Top Banner
12 JJJNIII 1/35 JJJNIII 1/35 Implicit Spatial Discretization for Advection-Diffusion-Reaction Equation Kundan Kumar 10-Dec-2008
35

Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

Jun 30, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 1/35JJ J N I II 1/35

Implicit Spatial Discretization forAdvection-Diffusion-Reaction Equation

Kundan Kumar

10-Dec-2008

Page 2: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 2/35JJ J N I II 2/35

Introduction

Applications of Advection-Diffusion ReactionEquationsChemical Vapor Deposition

Page 3: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 3/35JJ J N I II 3/35

Introduction

Setting:

• Advection-Diffusion-Reaction Equation

•φt + uφx = εφxx + s(x, t),

• Advection Velocity : u

• Diffusion Coefficient : ε

• Source term : s(x, t)

s(x, t) = b2ε cos(b(x− ut)).

Page 4: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 4/35JJ J N I II 4/35

Introduction

Setting:

• Exact Solution:

φ = cos(b(x− ut)) + exp(−a2εt) cos(a(x− ut)).

• Dirichlet Boundary Conditions.

• Initial Condition, φ(x, t) at t = 0.

Page 5: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 5/35JJ J N I II 5/35

Contents

1 Discretization 61.1 Order Condition . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Examples 10

3 Stability 16

4 Time Integration Aspect 18

5 Numerical Computations 19

6 Conclusion 35

Page 6: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 6/35JJ J N I II 6/35

1. Discretization

φt + uφx = εφxx + s(x, t)

Discretization:1∑

k=−1

βkw′j+k(t) = h−2

1∑k=−1

αkwj+k(t)

+

1∑k=−1

βkgj+k(t)

wj(t) ≈ φ(xj, t); gj(t) = s(xj, t);1∑

k=−1

βk = 1.

Page 7: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 7/35JJ J N I II 7/35

Discretization

Vector Notation:

Bw′(t) = Aw(t) +Bg(t),

A = (aij) = (h−2αj−i)

B = (bij) = (βj−i).

Define:ξk = (−1)

kα−1 + α1, ηk = (−1)

kβ−1 + β1.

Page 8: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 8/35JJ J N I II 8/35

1.1. Order Condition

Let φh be the restriction of the exact solution φ to the grid.Spatial truncation error:

σh(t) = Bφ′h(t)− Aφh(t)−Bg(t).

Truncation error in a point (xj, t) equals:

σh,j(t) = h−2(C0φ + hC1φx + h2C2φxx + h3C3φxxx + ...)|(xj ,t)

Order Condition: The discretization has order q if:

σh = O(hq),

translates to:Ck = O(hq+2−k), k = 0, 1, · · · , q + 2.

Page 9: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 9/35JJ J N I II 9/35

Order Condition

Error coefficients:

C0 = −ξ0, C1 = −ξ1 − uhη0,

Ck =−1

k!(ξk + kuhηk−1 − k(k − 1)εηk−2); k ≥ 2.

where,ξk = (−1)

kα−1 + α1, ηk = (−1)

kβ−1 + β1.

Use the order condition to determine αj and βj.

Page 10: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 10/35JJ J N I II 10/35

2. Examples

Explicit Central Difference

w′j =u

2h(wj−1 − wj+1) +

ε

h2(wj−1 − 2wj + wj+1) + gj,

Implicit Central Difference

1

6(w′j−1 + 4w′j + w′j+1) =

u

2h(wj−1 − wj+1)

h2(wj−1 − 2wj + wj+1) +

1

6(gj−1 + 4gj + gj+1)

Page 11: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 11/35JJ J N I II 11/35

Examples

Define:µ = uh/ε (Peclet Number).

Explicit Adaptive Upwinding

w′j =u

2h(wj−1 − wj+1) +

ε + 0.5uhκ

h2(wj−1 − 2wj + wj+1) + gj,

Where κ is defined as:

κ = max(0, 1− 2/µ).

Page 12: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 12/35JJ J N I II 12/35

Examples

Implicit Adaptive Upwinding

1

2κw′j−1 + (1− 1

2κ)w′j =

u

2h(wj−1 − wj+1)

+ε + 0.5uhκ

h2(wj−1 − 2wj + wj+1)

+1

2κgj−1 + (1− 1

2κ)gj.

Page 13: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 13/35JJ J N I II 13/35

Examples

Peclet Number µ:µ = uh/ε.

Explicit Exponential Fitting

w′j =

1∑k=−1

αkwj+k + gj,

α−1 = uhexp(µ)

exp(µ)− 1, α1 = uh

1

exp(µ)− 1, α0 = −(α1 + α−1).

Page 14: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 14/35JJ J N I II 14/35

Implicit Exponential Fitting

β−1w′j−1 + β0w

′j + β1w

′j+1 =

1∑k=−1

αkwj+k + β−1gj−1 + β0gj + β1gj+1.

where

β−1 =1

2

(exp(µ)

exp(µ)− 1− 1

µ

),

β0 =1

2,

β1 =1

2

(1

µ− 1

exp(µ)− 1

).

Page 15: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 15/35JJ J N I II 15/35

Examples

Compact Schemes:

α−1 = ε +1

2uh− uh(β1 − β−1),

α1 = ε− 1

2uh− uh(β1 − β−1),

α0 = −(α−1 + α1),

β−1 =1

γ(6 + 3µ− µ2),

β0 =1

γ(60− 4µ2),

β1 =1

γ(6− 3µ− µ2)

and γ is a scaling factor given by:

γ = 72− 6µ2.

Page 16: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 16/35JJ J N I II 16/35

3. Stability

Requirement:|| exp(tB−1A)|| ≤ C, for all t > 0.

We can write:

A = V diag(ak)V−1, B = V diag(bk)V

−1,

with ak, bk eigenvalues of A,B respectively. Define global error e(t):

e(t) = φh(t)− w(t), e(t) = V −1e(t)

Discretization error σh(t):

σh(t) = Bφ′h(t)− Aφh(t)−Bg(t), σh(t) = V −1σh(t).

Page 17: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 17/35JJ J N I II 17/35

Stability

The error equation then reads:

bkd

dte(t) = ake(t) + σh(t).

Stability if:Re(ak/bk) ≤ 0 and |ak| + |bk| > 0.

Result: For the three point scheme considered with C0 = C1 = 0, C2 =O(h), and assume that:

h−2|α0| + |β0 −1

2| > 0,

then the stability condition holds iff:

2ah(β1 − β−1) ≥ α0, and α0(1− 2β0) ≥ 0.

Page 18: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 18/35JJ J N I II 18/35

4. Time Integration Aspect

Ode system:Bw′(t) = Aw +Bg(t).

Define:F (t, w) = Aw(t) +Bg(t).

• We use the θ method (with θ = 0.5:

Bwn+1 = Bwn + 0.5τF (tn, wn) + 0.5τF (tn+1, wn+1).

• With Explicit method, there is some amount of ’implicitness’!.

• Stability conditions in general become more stringent in case of implicitdiscretization method.

• For an implicit A-stable ODE method for time stepping, little differencebetween the two methods.

Page 19: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 19/35JJ J N I II 19/35

5. Numerical Computations

Error for Implicit vs Explicit Central Difference

Page 20: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 20/35JJ J N I II 20/35

Implicit vs Explicit Adaptive Upwinding

Page 21: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 21/35JJ J N I II 21/35

Implicit vs Explicit Exponential Fitting

Page 22: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 22/35JJ J N I II 22/35

Implicit vs Explicit

Page 23: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 23/35JJ J N I II 23/35

Implicit vs Explicit Central Difference

Page 24: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 24/35JJ J N I II 24/35

Implicit vs Explicit Adaptive Upwinding

Page 25: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 25/35JJ J N I II 25/35

Implicit vs Explicit Exponential Fitting

Page 26: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 26/35JJ J N I II 26/35

Page 27: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 27/35JJ J N I II 27/35

Page 28: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 28/35JJ J N I II 28/35

Page 29: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 29/35JJ J N I II 29/35

Page 30: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 30/35JJ J N I II 30/35

Page 31: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 31/35JJ J N I II 31/35

Page 32: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 32/35JJ J N I II 32/35

Page 33: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 33/35JJ J N I II 33/35

Page 34: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 34/35JJ J N I II 34/35

Page 35: Implicit Spatial Discretization for · 2008-12-10 · n+1 = Bw n +0:5˝F(t n;w n)+0:5˝F(t n+1;w n+1): With Explicit method, there is some amount of ’implicitness’!. Stability

12

JJ J N I II 35/35JJ J N I II 35/35

6. Conclusion

When do we use Implicit Spatial Discretization?

• To achieve higher order without using wider stencils.

• To reduce the artificial oscillations in the numerical solution.

• Provides extra degrees of freedom for the numerical scheme.

Disadvantages

• Positivity may be lost.

• Stringent conditions for explicit time integration methods.