Top Banner
Implementation of phonon dispersion with LO-TO splitting for polar materials Yung Ting Lee KAIST 2016/11/24
45

Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Jul 03, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Implementation of phonon dispersion with LO-TO splitting for

polar materials

Yung Ting LeeKAIST

2016/11/24

Page 2: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Contents

1. Direct approach for calculating phonon dispersiona. Force constants and dynamical matrixb. Acoustic sum rulesc. Flow chartd. Examples

2. LO-TO splitting for polar systema. Formulab. Born effective charge tensorc. Examples

3. Keywords of phonon dispersion4. Implementation

Page 3: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Phonon

Phonons are vibrations of the atoms in a crystal lattice, and have resonant frequencies in the infrared spectral region. The atoms in a solid are bound to their equilibrium positions by the forces that hold the crystal together. When atoms are displaced from their equilibrium positions, they experience restoring forces, and vibrate at characteristic frequencies. The relationship between frequencies and k is called phonon dispersion .

Phonon's dispersion relation can be obtained directly using the quantum-mechanical approach.

3Phys. Rev. Lett. 48 (1982) 1846.

M. Fox, “Optical Properties of Soilds”, 2nd. Chapter 10.

Page 4: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Methods of calculting phonon dispersion

4

There are three methods to calculate phonon dispersion of solids in the First principle calculation - direct approach, linear response approach, and molecular dynamic approach.

Y. Wang et. al, Comptational Material 2, 16006 (2016).

Page 5: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Phonon / First-principles codes for calculting phonon dispersion

5

Y. Wang et. al, Comptational Material 2, 16006 (2016).

Page 6: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

3D crystal system

6http://www.openmx-square.org/workshop/meeting15/index.html

atom I atom J

direction α →

KIαJß

Page 7: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

7

Page 8: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Acoustic sum rules

8

Page 9: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Flow chart of phonon dispersion

Page 10: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Phonon dispersion of graphene

10

Page 11: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Phonon dispersion of diamond

11

Page 12: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Phonon density of states of diamond

12

Page 13: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Phonon density of states

13

where A(ω) is the eigen-vector of atoms at a freqency ω.

The phonon density of states are broadened by Gaussian function (default FWHM = 10 cm-1)

Page 14: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

LO-TO splitting for polar system

SiC phonon dispersion

Page 15: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Force-constants

15

short-range interaction(analytic part)

long-range interaction(non-analytic part)

where I and J are atomic indexand α and ß are the direction of displacement.

There is an extra polarization effect for the longitudinal optical phonon due to the long-range nature of the Coulomb interaction. This polarization effect results in an additional restoring force between the ions, yielding a higher longitudinal phonon frequency compared to the transverse optical phonon.

Page 16: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Analytic part and non-analytic part of force-constants

16

Y. Wang et. al, Comptational Material 2, 16006 (2016).

analytic part non-analytic part

where I and J are atomic indexand α and ß are the direction of displacement.

Page 17: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

17

(1)

(2)

(3)

(4)

(5)

potential energy

dipole-dipole interaction

electric field

dipole moment

displacementenergy

Born effective charge tensor

electrostatic energy inside a dielectric medium

The general quadratic expression of energy

Page 18: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

18

(6)

(7)

(8)

electrical induction/ electric displacement electric field

electric polarization

Associated with electric polatization, there will be a macroscopic electric field E and an electric displacement D, related by equation (6).

Page 19: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

19

In the absence of free external charges, the Maxwell equations give

or

D, E, and P⊥q vector

In a longitudinal optical mode, the electric polarization P is parallel to q vector.

DLO must vanish.

(13)

(9)

(10)

(11)

(12)

(14)

Page 20: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

20

In the absence of free external charges, the Maxwell equations give

ETO = 0

or

D, E, and P ॥ q vector

In a transverse optical mode, the electric polarization P is perpendicular to q vector.

ETO must vanish.

(15)

(16)

(17)

(18)

(19)

Page 21: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

21

(20)

Combined with eq. (5) and (8), we get eq. (20).

(5)

(8)

Page 22: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

22

(21)

(22)

After substituting eq. (14) into eq. (21), we can obtain eq. (22).

Page 23: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

(23)

(24)

(25)

analytic part of force constants

Force-constants

Page 24: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

(26)

(27)

(28)

(29)

Page 25: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Born effective charge

Page 26: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Born effective charge tensors

sic.scfout

C. Z. Wang, R. Yu, H. Krakauer, Phys. Rev. B, vol. 53, number 9, 5430-5437 (1996).

Page 27: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Keywords for Born effective charge tensors

Page 28: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Plot phonon dispersion - (1)

Page 29: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Plot phonon dispersion - (2)

Page 30: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Phonon dispersion of GaAs crystal (1)

Phonon calculation1. number of atoms = 22. supercell = 4x4x43. LDA4. DIRECT method

GaAs 4x4x4 phonon dispersion without LO-TO splitting GaAs 4x4x4 phonon dispersion with LO-TO splitting

Page 31: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Phonon dispersion of GaAs crystal (2)

CASTEP1. number of atoms in unit cell = 8.2. supercell = 2x2x23. LDA4. DIRECT method

Page 32: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Phonon dispersion of GaAs crystal (3)

OpenMX1. number of atoms in unit cell = 2.2. supercell = 4x4x43. LDA4. DIRECT method

Page 33: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

33

Page 34: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Phonon dispersion of SiC 7x7x7 supercell

34

Page 35: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Keywords for phonon dispersion

Page 36: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

The format of input file (*.dat) - (1)

Page 37: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

The format of input file (*.dat) - (2)

Page 38: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

The format of input file (*.dat) - (3)

Page 39: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

The format of forces (*.FORCE_SETS)

Example : Graphene 9x9x1 supercell

# of atoms within a supercell# of displaced atoms

the first index of displaced atom

atomic forces (x,y,z) with index 1

displacement along a direction (x,y,z)

Fig 1. The phonon dispersion of graphene 9x9x1 supercell39

atomic forces (x,y,z) with index 2

Page 40: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Dielectric constant and Born effective charge tensors

xx xy xz yx yy yz zx zy zz

Example : SiC crystal ( File : sic.bect )

dielectric constantfrom Experiment.BEC tensor of Si atomBEC tensor of C atom

40

Experimental value of Si atom is 2.697.

C. Z. Wang, R. Yu, H. Krakauer, Phys. Rev. B, vol. 53, number 9, 5430-5437 (1996).

Page 41: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Implementation of phonon dispersion

Page 42: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Dynamical matrix

42

Page 43: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

LO-TO splitting - (1)

43

Page 44: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

LO-TO splitting - (2)

44

Page 45: Implementation of phonon dispersion with LO-TO splitting ...t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-YTLee-2016Nov.pdf · M. Fox, “Optical Properties of Soilds”, 2nd. Chapter

Acoustic sum rules

45