Top Banner
Influence of the dynamical parameters and viral mutability in the progression of HIV-1 infection Horacio Ortega Cátedra de Física, Universidad Experimental Politécnica Antonio José de Sucre, VR La Yaguara, Caracas. A.P. 47636 Los Chaguaramos, Caracas, 1041-A, Venezuela Recibido: 21-06-05 Aceptado: 15-11-06 Abstract We use the concepts of immunodominance and antigenic oscillation for describing a model of HIV-1infection. We consider not only mutating virions and T-CD4 cells, but also viral reser- voirs as macrophages and follicular dendritic cells (FDPC). We also consider strong cytotoxic at- tack against reservoirs and the extra cellular attack on virions, both coordinated by T-CD4 cells. We simulate mutations by a Montecarlo routine. Virus high mutability impairs the immu- ne system by nullifying the assumed attack by immune cells (CTL) to infected reservoirs. Addi- tionally our results show that tackling virus invasion and posterior output from reservoirs could be an important alternative in therapy. Key words: Cytolithic cells; equilibrium point; mutability; reservoirs; viral escape. Influencia de los parámetros dinámicos y la mutabilidad viral en la progresión de la infección por VIH-1 Resumen Se utiliza los conceptos de inmunodominancia y oscilación antigénica para desarrollar un modelo de infección por VIH-1. Se considera el efecto no solo de viriones mutantes y células T- CD4, sino también de reservorios virales, como macrófagos y células foliculares dendríticas en- tre otros. También se considera ataque citotóxico contra los reservorios y ataque extracelular sobre los viriones, ambos coordinados por las células T-CD4. Las mutaciones se simulan me- diante una rutina de Montecarlo. La alta mutabilidad del virus desequilibra al sistema inmuno- lógico, al anular el supuesto ataque de las células inmunitarias (CTL) a los reservorios infecta- dos. Adicionalmente nuestros resultados muestran que bloquear la invasión del virus a los re- servorios, y la posterior producción de viriones desde dichos santuarios, podría ser una alterna- tiva importante en terapia. Palabras clave: Células citolíticas; escape viral; mutabilidad; punto de equilibrio; reservorios. Scientific Journal from the Experimental Faculty of Sciences, at La Universidad del Zulia Volume 14 Nº 4, October-December 2006 * E-mail: [email protected] CIENCIA 14(4), 440 - 451, 2006 Maracaibo, Venezuela
12

In fluen ce of the dyna mi cal pa ra me ters and vi ral mu ta bi ...

Feb 06, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: In fluen ce of the dyna mi cal pa ra me ters and vi ral mu ta bi ...

In fluen ce of the dyna mi cal pa ra me ters and vi ralmu ta bi lity in the pro gres sion of HI V-1 in fec tion

Ho ra cio Or te gaCá te dra de Fí si ca, Uni ver si dad Ex pe ri men tal Po li téc ni ca An to nio José de Su cre,

VR La Ya gua ra, Ca ra cas. A.P. 47636 Los Cha gua ra mos, Ca ra cas, 1041-A, Ve ne zue la

Recibido: 21-06-05 Aceptado: 15-11-06

Abs tract

We use the con cepts of immu no do mi nan ce and an ti ge nic os ci lla tion for des cri bing a mo del of HI V- 1in fec tion. We con si der not only mu ta ting vi rions and T- CD4 cells, but also vi ral re ser -voirs as ma cropha ges and fo lli cu lar den dri tic cells (FDPC). We also con si der strong cyto to xic at -tack against re ser voirs and the ex tra ce llu lar at tack on vi rions, both co or di na ted by T- CD4cells. We si mu la te mu ta tions by a Mon te car lo rou ti ne. Vi rus high mu ta bi lity im pairs the immu -ne sys tem by nu llifying the assu med at tack by immu ne cells (CTL) to in fec ted re ser voirs. Addi -tio na lly our re sults show that tackling vi rus in va sion and pos te rior output from re ser voirs could be an im por tant al ter na ti ve in the rapy.

Key words: Cyto lithic cells; equi li brium point; mu ta bi lity; re ser voirs; vi ral es ca pe.

Influencia de los parámetros dinámicosy la mutabilidad viral en la progresión de la infección

por VIH-1

Re su men

Se uti li za los con cep tos de in mu no do mi nan cia y os ci la ción an ti gé ni ca para de sa rro llar unmo de lo de in fec ción por VIH-1. Se con si de ra el efec to no solo de vi rio nes mu tan tes y cé lu las T- CD4, sino tam bién de re ser vo rios vi ra les, como ma cró fa gos y cé lu las fo li cu la res den drí ti cas en -tre otros. Tam bién se con si de ra ata que ci to tó xi co con tra los re ser vo rios y ata que ex tra ce lu larso bre los vi rio nes, am bos co or di na dos por las cé lu las T- CD4. Las mu ta cio nes se si mu lan me -dian te una ru ti na de Mon te car lo. La alta mu ta bi li dad del vi rus de se qui li bra al sis te ma in mu no -ló gi co, al anu lar el su pues to ata que de las cé lu las in mu ni ta rias (CTL) a los re ser vo rios in fec ta -dos. Adi cio nal men te nues tros re sul ta dos mues tran que blo quear la in va sión del vi rus a los re -ser vo rios, y la pos te rior pro duc ción de vi rio nes des de di chos san tua rios, po dría ser una al ter na -ti va im por tan te en te ra pia.

Pa la bras cla ve: Cé lu las ci to lí ti cas; es ca pe vi ral; mu ta bi li dad; pun to de equi li brio;re ser vo rios.

Scien ti fic Jour nal from the Ex pe ri men tal Fa cul ty of Scien ces,at La Universidad del Zulia Vo lu me 14 Nº 4, October-December 2006

* E- mail: pa la cu49@hot mail.com

CIENCIA 14(4), 440 - 451, 2006Maracaibo, Venezuela

Page 2: In fluen ce of the dyna mi cal pa ra me ters and vi ral mu ta bi ...

1. In tro duc tion

The ac quired im mu no de fi ciency syn -drome goes on as the ma jor threat ever posedto the world pub lic health. Ad di tion ally to im -pair ing the im mune sys tem in ter ac tions bystorm ing T- CD4 cells, HIV-1 in fects in a noCytopathic way im mune long lived cells,among them, macro phages (1, 2, 3) mem oryand rest ing T- cells (3), and lym phoid tis sue(4, 5, 6). Den dritic cells can also be di rectly in -vaded by VIH-1 (7). Some in di rect mecha -nisms of in va sion to T- CD4 cells, as those me -di ated by den dritic cells (7, 8) or by vi ral ge -nomes (9) seem to be very per verse ones. Cu ri -ously, a lack ing of cor re la tion be tween the life -time of the in fected cells and T- CD4 countshas been re ported (10). The im mune sys temcan check HIV-1 neu tral iz ing free vi ri ons (11,12, 13), by lym pho cyte me di ated con trol of vi -ral pro gres sion, (14, 15), by de struc tion of in -fected cells dis play ing vi ral epi topes, a fact in -ferred by the emer gence of an anti HIV- CTLre sponse in the early stages of the in fec tion(16, 17), and also by the so- called bipha sic de -cay (18). Cy to toxic cells can also pour solu bleanti VIH-1 fac tors into the blood stream (19).How ever, cy to toxic ac tiv ity of CTL in bloodneeds con tinue stimu la tion (20), and also thepres ence of long lived mem ory CTL cells (21).Per sis tence of vi ral rep li ca tion is also re quiredfor main tain ing high fre quen cies of CTL ef fec -tors (22). Some as pects of the in ter ac tionvirions- anti HIV cells are else where dis cussed (23, 24). The even tual fail ure of the im munesys tem could be ex plained as a con se quenceof the high vi ral mu ta bil ity, but also by the ex -is tence of re sis tant strains of vi ri ons, or slowly re ply ing ones (25). The an ti body me di ated re -sponse is a sub ject that de serves at ten tion,es pe cially by the pos si bil ity of vac cine de sign(26, 27), and also be cause there ex ist knownmecha nisms for vi ral es cape from hu mo ral at -tack (28, 29), or by af ford ing the in va sion of vi -ri ons to macro phages by means of their IgC Fc re cep tor frag ment. At the ad vanced stages ofthe ill ness the im mune sys tem col lapses andop por tun is tic in fec tions emerge in duc ing thedeath of the in fected or gan ism. These stages

are char ac ter ized by an no ta ble in crease in the vi ral bur den, al though the cur rently ac ceptedsource of vi ri ons, T- CD4 cells is de pressed, afact that high lights the need for ad di tionalsources of vi ri ons as B lym pho cytes (30), sple -no cytes (31) or fol licu lar den dritic cells (4).

Mathe mati cal mod el ling should al lowac quir ing a bet ter knowl edge of com plex dy -nam ics so that the de ci sive fac tors in thestrug gle of the VIH-1 and the im mune sys -tem be come fi nally es tab lished. There is awealth of mod els of the VIH- 1- immune sys -tem in ter ac tion, and we men tion here justthe works by De Boer and Per el son (32), andWo darz and Nowak (33). A re vi sion of thestate- of- the- art in mod el ing VIH-1–im munesys tem in ter ac tion can be found in (34),there fore we re mit there to lec tors in ter estedin such top ics.

In this work we build vari ous spaces ofpa rame ters re lated to the im mune re sponse, the vi ral mu ta bil ity, and the pres ence of cy -to lytic cells. It should be clear that the pres -ence of known vi ral res er voirs, un til yet notcon sid ered, de fines the step control- progression of the ill ness, and that it shouldbe im por tant de sign ing thera pies main tain -ing this con trol. We dis cuss in sec tion 2 fun -da men tals of our model, its sta bil ity, andhow we in clude the ef fect of mu ta tions andop por tun is tic in fec tions on its be hav ior. Insec tion 3 we show the re sults of sev eral nu -meri cal in te gra tions. The in flu ence of theim mune at tack on vi ri ons, and also the vi rales cape pro duced by high vi ral mu ta bil ity isex plic itly con sid ered. In sec tion 4 we make adis cus sion of our re sults and pres ent ourcon clu sions. We used AUTO CAD 2000 fortrac ing the Fig ure 1; SIG MAPLOT 5.05 forthe Fig ures 2, 4, and 9, and rou tines fromMAT LAB 5.3 for the re main ing ones.

2. The mo del

2.1. Fun da men tals

We use in this pa per a gen er ali za tion(35) of a model origi nally pro posed by Nowaket al. (36) for de scrib ing the evo lu tion of AIDS

Scien ti fic Jour nal from the Ex pe ri men tal Fa cul ty of Scien ces,at La Universidad del Zulia Vo lu me 14 Nº 4, October-December 2006

H. Ortega / Cien cia Vol. 14, Nº 4 (2006) 440 - 451 441

Page 3: In fluen ce of the dyna mi cal pa ra me ters and vi ral mu ta bi ...

Scien ti fic Jour nal from the Ex pe ri men tal Fa cul ty of Scien ces,at La Universidad del Zulia Vo lu me 14 Nº 4, October-December 2006

442 In fluen ce of the dyna mi cal pa ra me ters and vi ral mu ta bi lity in the pro gres sion of HI V-1 in fec tion

Fi gu re 1. a) z, T- hel per cells, n ab , vi rus, l z , T- hel per cells crea tion rate, ( )wz-1 , T- hel per cells li fe ti me. In

ab sen ce of any other in te rac tion the T- hel per cells equi li brium den sity is z z z* /= l w . Vi rions

des troy T- hel per cells at a rate u zab abn . The full va ria tion rate of the T- hel per cells is

l n wab abz zu z z- - . b) m0 , heal thy re ser voirs, mab , in fec ted re ser voirs, xa , cyto to xic cells

against the epi to pe a, ( y b , cyto to xic cells against the epi to pe b), l 0 , heal thy re ser voirs crea tion

rate, w0

1- , heal thy re ser voirs li fe ti me. In ab sen ce of any other in te rac tion the equi li brium den -

sity of heal thy re ser voirs is m* 0 0 0= l / w . Heal thy re ser voirs are in fec ted by their in te rac tion

with vi rions at a rate g nab ab m0 . An ti-a cyto to xic cells des troy in fec ted re ser voirs at a rate

pm xab a . (An ti-b cyto to xic cells des troy in fec ted re ser voirs at a rate qm yab b ). The full va ria tion

rate for the heal thy re ser voirs is g n wab ab ab a b abm m px qy m0 1- + -( ) . c) g ab vi rions crea tion rate

in re ser voirs, x abu , vi rions crea tion rate in in fec ted T- hel per cells, f zab abn , vi rions des truc tion

rate ( by an ex tra ce llu lar hit, co or di na ted by T- hel per cells) . Vi rions in va de re ser voirs at a rate

g nab ab m0 . The full va ria tion rate for vi rions is g m u f z mab ab ab ab ab abx n g n+ - -( ) 0 . d) In fec ted

cells ac ti ve cyto to xic pre cur sor cells x ya b( ) at a rate c ka b( ). For an an ti-a, xa CTL cell, cyto to xi -

city is acqui red by T- hel per me dia ted ac ti va tion at a rate h a abc m z, or by T- hel per me dia ted clo -

na tion at a rate c m xza ab (si mi lar pro cesses occur for an an ti-b, y b CTL cell. The full rate of the

x ya b( ) cyto to xic cells va ria tion is h w h wa a a a a a b b b b b bc zm c zm x x k zm k zm y y* * ** ( )+ - + -2 2 .

Page 4: In fluen ce of the dyna mi cal pa ra me ters and vi ral mu ta bi ...

as an out come of the in ter ac tion of vi ri ons, n ab healthy res er voirs, m 0 , in fected res er -voirs, m ab T- helper, z, and cy to toxic cells, x a

and y b . Dy nam ics of our model is out lined in the Fig ure 1 and its de tailed mathe mati calde scrip tion is given in the ap pen dix. All ourvari ables mean den si ties. An an ti gen can si -mul ta ne ously pres ent sev eral epi topes, butthe im mune sys tem nor mally rec og nizesjust one or two of them (36), so we shall onlycon sider that vi ri ons dis play just two epi -topes, i with two vari ants i 1 and i 2, and j alsowith two vari ants j1 and j 2. We write n ab fora vi rion ex hib it ing the vari able a of the epi -tope i, and the vari able b of the epi tope j. Anyset of healthy cells which is sus cep ti ble to be in vaded by the vi rus, and then to pro duce vi -ral par ti cles will be called a res er voir, m 0 .Res er voirs have a life time ( )w0

1- and a crea -

tion rate of l 0 . A n ab -i nfected res er voir is m ab and it lives ( )w1

1-. T- CD4 cells act ing

mainly as co or di na tors of the im mune re -sponse are called z; they are cre ated at a rate l z and they live a time ( )wz

-1. Infected cells

elicit a re sponse of cy to toxic cells (CTL) ad -dressed against them. CTL di rected againstin fected cells bear ing the a vari ant of the epi -tope i are de noted by x a , while those di -rected against cells bear ing the vari ant b ofepi tope i by y b . Cy to toxic cells live ( )w2

1-

and they are cre ated for two dif fer ent pro -cesses me di ated by T- CD4 cells, ac ti va tion,and clo na tion. A sin gu lar as pect of thismodel (shared by most of the cur rent mod els for the in ter ac tion HIV- 1- immune sys tem) is that there is not any ana lyti cal way of deal -ing with it, so we must rely on nu meri calwork for de scrib ing its prop er ties. When wecon sider, how ever, just one vi ral vari ant, xxwe found a null equi lib rium point (no vi ri ons nor in fected cells) given by:

m z m x yz

z

* , * , * * * *0

0

0

11 11 1 10= = = = = =

l

w

l

wn . [1]

This point is asymp to ti ca lly sta ble if

( )h f ugz

z

º - > -æ

èçç

ö

ø÷÷

l

wx

l

wg

w11 110

011

11

1

1 . [2]

2.2. Mu ta tions

HIV-1 high mu ta bil ity is as so ci ated to ade fect in the in verse tran scrip tase pro cessused by all ret ro vi rus in the syn the sis of vi ral DNA from RNA. Not all the mu ta tions are sig -nifi cant ones, but just that frac tion chang ing an ex ist ing epi tope into a new one, notchecked by cy to toxic cells. We used for oursimu la tion a Mon te carlo rou tine ruled by the ker nel ( )R s n t= -exp g ab D , where s is a vari -

able ad just ment pa rame ter which we callmu ta bil ity, n is the number of elapsed timesteps and Dt , the time step in ter val. R iscom pared to the out put of a nor mal ized gen -era tor of ran dom num bers, A and each timethat R A< , a mu ta tion takes place. For t R» »0 1, , there fore mu ta tions are un -likely, while for a t ® ¥, R » 0 and some of the pos si ble mu ta tions oc cur. The frac tion of vi -ri ons pro duced each time is a. Some of theout puts of this mu ta tion pro cess are shownin the Fig ures 5, 6, and 7.

2.3. Oppor tu nis tic in fec tion

We now con sider the ac tion of a non im -mu no cy to pa tic agent r for simu lat ing bac te -rial or tu mor in fec tions, which evolve as:

( )d

dta b m

rr r r= - -1 0 [3]

the lo gis tic term takes into ac count a lim itedgrowth of the in fected agent, and the lastterm, its up take by a con tact in ter ac tionwith macro phages, at a rate b, re fine mentsto this sim ple model are im me di ate. As ahealthy im mune sys tem wipe out op por tun -is tic in fec tions, we took for our simu la tions

b ºa w

l0

0

, and a =1, other choices for a im ply

just a re nor mali za tion of our sys tem of equa -tions.

Scien ti fic Jour nal from the Ex pe ri men tal Fa cul ty of Scien ces,at La Universidad del Zulia Vo lu me 14 Nº 4, October-December 2006

H. Ortega / Cien cia Vol. 14, Nº 4 (2006) 440 - 451 443

Page 5: In fluen ce of the dyna mi cal pa ra me ters and vi ral mu ta bi ...

3. Re sults

We used an Euler ex pan sion for work -ing our re sul tant set of four teen cou pled or -di nary dif fer en tial equa tions. The out puts of some nu meri cal in te gra tions are shown inthe fol low ing Fig ures 2 to 9.

3.1. Ful fillment of the con di tions of equi li brium

We be gin dis play ing the out put of ourin te gra tor for the case with just one vi ralvari able, n11. Fig ure 2 shows sys tem’s vari -ables be hav ior as a func tion of h for largeval ues of time (50.000 com pu ta tion steps).It is evi dent the ful fill ing of the con di tion (9).Dashed lines rep re sent a sys tem obey ingequa tions (1) to (6), with just a vi ral vari able, n11. We have also plot ted (solid line) a sys temwith g11 0= in equa tions (1) and (6), and p q1 1 0= = in equa tions (3) and (4) (vi ri onsdo not en ter into res er voirs, and there is noCTL at tack on them). The last situa tionseems to be un fa vour able for the im munesys tem. Now we con sider situa tions with

hg

ij

ij> -

æ

èçç

ö

ø÷÷

l

wg

w0

0 1

1 , this is, with strong im -

mune re sponse. Fig ure 3-a shows the tem -po ral evo lu tion of vi ri ons, n11, and T- helpercells, z, for di verse ini tial val ues of both vari -ables. The im mune sys tem keeps its gripover vi rus al though the ini tial vi ral den sity is high in some simu la tions. Fig ure 3-b is vi -rus, n11 vs. T- helper cells, z dia gram. All thetra jec to ries in this space con verge to wardthe null equi lib rium point. Ful fill ing ofequa tion (9) leads to T- CD4+ cells per ma -nence and con trol of the ill ness. A situa tionwith weak im mune re sponse,

hg

ij

ij< -

æ

èçç

ö

ø÷÷

l

wg

w0

0 1

1 , is shown in the Fig ure 4.

Fig ure 4-a shows tem po ral evo lu tion of thevi ral and T- helper cells den si ties. Note thatvi rus emerges ir re spec tive of the ini tial im -mune cells den sity. Fig ure 4-b is a vi rus, n11

vs. T- helper cells, z dia gram. Our sys temseems to have a fi nite, and per haps un sta -ble, equi lib rium point (this is sug gested by

he fact that all the tra jec to ries in the (z, n11 )space con verge to ward a pref er en tial one,but this tra jec tory is un bounded.

3.2. Effect of the mu ta tions

Now we show the ef fect of mu ta tions onthe sys tem’s be hav ior. Fig ure 5 dis plays the

Scien ti fic Jour nal from the Ex pe ri men tal Fa cul ty of Scien ces,at La Universidad del Zulia Vo lu me 14 Nº 4, October-December 2006

444 In fluen ce of the dyna mi cal pa ra me ters and vi ral mu ta bi lity in the pro gres sion of HI V-1 in fec tion

Figure 2. Sys tem’s beha vior for just a vi ral va -

riant, n 11 , with cyto lithic at tack on re -

ser voirs (dashed li nes) and in ab sen ce

of such at tack, with no in fec tion to re -

ser voirs (so lid li nes). We plo tted vi -

rions, n 11 , in fec ted re ser voirs, m11 , and

T- CD4 hel per cells, z. The re occurs a

shift in the con ver gen ce re gion from

h@ 0725. to h@ 0420. but this shift of

the null point is not cau sed by CTL at -

tack on in fec ted cells, but for vi rions

in va sion to re ser voirs. CTL den si ties

are ne gli gi ble, and m0 evo lu tion

roughly pa ra llels that of z, so we did

not plot the se va ria bles. We took for

this and the re mai ning fi gu res

g 11 035= . , g 11 065= . , p q1 1 4= = ,

c k1 1 055= = . , f11 4 9= . , u11 225. , h= 002. ,

l 0 025= . , l z = 4, w w0 1 028= = . ,

w2 140= , and f, va ria ble bet ween 3.24

and 5.24.

Page 6: In fluen ce of the dyna mi cal pa ra me ters and vi ral mu ta bi ...

Scien ti fic Jour nal from the Ex pe ri men tal Fa cul ty of Scien ces,at La Universidad del Zulia Vo lu me 14 Nº 4, October-December 2006

H. Ortega / Cien cia Vol. 14, Nº 4 (2006) 440 - 451 445

0 500 1000 1500 2000 2500 3000 3500 4000 4500 50000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

v, virions

z, T-helper cells

a)

v, v

irio

ns

z, T-helper cells

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 4. a) Temporal evolution of our system

for h gij ij> -l

wg w0

0

1 1( / ), weak

immune response. Immune escape

occurs irrespective of initial

concentrations both of virions and T

helper cells. b) Plot of viral density n 11

vs. z, T-CD4 helper cells density. All

the trajectories seem converge toward

a preferred one. This fact suggests the

existence of an unstable equilibrium

point. For the purpose of plotting we

arbitrarily truncated all the curves.

Parameters and initial values for the

variables were identical to those in the

Figure 3, but. x= 210. ( . )h= 0100 .

b)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 50000

0.5

1

1.5

2

2.5

3

3.5

4

Z,T-helper cells

v, virions

a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3. a) Tem po ral evo lu tion of vi ral, and T-

hel per cells con cen tra tions for a si tua -

tion with h gM ij ij> -l

wg w0

0

1 1( / ),

strong immu ne res pon se. Immu ne sys -

tem con trols every in fec tion, irres pec ti -

ve of the ini tial ino cu lums. b) Plot of vi -

ral den sity n 11 vs. z, T- CD4 hel per cells

den sity. The sta ble equi li brium point is

ea sily ob ser ved. We took iden ti cal va -

lues for the pa ra me ters to tho se in the

Fi gu re 2 but, w2 7= , and x= 180.

( . )h= 0486 . The ini tial va lues for the va -

ria bles were m0 0 089( ) .= , m11 0 010( ) .= ,

x1 10 0 010( ) ( ) .= =g , and the re main de -

ring ones are seen from the fi gu re.

b)

Page 7: In fluen ce of the dyna mi cal pa ra me ters and vi ral mu ta bi ...

val ues of to tal vi ral den sity, n iji j,å , and z,

T- CD4+ cells den sity, as a func tion of h af ter50000 steps of in te gra tion. Dot ted lines rep -re sent a sys tem with just a vari able epi tope,this is, with the pres ence of n11, n12, n13 and n14 vari ants. This im plies that the epi tope i(1) is al ways seen by CTL. Solid lines rep re -sent an other situa tion with two vari able epi -topes, this is, with the pres ence of n11, n12, n 21 and n 22 vari ants, there fore a de lay oc curs since a vi ral mu ta tion takes place un til thepro duc tion of spe cific CTL ( )x yi j . This last

situa tion is un fa vour able for the im munesys tem, re quir ing higher val ues of h for con -trol ling vi ral emer gence. In the Fig ure 6 weshow the in flu ence of rate of mu ta tion on vi -ral es cape. We dis played there to tal vi ral

den sity, n iji j,å as func tion of time for three

dif fer ent val ues of the mu ta bil ity, s, and

hg

ij

ij> -

æ

èçç

ö

ø÷÷

l

wg

w0

0 1

1 for each vi ral vari able n ij in

all the in stances, but with the pres ence ofCTL at tack on in fected res er voirs. For lowmu ta bil ity, s= 0.01, im mune re sponse con -trols in fec tion. For mod er ate mu ta bil ity, s=0.1, vi ral den sity slowly prog ress. For highmu ta bil ity, s= 1.0, vi rus has the ad van tage.The net out come of vi ral high mu ta bil ity isim pair ing CTL at tack on in fected res er voirs.Fig ure 7 is a map of the (h, s) space show ingcon ver gence (con trol of in fec tion) and di ver -gence (vi ral es cape from im mune con trol) re -gions. We used here a con tinu ously mu tantsys tem with the n11, n12, n 21 and n 22 vi ralvari ants. For each value of a the im munesys tem keeps a grasp on the in fec tion in there gion un der each curve. Then, this fig uredis plays con ver gence re gions for a con tinu -ously mu tant sys tem. A more ef fec tively mu -tant vi rus (higher a) has the ad van tage overthe im mune re sponse. Satu ra tion ob servedfor high val ues of s shows that a too highrate of mu ta tion does not sup ply a more ad -van ta geous situa tion for vi rus.

3.3 Effect of CTL pa ra me ters

Fig ure 8 shows the in flu ence of CTL ac -tiv ity on con trol of vi ral pro gres sion for three

in stances of the w

w

t

t2 4

z

TCD

CTL

= ra tio (re mem ber

that t w= -1 rep re sents the life time of an en -tity). Strength of CTL at tack on in fected res -er voirs is meas ured by pi and q j pa rame ters, whilst ac ti va tion rate of CTL is meas ured by c i and k j (we took p qi j= , and c ki j= for allthese simu la tions). Any point on each curverep re sents the mini mal value of pi (qj) nec es -sary for ob tain ing im mune con trol (fi nite,non null, non di verg ing val ues of vi ral vari -ables n ij and m ij ) for a given ( )c ki j af ter

50.000 com pu ta tion steps. There ex ists con -trol of the in fec tion in the re gion out sideeach curve, so we call them ac ti va tion

curves. Note that CTL per ma nence (lower w

w2

z

ra tio) as an ac ti vated en tity ad dressedagainst a fixed epi tope fa cili tates im munetask (lower val ues for the pa rame ters p q c ki j j, , 1 ). From the fig ure is seen that eachone of these curves are bounded and closed,and there fore there is an at trac tion val leycon tain ing them. Ad di tion ally, this fig ureshows that the prod uct of ( )p qi j times

( )c ki j pa rame ters, that is, CTL ac ti va tion

rate times in fected res er voirs clear ance rateis the rele vant fac tor for con trol ling in fec tionvi ral. Note, fi nally that our curves also em -piri cally show the ex is tence of a non null butnon pro gress ing equi lib rium point.

3.4. Oppor tu nis tic breakthrough

Fig ure 9 shows the re sult of our simu la -tions af ter an op por tun is tic in va sion ruled bythe equa tion (3). A healthy or gan ism eas ilycon trols the ad di tional, non cy to pathic in fec -tion (con tinu ous lines), but a sys tem withweak ened im mune sys tem is over whelm ingly in fested by the op por tun is tic agent (dot tedlines). Thus our sys tem cor rectly re pro ducesthe well known fact that on ad vanced stages

Scien ti fic Jour nal from the Ex pe ri men tal Fa cul ty of Scien ces,at La Universidad del Zulia Vo lu me 14 Nº 4, October-December 2006

446 In fluen ce of the dyna mi cal pa ra me ters and vi ral mu ta bi lity in the pro gres sion of HI V-1 in fec tion

Page 8: In fluen ce of the dyna mi cal pa ra me ters and vi ral mu ta bi ...

of AIDS in fec tion op por tun is tic agents in vade the weak ened or gan ism.

4. Dis cus sion and Con clus sions

The be hav ior of our sys tem’s null equi -lib rium point is shown in the Fig ure 2.Equa tion (3) is ful filled by the sys tem, andthis fact sug gests that the con ver gencethresh old could be come ar bi trar ily minuteby mak ing g ab ® 0, block ing vi ri ons in va sionto res er voirs, a tech nic sug gested in Gigereand Trem blay (38) and Zhang et al (39), (this

fact also means u ® 0, stop ping of vi ral in fec -tiv ity to T- CD4 cells) and/or g11 0® (stop -ping vi ri ons pro duc tion in res er voirs),and/or w1 ® ¥ (length en ing life time of ac tiveCTL in the blood stream). Al ter na tively, f (an -ti body me di ated vi ri ons at tack) could makehigh, but this seems to be a dif fi cult is sue,not only for the lack ing of a se cure way of sig -nal ling vi ral epi topes for de struc tion, butalso by the ex is tence of es cape mecha nismsfrom an ti bod ies con trol (28). Vi rion in va sionto res er voirs has been de scribed since longtime, but some as pects of this in va sion and

Scien ti fic Jour nal from the Ex pe ri men tal Fa cul ty of Scien ces,at La Universidad del Zulia Vo lu me 14 Nº 4, October-December 2006

H. Ortega / Cien cia Vol. 14, Nº 4 (2006) 440 - 451 447

Z, T-h

elp

er

cells

v, to

tal v

iru

s

h, arbitrary

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

--- one variable epitope

___ two variable epitopes

z

v

v

Figure 5. Comparison between system

behavior for a case with a fixed

epitope (n n n11 12 13, , and n 14 variants)

(dashed line) and other one with two

variable epi to pes (n n n11 12 21, , , and n 22

variants) (solid line). We plotted total

viral density, n nTOT = å iji j, (or

n 11 ji jå ) and z, T-CD4 helper cells vs.

hM , immune response. Immune

system is disarticulated by the

presence of two continually mutant

epitopes (note the rightward shift for

the convergence region for the last

situation). We took w w2 2 14= =z ,

1 3£ £x , and the remaining

parameters identical to those in

Figure 2.

Figure 6. Time evolution of total viral density

n 11 ji jå for diverse values of the

mutability s. Mutation is ruled by a

Montecarlo kernel S s n tij= -exp( )g D ,

n is the number of steps in arbitrary

units of time, Dt, and s is the mutation

rate. For s= 001. , low mutability,

virions are quickly wiped out by

immune system. For s= 01. , moderate

mutability, viral density oscillates

before slow growth. After mutations

(marked by changes in the slope of the

curves) there are transient increases

in the viral density caused by the

current delay in CTL specific

response. For s= 10. , high mutability,

total virions density diverges.

Page 9: In fluen ce of the dyna mi cal pa ra me ters and vi ral mu ta bi ...

later be hav iour of the vi rus in side this hostare not yet fully un der stood, and we thinkthat these im por tant sub jects should be re -vis ited. Cur rent ther apy make stress in im -pair ing the syn the sis of vi ral DNA from RNAand also the as sem bling of vi ral par ti cles(block ing vi ral in te grases) (40), that is, inmak ing x ® 0 and gab ® 0. This goal couldalso be reached at tack ing vi ral RNA di rectly,not just the pro teins it en code (41, 42). Tem -po ral evo lu tion of vi ri ons and T- helper cellsis shown in Fig ures 3 and 4. Fig ure 3 showsthe de sired but not yet achieved situa tion ofim mune con trol. T- helper cells con cen tra -tion, z re mains con stant and vi ri ons n ij fade.Fig ure 4-a agrees with the cur rent be hav -iour of VIH-1 in fec tion: vi ral break throughand de cline of T- helper cells con cen tra tion.Some in ter est ing ques tions arise from Fig -ure 4-b. Nu meri cal work sug gest that oursys tem seems to have a fi nite, and per hapsun sta ble, equi lib rium point. Could this hy -po theti cal equi lib rium point be made bothsta ble and as small as de sired? Could theflux to ward that point be come as slow as de -sired? We found situa tions with no di ver -gence af ter more than 50.000 com pu ta tionsteps (in fact we used such points for as sem -bling our bor der ing curves in Fig ure 8). So,nu meri cal work sug gests that the an swer isyes. We re call that there ex ist no ana lyti calway to an swer to these ques tions. On theother side, ther apy has re ported cases ofnon pro gress ing se ro posi tives (43).

Mu ta tion is a hall mark of all ret ro vi rusand it poses a hard chal lenge to the im munesys tem. If CTL do re tain their grasp on a vi ralepi tope, they keep their check of the vi ralbreak through, a fact ob served from the Fig -ure 5. Note that vi ral con trol oc curs first inthe sys tem with a non- mutating vi ral epi -tope, ir re spec tive of the number of ex ist ingvi ral vari ables. Fig ure 6 shows that higherrate of mu ta bil ity re sults in vi ral ad van tage.Vi ral es cape oc curs by im pair ment of CTL at -tack on in fected res er voirs. This fact seemsagree with re ports stat ing that vi ral break -

through pre cedes vire mia (44). Once vi ral es -cape is well es tab lished, a fur ther growth inthe vi ral mu ta tion rate does not sup ply an ad -di tional vi ral ad van tage (Fig ure 7). The satu -ra tion of vi ral pro duc tion in our model couldalso be rooted in the lim ited number of vi ralvari ables on it (n , n , n12 2111 , and n 22 ), or by theso- called di ver sity ca tas tro phe (45). The ex is -tence of ac ti va tion curves bound ing re gionsof vi ral ad van tage is ap par ent in Fig ure 8.This fig ure also shows that for con trol ling vi -

Scien ti fic Jour nal from the Ex pe ri men tal Fa cul ty of Scien ces,at La Universidad del Zulia Vo lu me 14 Nº 4, October-December 2006

448 In fluen ce of the dyna mi cal pa ra me ters and vi ral mu ta bi lity in the pro gres sion of HI V-1 in fec tion

0 0.2 0.4 0.6 0.8 1 1.2 1.40.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

8.0

5.0

1.0

h im

mu

ne

re

spo

nse

s mutation rate

Figure 7. Space of convergence hM vs. s for a

continually mutant system. a is the

fraction of significant viral mutants

produced each time a mutation

occurs. For each value of a the system

has control of infection in the region

below the curve a= cte Note that 1)

For low and moderate values of s, the

immune response intensity required

for controlling infection grows

exponentially. 2) The higher the

fraction a of significant variants

produced, the higher must be the

immune response. 3) For high s

values, there occurs saturation of the

viral diversity, and a further growth

in s, mutability rate, does not provide

an additional advantage to the virus.

Page 10: In fluen ce of the dyna mi cal pa ra me ters and vi ral mu ta bi ...

ral in fec tion, the prod uct ( )p qi j times ( )c ki j

pa rame ters must be high. Then, CTL ac ti va -tion rate times in fected res er voirs clear ancerate is the im por tant quan tity for con trol lingthe in fec tion vi ral. This fact seems to be a

com mon sense rule, but it poses a hard taskon CTL: they not only must be cre ated in asuf fi cient high rate, but also they must haverea son able and con tinu ous an tivi ral per -form ance. Op por tun is tic in fec tion is just acon se quence of a dimi nu tion of the den sity ofim mu no com pe tent cells caused by vi ral at -tack on them. We con clude that our modelnot only re pro duces sev eral well stated factsre lated to the pro gres sion from VIH-1 in fec -tion to AIDS, but also sug gests an al ter na tivefor fight ing this pro gres sion, namely by thecon trol of the pro duc tive vi ral in va sion to res -er voirs.

Aknowledge ments

Dr. Miguel Martin- Landrove (Cen tro deReso nan cia Magné tica, Fac ul tad de Ci en cias, Uni ver si dad Cen tral de Vene zuela) gave en -thu si as tic sup port and ad vice dur ing all thestages of this work, Miss Ana Med ina drew

Scien ti fic Jour nal from the Ex pe ri men tal Fa cul ty of Scien ces,at La Universidad del Zulia Vo lu me 14 Nº 4, October-December 2006

H. Ortega / Cien cia Vol. 14, Nº 4 (2006) 440 - 451 449

Figure 8. Immune response activation curves

for some values of the

w w t t2 4/ /z TCD CTL= ratio. Ordinate

axis represents the value of the

parameters c ki j= necessary for

obtaining system’s convergence.

Abscise axis has similar meaning for

the parameters p qi j= . Points

forming all the curves had minute, but

non null values for viral densities after

50.000 computational steps. Each

curve delimits the lower boundary of a

convergence region; this is, for a value

of the ratio w w2 / z there is immune

control in the region placed to the left

of the respective curve. Permanence of

activated CTL (measured by their

meantime) facilitates immune task.

We took s= 05. and a= 010. , and the

remaining parameters, the same as in

Figure 2. Initial values for the variables

were mij ij( ) ( ) .0 0 010= =n ,

x yi j( ) ( ) .0 0 005= = , m0 0 089( ) .= ,

z( ) .0 057= .

Figure 9. Time evolution of the opportunistic

agent r and T-helper cells z for viral

control (solid line) and viral

outgrowth (dashed line). Infection

develops as a consequence of

decrease of immune cells density. A

healthy organism easily controls the

invasion, but a weakened organism

Page 11: In fluen ce of the dyna mi cal pa ra me ters and vi ral mu ta bi ...

the Fig ure 1, and Miss Carla Or tega Di Gre -go rio per formed the idio matic re vi sion.

Re fe ren ces1. FINZI D., HERMANKOVA M., PIERSON M.,

CARRUTH L., BUCK C., CHAISSON R., QUINN T., CHADWICK K., MARGOGLICK J.,BROOKMEYER R., GAL LANT J., MARKOWITZ M., HO D., RICHMAN D., SICILIANO R. Sci -ence 278:1295-1300, 1997.

2. ORENSTEIN J., FOX C., WAHL S. Sci ence276: 1857-1861, 1997.

3. CHUN T., FAUCI A. Proc Natl Acad Sci USA96: 10958-10961, 1999.

4. TEN NER-RACZ P., RACZ M., DIETRICH M.,KERN P. The Lan cet J12: 105-106, 1985.

5. PANTALEO G., GRAZIOSI C., BUTINI L.,PIZZO P., SCHNITTMAN S., KOTLER D.,FAUCI A. Proc Natl Acad Sci USA 88:9398-9842, 1991.

6. PANTALEO G., GRACIOZI, C., DEMAREST J.,BUTINI L., MONTRONI M., FOX C.,ORENSTEIN J., KOTLER D., FAUCI A. Na ture362: 355-362, 1993.

7. DYBUL M., WEISSMAN D., RUBBERT A.,MACHADO E., COHN M., EHLER L.,O’CALLAHAN M., MIZELL S., FAUCI A. AIDSRes and Hu man Retro virus 14: 1109-1113,1998.

8. BOUNOU S., LECLERC J., TREMBLAY M. JVirol 76: 1004-1014, 2002.

9. SATO H., ORENSTEIN J., DIMITROV D.,MARTIN M. Vi rol ogy 186: 712-724, 1992.

10. KLENERMAN P., PHILLIPS R., RINALDO C.,WAHL L., OGG G., MAY R., MC MI CHAEL A.,NOWAK M. Proc Natl Acad Sci USA 93:15323-15328, 1996.

11. LEVY J. Microbiol Rev 57: 183-289, 1993.

12. MONTEFIORI D., HILL T., VO H., WALKER B.,ROSENBERG E. J Virol 75: 10200-10207,2001.

13. HART M., SAIFUDIN M., SPEAR G. J GenVirol 84: 353-360, 2003.

14. OGG G., KOSTENSE S., KLEIN M., JURRIANSS., HAMANN D. MC MI CHAEL A., MIEDEMAF. J Virol 73: 9153-9160.

15. SCHMITZ J., KURODA M., SANTRA S.,SASSEVILLE V., SI MON M., LIFTON M., RACZP., TEN NER-RACZ K., DALESANDRO M.,SCALLON B., GHRAYEB J., FORMAN M.,MONTEFIORI D., RIEBER P., LETVIN N.,REIMANN K. Sci ence 283: 857-860, 1999.

16. BOR ROW P., LEWICKI H., HAHN B., SHAW G., OLDSTONE M. J Virol 68: 6103-6110, 1994.

17. GOULDER P., PRICE D., NOWAK M.,ROELAND-JONES S., PHILLIPS R., MC MI -CHAEL A. Immunol Rev 59: 17-29, 1997.

18. ARNAOULT R., NOWAK M., WODARZ D. ProcR Soc Lon don B 267:1347-1354, 2004.

19. GRAY C., LAW RENCE J., SCHAPIRO J.,ALTMAN J., WIN TERS M., CROMPTON M.,LOI M., KUNDUM S., DA VIS M., MERIGAN T. J Immunol 162: 1780-1788, 1999.

20. YANG O., KALAMS S., TROCHA A., CAO A.,LUSTER A., PAUL JOHN SON R., WALKER B. JVirol 71: 3120-3128, 1997.

21. KALAMS S., GOULDER SHEA A., JONES N.,TROCHA A., OGG G., WALKER B. J Virol 73:6721-6728, 1999.

22. WODARZ, D., NOWAK, M. Phil Trans R SocLond B 355: 1059-1070, 2000.

23. WICK D., SELF S. J Theor Biol 219: 19-31,2002.

24. WODARZ D., MAY R., NOWAK M. Int Immunol12: 467-477, 2000.

25. WAHL L., BITTNER B., NOWAK M. IntImmunol 12: 1371-1380, 2000.

26. STEINMAN R., GERMAIN R. AIDS 12: (suppl.A) S97-S112, 1998.

27. SATTENTAU Q., MOULARD M., BRIVET B.,BOTTO F., GUIL LE MOT J., MONDOR I.,POIGNARD P., UGOLINI S. Immunol Let ters66: 143-149, 1999.

28. WEI X., DECKER J., WANG S., HUI H.,KAPPES, J., WU X., SALAZAR-GON ZA LEZ J.,SALAZAR M., KIRBY M., SAAG M.,KOMAROVA N., NOWAK M., HAHN B.,KWONG P., SHAW G. Na ture 42:307-312,2003.

29. CHIEN Jr. P., CO HEN S., TUEN M., ARTHOSJ., DE CHEN P., PATEL S., HIOE C. J Virol 78:7645-7652, 2004.

Scien ti fic Jour nal from the Ex pe ri men tal Fa cul ty of Scien ces,at La Universidad del Zulia Vo lu me 14 Nº 4, October-December 2006

450 In fluen ce of the dyna mi cal pa ra me ters and vi ral mu ta bi lity in the pro gres sion of HI V-1 in fec tion

Page 12: In fluen ce of the dyna mi cal pa ra me ters and vi ral mu ta bi ...

30. MOIR S., LAPOINTE R., MALASPINA R.,OSTROWSKI M., COLE C., CHUN T.,BASELER M., HWU P., FAUCI A. J Virol 73:7972-7980, 1999.

31. JUNG A., MAIER R., VAR TANIAN J.,BOCHAROV G., JUNG V., FISCHER U.,MEESE E., WAIN-HOB SON S., MAYERHANSW. Na ture 418: 144, 2002.

32. DE BOER R., PERELSON A. J Theor Biol 190: 201-214, 1998.

33. WODARZ D., NOWAK M. Bioassays 24:1178-1187, 2002.

34. NOWAK M., MAY R. Vi rus Dy nam ics, Math e -mat i cal prin ci ples of Im mu nol ogy and Vi -rol ogy Ox ford Uni ver sity Press, N.Y. pp.1-250, 2000.

35. ORTEGA H., MARTÍN-LANDROVE M. ActCien Venez 55: 247-263, 2004.

36. NOWAK M., MAY, R., PHILLIPS R.,ROWLAND-JONES S., LALLO D., MC ADAMS., KLENERMAN P., KÖPPE B., SIGMUND K.,BANGHAM C., MC MI CHAEL A. Na ture 375:606-611, 1995.

37. WAHL S., ORENSTEIN J. J Leuk Biol 62:67-71, 1997.

38. GUIGERE J., TREMBLAY M. J Virol 78:12062-12065, 2004.

39. ZHANG M., XIAO, X., SIDOROV I., CHOUDRYV., CHAM F., ZHANG P., BOUMA P., ZWICK M.,CHOUDARY A., MONTEFIORI D., BRODER C.,BUR TON D., QUINNAN, Jr. G., DIMITROV D. JVirol 78: 9233-9242, 2004.

40. HAZUDA D., FELOCK P., WITMER M., WOLFE A., STILLMOCK K., GROBLER J., ESPESETHA., GABRIELSKI L., SCHLEIF W., BLAU C.,MILLER D. Sci ence 287: 646-650, 2000.

41. DAVE R., POMERANTZ R. J Virol 28:13687-13696, 2004.

42. KAMEOKA M., NUKUZUMA S., ITAYA A.,TANAKA Y., OTA K., IKUTA K., YOSHIHARA K.J Virol 78:8931-8934, 2004.

43. QUINN T., WA VER M., SEWANKAMBO N.,SERWADDA D., CHUANJUN L.,WABWIRE-MANGEN F., MEECHAN M.,

LUTALO T., GRAY R. The NE Jour Med 342:921-929, 2000.

44. FEENEY M., TANG Y., ROO SE VELT K.,LESLIE A., MCINTOSH K., KARTHAS N.,WALKER B., GOULDER P. J Virol 78:8927-8930, 2004.

45. SOLÉ R., DEINSBOECK T. J Theor Biol 228:47-54, 2004.

Appen dix

We be gin by in tro du cing the fo llowingsym bols:

m m m ma aj *b

jib

i

* = =å å

( ) ( )* *

,,

u uij ij ij iji ji j

n n g n g nab ab= = åå ,

Dyna mics of the heal thy re ser voir cells isdes cri bed by:

dm

dtm m0

0 0 0 0= - -l g n wab ab( )* . [A-1]

The equa tion for the in fec ted re ser voir cellsevo lu tion is:

dm

dtm m px qy m

ab

ab ab ab a b abg n w= - + -0 1( ) . [A-2]

Dyna mics of the cyto to xic cell den si ties aredes cri bed by:

dx

dtc zm c zm x xa

a a a a a ah w= + -* * .2 [A-3]

dy

dtk zm k zm y

b

b b b b b bh w= + -* * .y 2 [A-4]

The equa tion for the T- CD4+ cells is:

dz

dtu z zz z= - -l n w( ) .* [A-5]

The equa tion for the vi rions is:

d

dtg m u f z m

nx ab n g n

ab

ab ab ab ab ab ab= + - -( ) .0 [A-6]

Scien ti fic Jour nal from the Ex pe ri men tal Fa cul ty of Scien ces,at La Universidad del Zulia Vo lu me 14 Nº 4, October-December 2006

H. Ortega / Cien cia Vol. 14, Nº 4 (2006) 440 - 451 451