Top Banner
Incremental Dynamic Analyses on Bridges on various Shallow Foundations Lijun Deng PI’s: Bruce Kutter, Sashi Kunnath University of California, Davis NEES & PEER annual meeting San Francisco October 9, 2010
25

Incremental Dynamic Analyses on Bridges on various Shallow Foundations

Feb 24, 2016

Download

Documents

Mitch

Incremental Dynamic Analyses on Bridges on various Shallow Foundations. Lijun Deng PI’s: Bruce Kutter , Sashi Kunnath University of California, Davis. NEES & PEER annual meeting San Francisco October 9, 2010. Outline. Introduction and centrifuge model tests - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Incremental Dynamic Analyses on Bridges on various Shallow Foundations

Incremental Dynamic Analyses on Bridges on

various Shallow Foundations

Lijun DengPI’s: Bruce Kutter, Sashi Kunnath

University of California, Davis

NEES & PEER annual meetingSan Francisco

October 9, 2010

Page 2: Incremental Dynamic Analyses on Bridges on various Shallow Foundations

Outline• Introduction and centrifuge model tests• Incremental Dynamic Analysis (IDA) model• Preliminary results of IDA

Maximum drift Instability limits of rocking and hinging systems Residual drift

• Conclusions

Page 3: Incremental Dynamic Analyses on Bridges on various Shallow Foundations

Damaged columns in past earthquakes

Page 4: Incremental Dynamic Analyses on Bridges on various Shallow Foundations

Load Frame

N

x

A A

B B

0 12 24 36

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

inch

meter

NLF

SF ISF4CSF 60

9.6

304.9

N

393.0 381.0 592.0 387.0

254.

039

6.0

254.

0

198.

0

1006.5

1366.0

Centrifuge test matrix

Page 5: Incremental Dynamic Analyses on Bridges on various Shallow Foundations

Rocking Foundation Centrifuge Tests

5

max BaseMotion( ) 0.6192

20 25 30 351

0.5

0

0.5

1

Time (sec)

Acc

el (g

)

min BaseMotion( ) 0.8824

10 20 30 40 500.4

0.2

0

0.2

0.4

Time (sec)

Dis

p. (m

)

10.88

7.35

SF

10.88

7.35

ISF

Remediating concrete pads

Gazli earthquake, pga= 0.88 g

Page 6: Incremental Dynamic Analyses on Bridges on various Shallow Foundations

Hinging Column Centrifuge Test

6

9.64

12.20

Notches

LF

max BaseMotion( ) 0.6192

20 25 30 351

0.5

0

0.5

1

Time (sec)

Acc

el (g

) min BaseMotion( ) 0.8824

10 20 30 40 500.4

0.2

0

0.2

0.4

Time (sec)

Dis

p. (m

)

Gazli earthquake, pga= 0.88 g

Page 7: Incremental Dynamic Analyses on Bridges on various Shallow Foundations

Photos of hinging column after 0.88g Gazli shake

7

Page 8: Incremental Dynamic Analyses on Bridges on various Shallow Foundations

8

9.64

12.20

Notches

LF

max BaseMotion( ) 0.1611

20 40 600.3

0.2

0.1

0

0.1

0.2

Time (sec)

Acc

el (g

) min BaseMotion( ) 0.2292

20 40 600.2

0.1

0

0.1

0.2

Time (sec)

Dis

p. (m

)

CHY024, pga=0.23 g

Hinging Column Centrifuge Test

Page 9: Incremental Dynamic Analyses on Bridges on various Shallow Foundations

Collapse of hinging column

9

• SDOF bridges on rocking foundation survived after 20 scaled GM’s, but the one on fixed foundation and hinging column collapsed

Page 10: Incremental Dynamic Analyses on Bridges on various Shallow Foundations

OpenSees model for IDA and parametric study

Moment

Rotation

Column hinge spring

Foundation: zerolength elements

Column: Stiff elasticBeamColumn

xi

ki

Lf

Mass = m

Footing mass = m*rm

Footing center

Fixed ground center

Hc

blkutter
changed title, expanded image
Page 11: Incremental Dynamic Analyses on Bridges on various Shallow Foundations

Validate model through centrifuge data

0.02 0.01 0 0.01 0.02 0.032 107

1 107

0

1 107

2 107

3 107

CentrifugeOpenSees

Footing rotation (rad)

Roc

king

mom

ent (

N*m

)

0 10 20 30 400.04

0.02

0

0.02

0.04

0.06CenrifugeOpenSees

Time (s)

Dec

k dr

ift (r

ad)

0.01 0 0.012 107

1 107

0

1 107

2 107

Column hinge rotation

Nor

m. c

ol. b

ase

mom

ent

0.02 0.01 0 0.01 0.02 0.032 107

1 107

0

1 107

2 107

3 107

CentrifugeOpenSees

Footing rotation (rad)

Roc

king

mom

ent (

N*m

)

0 10 20 30 400.04

0.02

0

0.02

0.04

0.06CenrifugeOpenSees

Time (s)

Dec

k dr

ift (r

ad)

0.01 0 0.013 107

2 107

1 107

0

1 107

2 107

3 107

CentrifugeOpenSees

Footing rotation (rad)

Roc

king

mom

ent (

N*m

)

10 20 30 40 50 600.03

0.02

0.01

0

0.01

0.02

0.03CenrifugeOpenSees

Time (s)

Dec

k dr

ift (r

ad)

10.88

7.35

SF

Centrifuge model (Cy/Cr=5, T_sys=1 s, FSv=11.0)

Page 12: Incremental Dynamic Analyses on Bridges on various Shallow Foundations

Input parameters in IDA model• Cy, Cr: base shear coefficients for column or rocking footing• Two yielding mechanisms:

Cr > Cy Hinging column system; Cy > Cr Rocking foundation system

yy

c

MC

m g H

1 12

f cr m

c

L AC rH A

2 2 2

2

1

1 14sprsys c N

i ii

T m HK

k x

yM

fL

K

k

Ac/A=0.2, rm=0.2(Footing length)

(Column hinge strength)

Equally spaced foundation elements

(Column hinge stiffness)

(Foundation element stiffness)

(1 )mult

f

r m g FSv LqL

(Foundation

element strength)

Page 13: Incremental Dynamic Analyses on Bridges on various Shallow Foundations

Input parameters in IDA model• Input ground motions from PEER database

Forty pulse-like ground motions at soil sites(Baker et al. 2010)

T_sys (sec) Cy Cr # GM # Scale factors0.5 0.5 0.2 40 pulse-like 0.2, 0.40.8 0.3 0.2 40 broad-band 0.6, 0.80.2 0.2 0.2 1.0, 1.51.0 0.2 0.3 2.0, 2.51.2 0.2 0.5 3.0, 4.01.5  2

0.01 0.1 1 10Period (sec)

0.01

0.1

1

10

Acc

el. r

espo

nse

spec

tra

(g)

Page 14: Incremental Dynamic Analyses on Bridges on various Shallow Foundations

0.01 0.1 1 10Max drift (m)

0.01

0.1

1

10

Sa(T

_sys

)(g)

PL_28_SNPL_29_SNPL_3_SNPL_30_SNPL_31_SNPL_32_SNPL_33_SN

PL_34_SNPL_35_SNPL_36_SNPL_37_SNPL_38_SNPL_39_SNPL_4_SN

PL_40_SNPL_5_SNPL_6_SNPL_7_SNPL_8_SNPL_9_SNESA prediction for T=0.85 s

Cy=0.2, Cr=0.5, T_sys=0.85 s

0.01 0.1 1 10Max drift (m)

0.01

0.1

1

10

Sa(T

_sys

)(g)

PL_28_SNPL_29_SNPL_3_SNPL_30_SNPL_31_SNPL_32_SNPL_33_SN

PL_34_SNPL_35_SNPL_36_SNPL_37_SNPL_38_SNPL_39_SNPL_4_SN

PL_40_SNPL_5_SNPL_6_SNPL_7_SNPL_8_SNPL_9_SNESA prediction for T=0.85 s

Cy=0.5, Cr=0.2, T_sys=0.85 s

IDA results: Sa(T=T_sys) vs. max drift

Elastic zone

Nonlinear zone

Failure zone

Instability limit~=2.2 m

Elastic zone

Nonlinear zone

0.2 g

Instability limit~=2 m

Rocking Footing (Cy=0.5, Cr=0.2, T_sys=0.85 s)

0.2 g

Hinging column (Cy=0.2, Cr=0.5, T_sys=0.85 s)

Failure zone

blkutter
chage "failure" to "collapse" Labeled figs Rocking footing and hinging column
Page 15: Incremental Dynamic Analyses on Bridges on various Shallow Foundations

• A hinge is a hinge• Hinges can be engineered at either position

– A hinge forms at the edge when rocking occurs

• P-delta is in your favor for rocking – recentering• Instability limits are related to Cy and Cr values

Collapse mechanisms

Elastic footing

Rocking footing

P

P

Page 16: Incremental Dynamic Analyses on Bridges on various Shallow Foundations

Selected animations

• Cy=0.2, Cr=0.5, T=0.85 s (Hinging column)

• Cy=0.5, Cr=0.2, T=0.85 s (Rocking foundation)

On-verge-of-collapse case

Collapse caseOn-verge-of-collapse case

Collapse case

Page 17: Incremental Dynamic Analyses on Bridges on various Shallow Foundations

0.01 0.1 1 10Max drift (m)

0.01

0.1

1

10

Sa(T

_sys

)(g)

PL_28_SNPL_29_SNPL_3_SNPL_30_SNPL_31_SNPL_32_SNPL_33_SN

PL_34_SNPL_35_SNPL_36_SNPL_37_SNPL_38_SNPL_39_SNPL_4_SN

PL_40_SNPL_5_SNPL_6_SNPL_7_SNPL_8_SNPL_9_SNESA prediction for T=0.85 s

Cy=0.2, Cr=0.5, T_sys=0.85 s

0.01 0.1 1 10Max drift (m)

0.01

0.1

1

10

Sa(T

_sys

)(g)

PL_28_SNPL_29_SNPL_3_SNPL_30_SNPL_31_SNPL_32_SNPL_33_SN

PL_34_SNPL_35_SNPL_36_SNPL_37_SNPL_38_SNPL_39_SNPL_4_SN

PL_40_SNPL_5_SNPL_6_SNPL_7_SNPL_8_SNPL_9_SNESA prediction for T=0.85 s

Cy=0.5, Cr=0.2, T_sys=0.85 s

IDA results: Sa(T=T_sys) vs. max drift• 50% median of Sa vs. max drift and +/-σ

50% Median

Page 18: Incremental Dynamic Analyses on Bridges on various Shallow Foundations

Compare medians of Sa vs. max drift for various T_sys

• Longer periods lead to higher drift• The max drift is not sensitive to Cy/Cr ratio• The max might rely on min{Cy, Cr}, to be confirmed with further

study

0.01 0.1 1 10Max drift (m)

0.01

0.1

1

10

Med

ian

Sa(T

_sys

)(g)

T_sys=0.85 s for 5 Cr, Cr combinations

0.01 0.1 1 10Max drift (m)

0.01

0.1

1

10

Med

ian

Sa(T

_sys

)(g)

T_sys=0.85 s for 5 Cr, Cr combinationsT_sys=0.43 s for 5 Cy, Cr combinations

Page 19: Incremental Dynamic Analyses on Bridges on various Shallow Foundations

IDA results: Sa (T_sys) vs. Residual Rotation

1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10Residual rotation (rad)

0.01

0.1

1

10

Sa (T

_sys

) (g)

PL_28_SNPL_29_SNPL_3_SNPL_30_SNPL_31_SNPL_32_SNPL_33_SNPL_34_SNPL_35_SNPL_36_SN

PL_37_SNPL_38_SNPL_39_SNPL_4_SNPL_40_SNPL_5_SNPL_6_SNPL_7_SNPL_8_SNPL_9_SNCy=0.5, Cr=0.2, T_sys=0.85 s

50% Median

blkutter
I do not understand how you drew the 50% median line. At about 0.1 rotation, there are only 3 earthquakes below the yellow and about 6 above the yellow.
Page 20: Incremental Dynamic Analyses on Bridges on various Shallow Foundations

IDA results: Sa (T_sys) vs. Residual rotation

• Bridge with rocking foundation have smaller rotation than hinging column re-confirm the recentering benefits

1E-005 0.0001 0.001 0.01 0.1 1Residual drift (rad)

0.1

1

Med

ian

Sa(T

_sys

)(g)

Cy=0.5, Cr=0.2, T_sys=0.85 sCy=0.2, Cr=0.5, T_sys=0.85 s

1E-005 0.0001 0.001 0.01 0.1 1Residual drift (rad)

0.1

1

Med

ian

Sa(T

_sys

)(g)

Cy=0.5, Cr=0.2, T_sys=0.43 sCy=0.2, Cr=0.5, T_sys=0.43 s

Hinging column

Rocking foundation

Hinging column

Rocking foundation

blkutter
reduced number of words
Page 21: Incremental Dynamic Analyses on Bridges on various Shallow Foundations

Conclusions• Rocking foundations provide recentering effect that

limits the accumulation of P- demand (i.e., much smaller residual rotation)

• Experiments and IDA simulations show column with rocking footing is more stable than hinging column (i.e., fewer collapse cases)

• ESA approach is not conservative for highly nonlinear cases

• Analysis is ongoing, and fragility functions are being developed from the results. We are also evaluating the adequacy of Sa(T_sys) as an Intensity Measure of ground motions

blkutter
dont think you have demonstrated Sa is a good intensity measure. First you say that rocking systems are more stable than hinging, then you say that drift is independent of Cy/Cr. But if hinging systems have more collapse cases, then they would also have a greater maximum drift. This contradicts your 4th bullet. (See email for more discussion of this)
Page 22: Incremental Dynamic Analyses on Bridges on various Shallow Foundations

PanagiotouCODE

DEVELOPERS

Collaborators

Kutter

Browning

Moore

Martin

Jeremic

Mar

Comartin

McBride

Mahan

Desalvatore

KhojastehShantz

BRIDGES

BUILDINGS

Mejia

BOTH

GEOTECHNICAL

STRUCTURAL

Mahin

Kunnath

Ashheim

Stewart

Hutchinson

THEORYDESIGNCONSTRUCTION

blkutter
added Panagiotou, simplified title
Page 23: Incremental Dynamic Analyses on Bridges on various Shallow Foundations

Acknowledgments• Current financial support of California Department of

Transportation (Caltrans).• Network for Earthquake Engineering Simulation (NEES) for

using the Centrifuge of UC Davis. • Other student assistants: T. Algie (Auckland Univ., NZ), E.

Erduran (USU), J. Allmond (UCD), M. Hakhamaneshi (UCD).

Page 24: Incremental Dynamic Analyses on Bridges on various Shallow Foundations

The end

Page 25: Incremental Dynamic Analyses on Bridges on various Shallow Foundations

0.01 0.1 1 10Max drift (m)

0.01

0.1

1

10

Sa(T

_sys

)(g)

PL_28_SNPL_29_SNPL_3_SNPL_30_SNPL_31_SNPL_32_SNPL_33_SN

PL_34_SNPL_35_SNPL_36_SNPL_37_SNPL_38_SNPL_39_SNPL_4_SN

PL_40_SNPL_5_SNPL_6_SNPL_7_SNPL_8_SNPL_9_SNESA prediction for T=0.85 s

Cy=0.2, Cr=0.5, T_sys=0.85 s

0.01 0.1 1 10Max drift (m)

0.01

0.1

1

10

Sa(T

_sys

)(g)

PL_28_SNPL_29_SNPL_3_SNPL_30_SNPL_31_SNPL_32_SNPL_33_SN

PL_34_SNPL_35_SNPL_36_SNPL_37_SNPL_38_SNPL_39_SNPL_4_SN

PL_40_SNPL_5_SNPL_6_SNPL_7_SNPL_8_SNPL_9_SNESA prediction for T=0.85 s

Cy=0.5, Cr=0.2, T_sys=0.85 s

IDA results: Sa(T=T_sys) vs. max driftRocking Footing (Cy=0.5, Cr=0.2, T_sys=0.85 s)

Hinging column (Cy=0.2, Cr=0.5, T_sys=0.85 s)

• Equivalent Static Analysis (ESA) commonly used in codes may underestimate the displacement.

blkutter
chage "failure" to "collapse" Labeled figs Rocking footing and hinging column