Top Banner
Fluid Statics AE 225 – Incompressible Fluid Mechanics Aniruddha Sinha Department of Aerospace Engineering IIT Bombay
35

IncompFluidMech Lecture 04 FluidStatics

Aug 16, 2015

Download

Documents

SuryaMohan

iitb
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript

FluidStaticsAE225IncompressibleFluidMechanicsAniruddhaSinhaDepartmentofAerospaceEngineeringIITBombayIntroductiontouidstaticsFluidstatics(colloquiallycalledhydrostatics)isthestudyofuidsatrestHydrostaticsisimportantinthefollowingareasofAerospaceEngineering Airships Ships AtmosphereFluidmechanicsinvolves Density Pressure TemperatureSincevelocityiszero,shearstrainrateiszeroandhenceshearstressiszero,irrespectiveofcoecientofviscosityThisreducesthecomplexityoftheuidmechanicsdrastically1 / 33PressureAirBalloonwallGasFictitiouswallGasGasGasAir Animaginarysurfaceseparatinguidcanhaveforcesactingoneachofitsside Pressureisthenormalforceperunitareaatagivenpointactingonagivenplanewithintheuid-massofinterest Pressurevariesfrompointtopoint Doespressurevarydependingonorientationoftheplanepassingthroughthepoint?2 / 33FluidparticleFBDinhydrostaticsConsiderauidparticlewithinamassofuidatrestTherearenoshearstressessincethevelocityiszeroeverywhere;theonlyexternalforcesactingonthewedgeshapedparticleare: pressure,and weightofuidwithintheparticle.xpy(xz)pz(xy)ps(xs)yg(xyz)/2zsFluidxyzFree-bodydiagramforauidparticlewithinauidmassParticleissmallenoughsothatpressuresareconstantovereachsurface3 / 33PascalslawNewtonslawiny-dir.: pyxz psxs sin = xyz2ay,Newtonslawinz-dir.: pzxy psxs cos g xyz2= xyz2azwhereay&azareaccelerationsiny&zdirections,respectivelyFromgeometry,y= s cos andz= s sin ,sothatpy ps= ayx/2, pz ps= (az+ g) x/2.SinceRHSvanishesforavanishinglysmallparticle,py= pz= psButthisresultisforanarbitrary,soweconcludethatpx= py= pz.Pascalslaw: Thepressureatapointinauidatrest,orinmotion,isindependentofthedirectionaslongastherearenoshearstressesForuidsinmotion(withshearstresses),normalstressatapoint(whichcorrespondstopressureinhydrostatics)isnotnecessarilysameinalldirectionsthenpressureisdenedastheaverageofanythreemutuallyorthogonalnormalstressesatthepoint4 / 33Pressurevariationinauidx

p pyy2

xz

p pzz2

xyz

p +pyy2

xz

p +pzz2

xyg(xyz)/2(x, y, z)xyzySurfaceandbodyforcesactingonauidparticlewithoutshearConsiderarectangularuidparticlecenteredatanarbitrarypoint(x, y, z),wherethepressureispTaylorseriesapproximationgivestheresultantsurfaceforceduetothevariationofpressureinthey-directionasFy,pressure=_p pyy2_xz _p +pyy2_xz= py xyzSimilarly,Fx,pressure= px xyz, Fz,pressure= pz xyz5 / 33GoverningequationforuidinabsenceofshearNetsurfaceforceactingonuidparticleduetopressurevariationsis_Fxi+ Fyj + Fzk_pressure= _pxi+pyj +pzk_xyzOr, Fpressure= p (xyz)Netsurfaceforceduetopressureperunitvolumeontheuidparticleisfpressure= pNetbodyforceduetogravityperunitvolumeisfbody= gNewtons2ndlawappliedtotheuidparticlegivesaccelerationaasa = fpressure + fbody= p + gWithusualchoiceofcoordinatesystemwherez-directionisup,wehavep gk= aGeneralequationofmotionforauidinabsenceofshearingstresses6 / 33PressurevariationinauidatrestInhydrostatics,uidaccelerationisidenticallyzero,a = 0,sop= gk= kSpecicgravityofauid,:= giscommonlyusedinhydrostaticsRemark: Bydenitionof operator, pisperpendiculareverywheretosurfacesofconstantpThus,uidinhydrostaticequilibriumwillalignitsconstantpressuresurfaceseverywherenormaltothelocal-gravityvectorIftheuidisaliquid,itsfreesurface,beingatatmosphericpressure,willbenormaltolocalgravityhorizontalIncomponentform,px= 0,py= 0,pz= g= Thus,hydrostaticpressureisafunctionofzalone,anddpdz= g= 7 / 33Pressurevariationinanincompressibleuid Assumeconstant(waterengineeringproblems) Assumeconstantg(variationofgisnegligibleformanyproblems)Then,integrating(dp/dz= g)gives_p2p1dp= g_z2z1dz =p2p1= g(z2z1) = ghxyzz2z1h = z2z1p2p1Pressuremustincreasewithdepthtoholduptheuidaboveith =(p1p2)/(g) iscalledpressureheadInterpretedasheightofacolumnofuidofspecicgravitygrequiredtogiveapressuredierencep1p28 / 33PressureinliquidsatrestwithafreesurfaceThefreesurfaceofaliquidisaconvenientreference,ifitexistsReferencepressurep0willtypicallybetheatmosphericpressurepatmPressureatanydepthhbelowthefreesurfaceisp= gh + p0Thepressureinahomogeneous,incompressibleuidatrestdependsonthedepthoftheuidrelativetosomereferenceplane,anditisnotinuencedbythesizeorshapeofthetankorcontainerinwhichtheuidisheld9 / 33PressureingasesatrestGases,beingcompressible,haveavariabledensitythatshouldbeconsideredintheintegrationof(dp/dz= g)However,gaseshavemuchlowerdensitycomparedtoliquids,sothatthepressuregradientintheverticaldirectioniscorrespondinglysmallWecanneglecttheeectofelevationchangesonthepressureingasesintanks,pipes,andsoforthinwhichthedistancesinvolvedaresmallIfheightvariationislarge( 1000feet),variationbecomesimportantTheidealgaslaw(forcompressiblegases)is =pRTwhich,whencombinedwiththehydrostaticequationresultsindpdz= gpRTIntegrationafterseparationofvariablesyields_p2p1dpp= gR_z2z1dzTThevariationoftemperaturewithelevationisrequiredtocompletethis10 / 33PressureincompressiblegasesisothermalIfthetemperaturehasaconstantvalueT0overtherangez1toz2(isothermalconditions),thenp2= p1 exp_g (z2z1)RT0_Evenfora10,000ftaltitudechange,dierenceinconstant-temperature(isothermal)andconstant-density(incompressible)resultsarerelativelyminorDensityvariationisalsogivenby2= 1 exp_g (z2z1)RT0_11 / 33PressureincompressiblegaseslineartemperatureTemperaturemaydecreasewithaltitudeataconstantlapserateofovertherangez1toz2;i.e.,T (z) = T0 + (z z0) ,wherethealtitudeismeasuredfromsomereferencelevelz0(typicallymeansealevel)wherethetemperatureisT0Integrationthengives,p= p0_1 + (z z0)T0_g/RDensityvariationisgivenby = 0_1 + (z z0)T0_g/R112 / 33Standardatmosphere Atmosphericconditionschangedaytodayandacrossseasons Standardatmospherewasrstdevelopedinthe1920stocodifyrepresentativeatmosphericconditions Itdoesnotchangewithday,dateortime Itisanidealizedrepresentationofmiddle-latitude,year-aroundmeanconditionsoftheearthsatmosphere ThecurrentlyacceptedStandardatmosphereisbasedonareportpublishedin1962andupdatedin1976 InIndiaweuseIndianStandardAtmosphere13 / 33Internationalstandardatmosphere(ISA)TemperatureT,KAltitudeh,kmTroposphereTropopauseStratopauseStratosphere56.5 C,11km= 6.5 C/km15 CMesosphereMesopause56.5 C,20km2.5 C,47km2.5 C,51km44.5 C,32km=2.8 C/km86.5 C,85km=1 C/km= 2.8 C/km58.5 C,71km= 2 C/km14 / 33RelevantpressuresanddensitiesinatmosphereAltitude T,C P,bar ,kg/m3Relevance0 15 1 1.22510 -50 0.261 0.412Civilian aircraft yatthisaltitude20 -56.5 0.054 0.088Military aircraft yatthisaltitude50 -2.5 6.7 1048.7 104Air-breathing vehi-clescantyatthisaltitude15 / 33TransmissionofuidpressureTherequiredequalityofpressureatequalelevationsthroughoutasystemisimportantfortheoperationofhydraulicjacks,lifts,andpresses,aswellashydrauliccontrolsonaircraftandothertypeofheavymachineryF1= pA1, F2= pA2, F2=A1A2F1Thetransmissionofuidpressurethroughoutastationaryuidistheprincipleuponwhichmany hydraulic devices are based16 / 33Measurementofpressureconventions Absolutepressureismeasuredw.r.t. perfectvacuum Gaugepressureismeasuredw.r.t. localatmosphericpressurepgauge= pabsolutepatmosphere Ifthepressurebeingmeasuredisexpectedtobebelowatmosphericpressure,thenvacuumpressureisusedpvacuum= patmospherepabsolute17 / 33BarometryMeasurementofatmosphericpressureisusuallywithamercurybarometerThetubeisinitiallylledwithmercuryandthenturnedupsidedownwithopenendinthemercurycontainerpatm= Hg gh + pvapourFormercury,pvapouris0.16Pa,andisthereforeneglectedAtmosphericpressureisconventionallyspeciedasheightofmercurycolumn,hStandardatmosphere(101325Pa,1bar)is760mmofHg18 / 33ManometryexampleU-tubemanometerasaowmeterThevolumerateofow,Q,throughapipecanbedeterminedusingaownozzlewithinthepipe. ThenozzlecreatesapressuredropalongthepipewhichisgivenbyQ= KpApB,whereKisaconstantdependingonthepipeandnozzlesize. Obtainanexpressionforthepressuredropintermsoftheparametersshown.AccountforthepressurestartatA,moveverticallyupwardto(1),switchto(2)(samepressure),switchto(3)(samepressure),moveupwardto(4),switchto(5)(samepressure),moveverticallydowntoBpA1h12h2 + 1(h1 + h2) = pB=pApB= (21)h219 / 33ManometryexampleU-tubemanometerasaowmeterThevolumerateofow,Q,throughapipecanbedeterminedusingaownozzlewithinthepipe. ThenozzlecreatesapressuredropalongthepipewhichisgivenbyQ= KpApB,whereKisaconstantdependingonthepipeandnozzlesize. Obtainanexpressionforthepressuredropintermsoftheparametersshown.AccountforthepressurestartatA,moveverticallyupwardto(1),switchto(2)(samepressure),switchto(3)(samepressure),moveupwardto(4),switchto(5)(samepressure),moveverticallydowntoBpA1h12h2 + 1(h1 + h2) = pB=pApB= (21)h219 / 33ManometryWhenpressuresaresmall,theycanbemeasuredbymeasuringheight/depthofliquidcolumninverticalorinclinedtubesPiezometertubepApatm= 1h1SimpleU-tubemanometerpApatm= 2h21h1DierentialU-tubemanometerpApB= 2h2 + 3h31h1Piezometerisonlyusefulifpressureinaliquidisabovepatm20 / 33InclinedtubemanometerenhancedprecisionTomeasuresmallpressurechanges,aninclined-tubemanometerisfrequentlyusedOnelegofthemanometerisinclinedatanangle,andthedierentialreading2ismeasuredalongtheinclinedtubepA + 1h1= pB+ 2

2 sin + 3h3Neglectingthecontributionsofgascolumnsofheightsh1&h3,pApB= 2

2 sin Thus,forsmall,thesamepressuredierenceismagniedtolarger2valueforgreateraccuracyinreading21 / 33HydrostaticforceonaplanesurfaceAsurfacesubmergedinauiddevelopshydrostaticpressureonitHydrostatic forces are important in design of ships, dams, storage tanks, etc.PressureisconstantonthebottomwallasheightisnotchangingPressureischangingonsidewallsasheightischanging22 / 33Hydrostaticforceonaninclinedplanesurfaceh(x, y)hc=h/ sin Centroid,cxyCPNetresultantforce,F=pcASideviewPlanviewFreesurfacep=patmp=patmdA=dxdyLiquidofsp. gravityAssumptions: Liquiddensityisconstant&pressureonlowersideispatm23 / 33Hydrostaticforceonaninclinedplanesurface(contd.)NethydrostaticforceontheplateisF=_pgaugedA =_hdA = _hdA = sin _dAsinceh = sin ,andisconstantalongtheplateSlantdistancefromthefreesurfacetothecentroidoftheplateisc=1A_dAsothatF= c sin A = hcA = pc,gaugeAThus,thenethydrostaticforceisindependentoftheparticularshapeoftheplateexceptfor thedepthofthecentroidoftheplatew.r.t. thefreesurfacehc,and theareaoftheplate24 / 33CenterofpressureforaninclinedplanesurfacePointofactionofnethydrostaticforceiscalledcenterofpressureNethydrostaticmoment(duetoF)aboutthexaxisthruthecentroidisFyCP=_pgaugeydA =_hydA = _ sin ydA= sin _(c y) ydA = sin c_ydA sin _y2dABut,theintegral_ydAinrsttermisidentically0bydenitionofcentroidWithIxxc:=_y2dAbeingtheareamomentofinertiaoftheplateaboutitscentroidalxaxis,computedintheplaneoftheplate,wehaveyCP= Ixxc sin hcA= Ixxc sin hcASinceallindividualquantitiesinthelastexpressionarepositive,centerofpressureisalwaysbelowthecentroidfortheinclinedatpateFor a given plate, CP approaches centroid as hcincreases and/or decreasesWithradiusofgyrationr2gx:= Ixxc/A,wealsohaveyCP= r2gx sin _hc25 / 33Centerofpressureforaninclinedplanesurface(contd.)Tondthex-coordinateofthecenterofpressure,xCP,wecalculatethemomentabouttheyaxisthruthecentroidxCP=_pgaugexdAF= sin _(c y) xdAhCGA= Ixyc sin hcAwhereIxyc:=_xydAistheareaproductmomentofinertiaoftheplateaboutitscentroidalx yaxesPlateswithareadistributedsymmetricallyaboutanaxisintheslantdirectionwillhaveIxyc= 0,sothattheirxCPwillbe026 / 33Momentsofinertiaofcommongeometries27 / 33BuoyancyforceBuoyancyforceFBonuidactingdownwardisFB= F2F1 +W= (h2h1)A {(h2h1) A V }= VThisisArchimedesprincipleBuoyancyforceFBonbodyactsupwardFBpassesthrucentroidofdisplacedvolume,calledcenterofbuoyancySameresultsapplytofully-submergedandoatingbodies,aslongassp.gravityofoutsideuidcanbeneglected28 / 33Stabilityoffullysubmergedbodies29 / 33StabilityofoatingbodiesStableconguration(e.g.,bargesthatridelowinthewater)Unstableconguration(e.g.,tallslenderbodies)30 / 33Rigidbodymotionofauid Theuidmassmovesasifitwerearigidbody Althoughuidelementsareinmotion,thereisnorelativemotionbetweenthem Thustherearenoshearstressesandonlypressureforcesareactingsoalthoughuidisnotstatic,hydrostaticanalysisissuitable Forrigidbodymotion,accelerationmustbeconstant Inpractice,thecontainermustbemovedwithconstantaccelerationandonemustbepatienttilltransients(sloshing)dieout Thegeneralequationofmotioninthiscaseisp= _gk + a_ UsingCartesiancoordinates,px= ax, py= ay, pz= g+ az31 / 33LinearrigidbodymotionofauidLetuidacceleratewithconstantaccelerationa = axi+ azkThedierentialpressureisgivenbydp=px dx +py dy+pz dz= axdx (g+ az) dzThefreesurfaceis,bydenition,acteduponbyuniformatmosphericpressure,sodp= 0thereatThustheequationforthefreesurface(oranyisocontourofpressure)isdzdx= axg+ az= tan a=0gax=0, az =0axp/azgazaxxz32 / 33RigidbodyrotationCentripetalaccelerationonuidparticleisinradialdirection,ar= r 2Pressuregradientincylindricalcoordinatesisp= p/r er+ r1p/ e + p/z ezThus,rigidbodymotionequationgivesdierentialpressureasdp= r 2dr gdzThefreesurface(oranyotherconstant-pressuresurface)isthengivenbydz/dr= r 2/g =z= 0.52r2/g+ constant (aparaboloid)33 / 33