Top Banner
Imperial College London © 1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt, G. Kelsall Dept of Chemical Engineering, Imperial College, LONDON SW7 2AZ e: [email protected]
24

Imperial College London ©1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt,

Dec 18, 2015

Download

Documents

Cory Simmons
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Imperial College London ©1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt,

Imperial College London © 1

Enhancing Photoelectrode Performance with Nanoparticulate

Electrocatalysts P. Bumroongsakulsawat, S. Dennison,

K. Hellgardt, G. Kelsall

Dept of Chemical Engineering,Imperial College,

LONDON SW7 2AZ

e: [email protected]

Page 2: Imperial College London ©1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt,

Photoelectrolysis of water

( , )absorptionCB VBSemiconductor h Semiconductor e h

2 22 4 4VBH O h O H

2 22 2 2CBH O e H OH

Requires 1.23 V (equivalent to a photon of wavelength ~1000 nm)

Page 3: Imperial College London ©1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt,

Ef

Energy Requirements for Photoelectrolysis

H+ / H2

O2 / H2O

Thermodynamic Potential of Water: h

e-

h+

e-

Separation between Fermi energy and Conduction band edge

Band Bending

Overpotential for O2 evolution

Page 4: Imperial College London ©1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt,

Candidate Materials

– TiO2: Eg ~ 3.0-3.2 eV (410-385 nm)

– Fe2O3: Eg ~ 2.2 eV (>565 nm)

– WO3: Eg ~ 2.6 eV (475 nm)

Page 5: Imperial College London ©1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt,

Stability of WO3 in aqueous media

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

0 2 4 6 8 10 12 14

pH

Ele

ctro

de

Po

ten

tial

/ V

vs

SH

E

WO3

WO2

W

WO42-

H+/H2O

O2/H2O

Page 6: Imperial College London ©1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt,

Fabrication of WO3 thin films

• From H2WO4:

– “Electrodeposition”:

potential cycling: -0.4 to +0.8 V vs. SCE 1

– “Doctor blading”:

using stabilised H2WO4 sol 2

Both annealed: 15 min at 550°C

1 Kulesza and Faulkner, J Electroanal Chem, 1988, 248, 305

2 Santato et al., J Amer Chem Soc, 2001, 123, 10639

Page 7: Imperial College London ©1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt,

Dark electrochemistry of WO3 (1)

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

-0.25 0.00 0.25 0.50 0.75 1.00 1.25

Potential vs SCE / Volt

cd /

Am

-2

O2/H2O

3 3x xWO xH xe H WO

3 3x xH WO WO H e

Page 8: Imperial College London ©1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt,

Dark electrochemistry of WO3 (2):Impedance (Mott-Schottky)

0.0E+00

2.5E+15

5.0E+15

7.5E+15

1.0E+16

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

Potential vs SCE / Volt

Csc

-2 /

F-2

cm-4

Efb ~ 0.1 V vs. SCE

1M H2SO4

Modulation frequency: 10 kHz

Page 9: Imperial College London ©1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt,

Measured band-edge potentials of WO3

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

0 2 4 6 8 10 12 14

pH

Ele

ctro

de

Po

ten

tial

/ V

vs

NH

E

WO3

WO2

W

WO42-

H+/H2O

O2/H2O

EVB

ECB

Page 10: Imperial College London ©1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt,

Ir/IrO2 Electrodeposition

• Ir:

– From “IrCl3,aq” : E0 = +0.86 V vs NHE 1

– Convert to IrO2 by electrochemical oxidation 2

• IrO2:

– From [IrCl6]3-/oxalate @ pH 10.5/galvanostatic deposition 3

1 Munoz and Lewerenz, J Electrochem Soc, 2009, 156, D1842 Elzanowska et al. Electrochim Acta, 2008, 53, 2706 3 Marzouk, Anal Chem, 2003, 75, 1258

Page 11: Imperial College London ©1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt,

Ir Electrodeposition – Cycle 1

-15.00

-12.50

-10.00

-7.50

-5.00

-2.50

0.00

2.50

-1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25

Potential vs SCE / Volt

cd /

Am

-2

Vitreous carbon electrode:10 mM IrCl3/0.5 M KCl Sweep rate: 0.01 Vs-1 Ir nucleation

Page 12: Imperial College London ©1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt,

Ir Electrodeposition – Selected Cycles

-20.0

-15.0

-10.0

-5.0

0.0

5.0

10.0

-1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25

Potential vs SCE / Volt

cd /

Am

-2

Cycle 1 Cycle 2 Cycle 5

Vitreous Carbon electrode10 mM IrCl3/0.5 M KClSweep rate: 0.01 Vs-1

Page 13: Imperial College London ©1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt,

Ir Electrodeposition – Cycle 5

-30.0

-25.0

-20.0

-15.0

-10.0

-5.0

0.0

5.0

10.0

-1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25

Potential vs qre / Volt

cd /

Am

-2

Vitreous Carbon electrode10 mM IrCl3/0.5 M KClSweep rate: 0.01 Vs-1

3 46 6IrCl e IrCl

0( ) ( )Ir II Ir I Ir

0 ( ) ( )Ir Ir I Ir II

*

22 2H e H

4 36 6IrCl IrCl e

Page 14: Imperial College London ©1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt,

IrO2 Electrodeposition

-2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

-0.25 0.00 0.25 0.50 0.75 1.00 1.25

Potential vs SCE / Volt

cd /

Am

-2

Cycle 1 Cycle 2 Cycle 3 Cycle 4

H2IrCl6 + (COOH)2 (pH 10.5, K2CO3)Sweep rate: 0.01Vs-1

2" ( )" ( ) " ( )"Ir IV COOH Ir III products

2" ( )"Ir III IrO e

Page 15: Imperial College London ©1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt,

Stability of IrO2

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

0 2 4 6 8 10 12 14

pH

Ele

ctro

de

Po

ten

tial

/ V

vs

NH

E

H+/H2O

O2/H2O

IrCl62-

IrCl63-

IrO2

Ir

Page 16: Imperial College London ©1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt,

Electrodeposition Conditions

• Ir:

– Nucleation: 5 ms at -0.90 V vs. SCE

– Deposition: at -0.5 ± 0.05 V vs. SCE

• IrO2:

– Deposition: at +0.80 V vs SCE

(Electrodeposition or electrophoretic deposition?)

• On 5-layer, doctor-bladed WO3

Page 17: Imperial College London ©1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt,

Ir Electrodeposition on WO3

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0 10 20 30 40 50 60 70

t / s

cd /

Am

-2

WO3 electrode:

10 mM IrCl3/0.5 M KCl, pH ~2.5

-0.50V vs SCE for 60 s

Page 18: Imperial College London ©1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt,

Ir: Effect of deposition time

• 100 s: charge equiv. to ~15 monolayers for

growth @ -0.48 V vs SCE

• 60 s: charge equiv. to ~12 monolayers for

growth @ -0.50 V vs SCE

• 0.1 s: ~10 monolayers.

Page 19: Imperial College London ©1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt,

IrO2 Electrodeposition on WO3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 50 100 150 200 250 300 350

t / s

cd /

Am

-2

WO3 electrode:

H2IrCl3/(COOH)2/K2CO3, pH 10.5

+0.80 V vs SCE for 300 s

Page 20: Imperial College London ©1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt,

Effect of IrO2 on WO3 Photoresponse

-0.3

0.0

0.3

0.5

0.8

1.0

1.3

1.5

0.00 0.20 0.40 0.60 0.80 1.00

Potential vs SCE / Volt

cd /

Am

-2

"Bare" WO3 IrO2-coated

O2/H2O

1M H2SO4

Sweep rate: 0.01 Vs-1

Page 21: Imperial College London ©1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt,

Capacitance-Potential: IrO2-coated WO3

0.0E+00

5.0E+14

1.0E+15

1.5E+15

2.0E+15

2.5E+15

3.0E+15

3.5E+15

4.0E+15

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Potential vs SCE / Volt

Csc

-2 /

F-2

cm-4

1M H2SO4

Modulation frequency: 10 kHz

Page 22: Imperial College London ©1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt,

Conclusions

• The electrodeposition of Ir and IrO2 is interesting!

• Deposition of Ir & IrO2 onto WO3 results in loss of photoelectrochemical O2 evolution activity.

• This is due to:

a) irreversible damage of the WO3 (MS data).

b) deposition of excessive quantities of Ir/IrO2 (?)

Page 23: Imperial College London ©1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt,

Future Work

• Determine whether this is this a viable approach:

– Investigate deposition of sub-monolayer Ir/IrO2

– Investigate control of Ir solution species

– Further characterisation of Ir/IrO2 deposits

Page 24: Imperial College London ©1 Enhancing Photoelectrode Performance with Nanoparticulate Electrocatalysts P. Bumroongsakulsawat, S. Dennison, K. Hellgardt,