4. 3 15 6x x

    Clearly x -3 is the feasible region

  • 7/29/2019 Inequation & Equation Solutions Final

    47/67

    Squaring x + 3 + x 15 + 2 3 15 36x x

    2 3 15 18 2x x x

    2

    3 15 9x x x

    + 18x + 45 < 81 18 x +

    36 x < 36

    X < 1

    Ans : [-3, 1)

    5. 3x2 + 15 + 22 5 1 2x x

    Put x2 + 5x + 1 = t (Remember t = 0 is the feasible region)

    3 (t -1) + 2 2t

    2 5 3t t -(1)

    4t = 25 + 9t2 30 t

    9t2 34 t + 25 = 0

    t = 1 ;25

    9

    (Reject, doesnt satisfy (1) )

    6. 12 5x 2 = 23

    24 3x

    23

    2 5 2 3 322 .3 2 .3x x

    2 10x-4 . 3 5x-2 =2

    29 3

    9 3 22 .3

    x

    x

    5x -2 =2

    9 32

    x

    3x2 + 10 x 13 = 0

    (3x + 13) (x -1) = 0

    X =13

    ,13

    7. (x2 3x 3) |x + 1| = 1

    Case (I) Base = 1 x2 3x -3 = 1 x = -1; 4

    Case (II) Exponent x = -1

  • 7/29/2019 Inequation & Equation Solutions Final

    48/67

    Ans : {-1, 4}

    8. xy = yx and x2 = y3 x = y 32

    , 3

    2

    23

    2332

    3 9

    2 4

    1

    yy

    y yy

    y y y

    y

    9

    14

    y or y

    9. log(x + 1)(x3 9x + 8) . log (x 1)

    (x + 1)= 3

    . log(x 1)(x3 9x + 8) = 3

    x3 9x + 8 = (x -1)3 = x3 3x2 + 3x - 1

    3x2 12x + 9 = 0

    x2 4x + 3 = 0

    x = 3 , 1 (Reject, because base 0 )

    , x = 3

    10. |x + 3|

    28 15

    2 1

    x x

    x

    Clearly, x 2

    (Case(i) Base = 1 |x + 3| = 1 x = 4, 2 (reject)

    (Case) (ii) Exponent = 0

    x2 8 x + 15 = 0 x = 5 ,3 (reject)

    (Because base 0)

    , {4, 5}

    11. log3xx = log 9x x

    Clearly, x > 0 ; x 1 1

    ,3 9

    Given eqnWhen x 1} 3 9

    x x

    1 1

    log 1 log 1

    No solution

    When x = 1 ; 0 = 0 Which is true.

    x = 1

  • 7/29/2019 Inequation & Equation Solutions Final

    49/67

    12.x 5

    10 10log log25 5 4.x

    x

    1 0 102log log5 5 4.5x

    x10 1 0

    2log log

    5 - 4. 5 5 0x

    x

    10log5 5, 1 (Reject)

    10

    log 1x

    x = 10

    13. 25x 12. 2x -625 16

    . 0100 100

    x

    25x 12.2x -625 2

    . 0100 25

    x

    x

    (25x)2 12. (2x) (25x) -

    25

    2 04

    x

    225 25

    4. 48. 25. 02 2

    x x

    25 25

    2 25 2. 1 02 2

    x x

    25 25

    2 2

    x

    x = 1

    14.3

    log 2 24x x

    Feasible 1 x >

    3

    8

    Case (i) 0< x< 1 2x 23

    4x

    X2 2x +3

    04

    x1 3

    , ,2 2

    , x3 1

    ,8 2

    -(1)

  • 7/29/2019 Inequation & Equation Solutions Final

    50/67

    Case (ii) x > 1

    2x 23

    4x

    x1 3

    ,2 2

    , x3

    1,2

    -(2)

    Ans : (1) (2) 3 1

    ,8 2

    3

    1,2

    15. x 2

    1

    10 10log 3log 1000

    x x

    Put 10log x = t

    xt2 3t + 1 > 1000 (1)

    Case (i) 0 < x < 1

    Eqn. (1) t2 3t + 1 < log x 1000 = 3 log x10

    t2 3t + 1 < 3t

    t3 3t2 + t -3 >0 ( , t < 0)

    (t2 + 1) (t 3) < 0 t > 3 log 10 x > 3 x> 100 x

    Case(ii) eqn. (1) t2 3t + 1 >3

    t t > 3

    16. |x |2

    x x 2 < 1 (Clearly x 0)

    Case (i) 0< |x| 0

    (x 2) (x + 1) > 0

    x (- , -1) (2, ) -(2)

    (1) (2) Case (ii) |x| > 1 -(3)

    x2 x 2 < 0

    x (-1, 2) -(4)

  • 7/29/2019 Inequation & Equation Solutions Final

    51/67

    (3) (4) x (1, 2)17. log2

    2

    x 2 + 2x > 2+ (x + 1) . log2 (2 x)

    (2 ) .2 22log 2 2 1 log (2 )x

    x x x

    (1 x)2log (2 ) 2(1 )x x

    (1 x) 2 02log (2 )x

    1 x> 0 and2

    log (2 ) 2x

    OR

    1 x< 0 and2

    log (2 ) 2x

    x< -2 OR x> 1

    Remember that x < 2 is the feasible region,

    , x (- , -2) ( 1, 2)

    18. It log 5 (x2 + 1) log 5 (px

    2 + 4x +p)

    5x2 + 5 px2 + 4x + p

    (5 P) x2 -4 + (5 P) 0 -x

    D 0 and (5 P) 0 -(1)

    16 _ 4 (5 P)2 0

    p (- , 3] [7, ) -(2)

    16 - p2< 0 -(3)

    19. log1

    2 11

    1x

    x

    x

    Feasible region

    X >0 ; x 1

    -log2 1

    11

    x

    x

    x

    2 10

    1

    x

    x

    log2 1

    11

    x

    x

    x

    x

    1, 1,2

    0 < x < 1 x > 1

    2 11

    x xx

    2 11

    x xx

    2x 1 x2 x (, x < 1) 2x 1 x2 x

  • 7/29/2019 Inequation & Equation Solutions Final

    52/67

    X2 3x + 1 0 (1) X2 3x + 1 0

    From Feasible region and (1)

    x3 5 1

    ,2 2

    OR , x

    3 51,

    2

    20. log3 (16x 2 (12x) ) 2x + 1

    16x 2 (12x) 32x . 3

    2

    4 42. 3 0

    3 3

    x x

    21. log4x log x

    43

    2

    Clearly x >0 ; x 1

    Put log 4x = t

    t -1 3

    2t

    2

    1 30

    2

    t

    t

    22 3 2

    0t t

    t

    (2 1)( 2)

    0t t

    t

    t 1

    , 0,22

    log4x 1

    , 0,2

    2

    4 4

    3 1 03 3

    x x

    43

    3

    x

    x4

    3

    log x

    Now Feasible region : 16x 2 . 12x> 0

    4x 23x > 0

  • 7/29/2019 Inequation & Equation Solutions Final

    53/67

    4

    23

    x

    X > 24

    3

    log

    , x 2 3

    4 4

    3 3

    log ,log

    22. 4 15 4 15 8x x

    Put 4 15x

    t

    t +1

    8t

    2 8 1 0t t

    8 64 4

    4 152

    t

    4 15 4 15x

    OR1

    4 15

    x = 2 OR -2

    23. Put (5 + 26

    ) x2-3 = t

    Given eqn t +1

    10t

    t2 10t + 1 = 0

    t = 5 2 6

    2

    32 2

    2

    15 6 5 6

    5 6

    x

    or

    x2 3 = 1 OR -1

    24. Feasible region x + 2 > 0 x > -2

    And x + 2 1 x -1

    Put log5 x + 2 = t

    Given eqn 1 +

    2

    t = t

    t + 2 = t2

  • 7/29/2019 Inequation & Equation Solutions Final

    54/67

    t2 t 2 = 0

    t = -1 , 2

    log5 (x+2) = -1, 2

    9

    ,235

    x

    25.2 1

    8

    1 1.log ( 2) log 3 5

    6 3x x

    (Clearly x > 2 and x >5

    3 x >2 )

    2

    1 1.log ( 2)

    6 3x

    2

    1.log (3 5)

    6x

    21 1log ( 2) 3 56 3

    x x

    2log ( 2) 3 5 2x x

    3x2 11x + 6 = 0

    x = 3;2

    3(Reject)

    26. log4 log2 x + log2 log4 x = 2

    2 2 2 21 1

    log log log log 22 2

    x x

    2 2 2 21

    log log log log 1 22

    x x

    2 2log log 2x

    2log 4x

    x = 16

    27. 2

    2 3log 49

    27 5 6 2 .x

    x

    2

    3log 2

    2

    2 5 67 49

    2

    x x

    2

    32 5 6

    7 72

    x x

    2

    2 5 63

    2

    x x

  • 7/29/2019 Inequation & Equation Solutions Final

    55/67

    x =3

    2

    , 4

    28. 3x + 4x = 5x 3 4

    15 5

    x x

    L.H.S> continuously decreases as the value of x increases.

    Hence, only one solution by Trial and error

    X = 2

    29. Put 5 24x

    = t

    t +1

    10t

    t = 5 24

    x 1

    5 24 5 24 OR5 24

    x = 2 OR -2

    30. log2x+3(2x + 3) (3x + 7) = 4 log 3x + 7

    (2x + 3)2

    1 + log (2x + 3)(3x + 7) = 4 2. log3x + 7

    (2x + 3)

    Put log (2x + 3)(3x + 7) = t

    1 + t = 4 -2

    t

    t = 1, 2

    log(2x + 3)(3x + 7) = 1 OR 2

    3x + 7 = 2x + 3 OR 3x + 7 = 4x2 + 12 x + 9

    (Reject values for which base < 0 or base = 1)

    x = -4 OR x = -2

    (Reject) (Reject)

  • 7/29/2019 Inequation & Equation Solutions Final

    56/67

    Exercise 3

    1. |x2-2x| + y = 1 and x2 + |y| = 1

    y = x2 -1 OR 1 x2

    Case (i) y 0

    |x2-2x| + y = 1 and x2 + y = 1

    |x2-2x| = x2

    x = 0 OR |x-2| = x

    x = 0 OR x = 1

    y = 1 OR y = 0

    Case (ii) y < 0 |y| = -y

    |x2-2x| + y = 1 and x2 y = 1

    |x2- 2x| + x2 = 2

    X2 2x + x2 = 2 2x x2 + x2 = 2

    X2 x 1 = 0 x = 1 y = 0

    X =1 5

    2

    (Reject)

    But given x N x = 1 ;y = 0

    2. , , are the root of 2x3 + x2 7 = - 0

    1 7; 0;

    2 2

    Consider

    1 1 1 3

    1

    0 32

    = -3

    3. Sum of integers div. by 3 = 3 + 6 + 9 + .. + 99

    = 3(1 + 2 + 3 + + 33)

  • 7/29/2019 Inequation & Equation Solutions Final

    57/67

    = 3. 33 34

    2= 1683

    Sum if int. div by 5 = 5 + 10 + 15 + .. + 100

    = 5(1 + 2 + 3 + . + 20) = 1050

    Sum of int. div by 15 = (1 + 2 + . + 6) 315

    Sum of iunt.Div by 3or 5 = 1683 + 1050 315 = 2418

    4. x4 3x3 x + 3 < 0

    x3(x 3) 1 (x 3) < 0

    (x3 1) (x 3) < 0

    (x 1) (x 3) (x2 + x + 1) < 0

    x (1, 3)

    Integers satisfying are x = 2

    5. (i) y 2x + 1 = 0 y - |x| - 1 = 0

    Y = |x| + 1

    |x| + 1 2x + 1 = 0

    |x| = 2x 2

    If x > 0 x = 2x 2 x = 2

    x< 0 -x = 2x 2 x =2

    3(Reject x < 0)

    x = 2 ; y = 3

    (ii) x + 2y 6 = 0 ; |x 3| = y

    x + 2|x 3| = 6

    If x 3 x + 2x 6 = 6

    x = 4

    x< 3 x + 2(3 x) = 6

    x = 0

    x = 4 ; y = 1 and x = 0 ; y = 3

    (iii) xy + x + y = 11 ; xy (x + y) = 30

    xy +30

    xy= 11

  • 7/29/2019 Inequation & Equation Solutions Final

    58/67

    xy = 6 or 5

    x + y = 5 or 6 respectively

    x = 2 ; y = 3 or x = 3 ; y = 2

    ?

    (iv) y + x 1 = 0 ; |y| = x + 1

    |y| = (1 y) + 1

    |y| = 2 y

    If Y 0 y = 2 y y = 1

    Y < 0 -y = 2 y

    y = 1 ; x = 0

    (v) |x 1| + y = 0 and 2x y = 1

    |x 1| + 2x = 1

    Case (i) x 1 3x = 2 x = 2/3 (Reject)

    Case (ii) x < 1 x = 0

    x = 0 ; y = = 1

    (vii)put x = 2y + 3 in x2 + y2 x y = 6 2xy

    (2y + 3)2 + y2 (2y + 3) y = 6 = 2 (2y +3)y

    y = 0 ;5

    3

    x = ;1

    3

    respectively

    (vi) 2y2 + xy x2 = 0

    (2y x) ( y + x) = 0

    x y or x = -y

    Case (i) x = 2y

    x2

    xy y2

    + 3x + 7y + 3 = 0

    4y2 2y2 y2 + 6y + 7y + 3 = 0

    y2 + 13y + 3 = 0

  • 7/29/2019 Inequation & Equation Solutions Final

    59/67

    y I

    Case (ii) x + y = 0

    x2 xy y2 + 3x + 7y + 3 = 0

    Solving we get x = 1 ; y = -1 or x = 3 ; y = -3

    6. |x 1| + |x 2| + |x + 1| + |x + 2| = 4k

    If x 2 we get

    x 1 + x 2 + x + 1 + x + 2 = 4k

    4x = 4k.

    for k = {2, 3, 4, 5} ; x = 2, 3, 4, 5 are the respectively integral solutions

    Observe that |x- 2| + |x + 2| |2 x + x + 2| = 4

    |x - | + |xx + 1| |1 x + x + 1| = 2

    L.H.S. 6 No solution for k = 1

    7. 3

    1 2 2a

    k

    = < -k + 3 a< 1

    3 3log log 20 3 1k

    3

    10 1

    log 2k

    0 < -k + log23 < 1

    -log23 < - k < 1 log23

    log23 1 < k < log23

    x = 1

    .8. (i) 3x-1 + 3 1-x 2.

    x

    x

    3 32

    3 3

    Possible only when

    x3

    3 = 1

    x = 1

  • 7/29/2019 Inequation & Equation Solutions Final

    60/67

    (ii) 2 cos2 x. sin 2x

    2= 5t + 5 t

    L.H.S. 2 and R.H.S. 2

    , 2cos2 x. sin2x

    2= 2 cos2 x = 1 ; sin2

    x

    2= 1

    9. (i) 2x 0 ; 1

    x = 5

    (ii) log3 (log2x 9) = 2 + log3 (1 -4 log x

    4)

    log3 (log2x 9) = log3 4x9 1 4 log

    log2x 9 = 9 72 log x

    2

    Put log2x= t t 9 = 9 -

    72

    t

    t2 18t + 72 = 0

    t = 6 ; 12 log2x= 6 ; 12

    x = 26 , 212

    (iii) 2log2(sinx) + log2(4cot2x) = log23

    sin2x. 4cot2x = 3

    cos2x =3

    4

    sin2x =1

    4

    sin2x =1

    2(sinx> 0) (feasible region)

    n2x = ( 1)6

    nx n

    (iv) 1 1 13 3 3

    5 5 1log cos log cos 2 log

    6 6 9x x

    2 5 1cos36 9

    x

    21

    cos4

    x

    2 2cos cos3

    x

    3x n

    (sinx> 0)

  • 7/29/2019 Inequation & Equation Solutions Final

    62/67

    (v) 3 3 38

    3 3 log 2 log 9. 2.6 log 33

    x

    xx x

    8

    33 .2 3 9. 2.6 .33

    x

    xx x

    8 827 . 27. 6.62 3

    x x

    x xx

    8.81x = 27 16x + 6.36x

    2

    9 98. 6. 27. 0

    4 4

    x x

    6 309 9 25

    ; (Re )4 16 4 16

    x

    jected

    x = 1

    11. log 2 2 x q x

    x 2 = x + a)2

    X2 + (2a 1)X + (a2 + 2) = 0

    Case (i) D = O (anique sol)

    4a2 4ad1 4(a2d2) = 0 a =7

    4

    Case (ii) x2 + (2a 1)x + (a2 + 2) = 0

    D 0 and f(-a) < 0

    A 0 & 3 x > 0

    y = 1 x (1, 3)

    13. (b c) (y + z) a = b c (1)

    (c + a) (z + x) by = c a (2)

    (a + b) (x + y) cz = a b (3)

    Adding (1), (2) and (3)

    (a + b + c) (x + y + z) = 0

    x + y + z = 0 (4)

    Substituting (4) in (1), (2) and (3) we get

    x = ; ;

    c b a c b a

    x y za b c a b c a b c

    14. x + y + z = 4 and x2 + y2 + z2 = 6

    y + z = 4 x and y2 + z2 = 6 x2

    Now,

    (y + z)2 = (4 x)2

    2 22

    22 16 8

    6

    y zyz x x

    x

    2yz = 10+ 2x2 8x

    We know that

  • 7/29/2019 Inequation & Equation Solutions Final

    65/67

    (y z)2 0 y2 + z2 2y7

    6 x2 10 + 2x2 8x

    3x2 8x + 4 0

    (3x 2) (x 2) 0

    x 2 ,23

    15. x2 + 2xy + 3y2 + 2x + 6y 3 0

    x2 + 2x(y + 1) + 3(y + 1)2 0

    Observe that

    D = 4(y + 1)2 12(y + 1)2

    = -8(y + 1)2 0

    Given Expression 0 yR

    16. (i) x + y + z = 13 ; x2 y2 + z2 = 91 (1)

    From (1) x + z = 13 y (x + z)2 = (13 y)2

    x2 + z2 + 2(xz) = 169 26y + y2

    xz = y2 ; x2 + z2 = 91 y2

    91 y2 + 2y2 = 169 26y + y2

    y = 3

    when y = 3 x + z = 10 x = 1 ; y = 9 or

    (ii) x2 xy + y2 = 21. Y2 2xy + 15 = 0 (2)

    Eg. (2) 2x =2 15 15

    y

    y

    y y

    (3)

    (iii) in(1) 2

    15 152

    y y y

    y y4y2= 84

    On minifying 22

    2253 84 y

    y

    (y2 3) (y2 25) = 0

    y = 3 ; 5

    Now when we know from (3)

    Y = 5 x = 4

  • 7/29/2019 Inequation & Equation Solutions Final

    66/67

    Y = -5 x = -4

    Y = 3 x = 3 3

    Y = 3 x = 3 3

    solution are (4, 5), (-4, -5), ( 3 3 , 3 ) and (3 3 , 3 )

    17. x 2 x 1 x 2 x 1 2

    2 2

    x 1 1 x 1 1 2

    | x 1 1| | x 1 1| 2

    x 1 1| x 1 1| 2

    Case (i) x 1 1 x 2

    . 2 x 1 2 x = 2

    Case (ii) x 1 1 x < 2

    (1) OR 2 = 2 which is always true.

    Ans : Feasible region : x 1

    , Ans : [1, 2]

    18. x + y + z = 2 = x2 + y2 + z2

    Y + z = 2 x

    Y2 + z2 + 2yz = 4 4x + x2

    2 x2 + 2yz = 4 - 4x + x2

    2yz - = 2 4x + 2x2

    Now , (y z)2 0 y2 + z2 2yz

    2 x2 2 4x + 2x2

    3x2 4 x 0

    x4

    3x 03

    x4

    0, 3

    Last value = 0 ; greatest value =4

    3

  • 7/29/2019 Inequation & Equation Solutions Final

    67/67

    19. xy + 3y2 x + 4y 7 = 0 and 2xy + y 2 2x 2y + 1 = 0

    (y 1) (x + 3y + 7) = 0 and (Y 1) (2X + Y 1) = 0

    , when y = 1 ; XER (Clearly)

    Other solutions

    X+3y + 7 = 0 and

    2x + y 1 = 0

    x = 2 ; y = -3

    20. xy + x + y = 23 (x+1) (y+1) = 24 -(1)

    Xz + z1 x = 41 (x + 1) (Z + 1) = 42 -(2)

    YZ + Y + Z = 27 (Y + 1) (Z + 1) 28 -(3)

    (1), (2), (3).

    (X + 1)2 (Y + 1)2 (Z + 1)2 = 24.42.28 = 72. 42. 62

    (X + 1) (Y + 1) (Z + 1) = 168 -(4)

    eqn

    4

    2 z + 1 = 7 z = 6, -8

    similarly,

    4

    2;

    4

    3 y = 3, -5

    and z = 5, -8 resp.

    Solutions are (5, 3, 6) and ( -7, -5,)