Top Banner
I.Mirebeau , S.Petit , A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO, Université Paris XI H.Mutka, J.Ollivier, M.Boehm, P.Steffens Institut Laue Langevin, Grenoble A.Sazonov LLB, Aachen University etic structures and anisotropic excitat b 2 Ti 2 O 7 spin liquid
30

I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

Dec 14, 2015

Download

Documents

Reynaldo Menter
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

I.Mirebeau, S.Petit , A. Gukasov, J.Robert,thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay

P.BonvilleDSM/IRAMIS/SPEC, CEA-Saclay

C.DecorseICMMO, Université Paris XI

H.Mutka, J.Ollivier, M.Boehm, P.SteffensInstitut Laue Langevin, Grenoble

A.Sazonov LLB, Aachen University

Magnetic structures and anisotropic excitationsin Tb2Ti2O7 spin liquid

Page 2: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

Tb2Ti2O7: a hot topic

Why is Tb2Ti2O7 (or TTO) so interesting ?

7 Posters at HFM’14Kermarrec Malkin Fennel Hallas KaoSazonovYin

Page 3: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

Tb2Ti2O7: a hot topic

because nobody fully understands it!

TTO

quantum spin iceSpin

liquid

Antiferro-magnetic spin ice

magneto-elastic liquid

Spin Glass

Page 4: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

Tb2Ti2O7: a hot topic

More and more sophisticated experiments

Influence of tiny defects

Coupling with the lattice

In the last 3 years

• Searching for a magnetization plateau : H //111• Probing dispersive excitations

• ½ ½ ½ structure• Competing SRO structures : Spin glass like vs. mesoscopic order

• magneto-elastic mode• Dynamic Jahn-Teller transition and/or interactions between quadrupolar moments

Towards a more realistic description ?

Page 5: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

Mc. Clarthy- Gingras Rev Modern Phys. ( Dipolar Spin ices: The Ising case

R2Ti2O7 pyrochlores R=Dy, Ho Effective interaction Jeff = J+Ddip > 0

Dipolar spin iceAF

FeF3

4in-4out

Spin ice Den Hertog et al Phys. Rev. Lett. (1999)

Bramwell et al Phys. Rev. Lett (2000)

Tb

DyHo

Tb nearby the thresholdQuantum fluctuations at play: « quantum spin ice » Molavian, Gingras, Canals, PRL (2008)Molavian , Clarthy, Gingras arxiv0912.2957Mc. Clarthy- Gingras Rev Progress Physics 77 056501(2014)

What about the Crystal field ?

Page 6: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

The crystal field

Δ = 200 – 300K Ho, Dy spin ices

Δ = 10-20K (Tb)

Tb3+ is a non-Kramers ion

Strong but finite <111> anisotropy

Δ ~ 1.5 meV

=

=

= -

• No exchange fluctuations allowed within the GS doublet

• No intensity scattered by neutrons

Gingras, PRB (2000)Bonville, IM, PRB( 2007) Bertin,Chapuis, JPCM(2012) Zhang, Fritsch, PRB (2014) Klekovina- Malkin J Opt. Phys. (2014)

Cao et al PRL(2009)

Page 7: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

Δ ~ 1.5 meV

= + = +

I α I α

h: molecular field

Splitting of the Ground state doublet

In molecular field approach

Δ ~ 1.5 meV

= =

- =

But =0

dh

Quantum mixing in the GS.

1st order perturbation 0th order perturbation

Simplest case: entangled wave functions

(gjµBh/)2 (0.75/15)22.10-3

D: quantum mixing

gJµB/kB= 1 for Tb !

Page 8: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

Δ ~ 1.5 meV

= + = +

h: molecular field

Splitting of the Ground state doublet

In molecular field approach

Δ ~ 1.5 meV

= =

dh

Quantum mixing in the GS.

1st order perturbation 0th order perturbation

Simplest case: entangled wave functions

Virtual crystal field model

• Very small intensity associated with GS fluctuations (with resp. to CF )

• Spin ice anisotropy: magnetization plateau

Two singlet ground state

• each singlet is non magnetic : no static signal• the transition has a large spectral weight • Jahn-Teller distortion?

Molavian, Gingras, Canals PRL(2007)Molavian, McClarthy, Gingras arxiv(2009)

Bonville et al PRB(2011), PRB (2014)

Page 9: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

Searching for a magnetization plateauUsing Magnetization, susceptibility, MuSR : a controversial situation

low field anomalies of the susceptibility:

MuSR Baker PRB (2012)

Legl et al PRL (2012)

No plateau in the isothermal magnetization

cross over regime in the dynamics

Yin et al PRL(2013)

Lhotel et al PRB-RC (2012)

Spin glass-like freezing ? TF~200-400 mKFritsch , PRB(2014)

Page 10: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

Searching for a magnetization plateauUsing neutrons : magnetic structure for H//111

• Exclude all-in all out structure

• Gradual reorientation of the Tb moments in the Kagome plane (keeping 1in- 3 out) without Kagome ice structure

See poster A. Sazonov

Page 11: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

Searching for a magnetization plateau

• No evidence for the 1/3 plateau at ~2µB expected at very small fields (down to 80mK)

• quantitative agreement with MF model assuming a dynamical JT distortion:

• 4 moment values and angles• M(H) for H//100, 111, 110

Field Irreversibilities

Spin glass like freezing?

A. Sazonov et al PRB(2013)

D=0 no mixing

• see poster A. Sazonov

Page 12: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

Spin fluctuations at very low temperatureUsing unpolarized neutrons

2 components in the neutron cross section• elastic (dominant) • inelastic (low energy)

elastic

• Pinch points• diffuse maxima at ½ ½ ½ positions

inelastic

• becomes structured at low T• well accounted for by 2 singlet model + anisotropic

exchange

D=0.25K

See also:

Takatsu et al. JPCM (2011)

Fritsch et al PRB(2013)

Static character not reproduced by the 2 singlet model

Page 13: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

diffuse scatteringb = -0.13T/µB ; DQ=0.25K

Phase diagram

P. Bonville et al Phys. Rev. B (2011)

3d-map Experiment

Simulation6T2 ( LLB)

The main features of the diffuse scattering are reproduced

Simulation with• anisotropic exchange• dipolar interactions• CF• JT distortion along equivalent 100,

010, 001 cubic axes.( preserves the overall cubic symmetry)

• Dynamical JT (average Structure factors and not intensities)

Energy integrated intensity

Page 14: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

- 50 mK - 50 mK

S.Petit & al, PRB 86 (2012) T.Fennell & al, Science 326 (2009)

Q dependence of the elastic scattering • Pinch points in both compounds: Coulomb phase

strong spectral weight at Q=0 no spectral weight at Q=0 ½ ½ ½ maxima : AF correlations

Page 15: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

Analysis of the pinch points Strongly anisotropic correlations of algebric nature

conservation law in TTO spin liquid analogous to the ice rules

What are the spin component involved?

S.Guitteny & al, PRL 111 (2013)

T. Fennell et al PRL(2012)

Page 16: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

Polarization analysisFennell Science (2009) : Ho2Ti2O7

PRL (2013) Tb2Ti2O7

Longitudinal polarimetry separates spin components

xZ //110

x// Q

1

2

3 4

1’

2’

Neutron cross section

• Correlations along Q (or x)• between spin components M┴Q

Ho2Ti2O7

NSF: correlations « up-down » 1-1’ or 2-2’: Weak (2 Spins, between T)

SF: correlations « 2in-2 out » 1-2-3-4: Strong (4 spins, in a T)

Q

z

yMz

My

neutron polarization P// Z

• Non spin flip: N+ <MZ.Mz>• Spin Flip <My.My>

Page 17: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

Polarization +energy analysisFennell Science (2009) : Ho2Ti2O7

PRL (2013) Tb2Ti2O7

Q

z

yMz

Myx

Z //110

x// Q

1

2

3 4

1’

2’

Tb2Ti2O7 Look at the dispersion

Mz: « up-down » correlations: relaxing (Quasi-E)My: « 2 in-2out » correlations : dispersing (Inel.)

T=50 mK

Longitudinal polarimetry separates spin components

Neutron cross section

• Correlations along Q (or x)• between spin components M┴Q

neutron polarization P// Z

• Non spin flip: N+ <MZ.Mz>• Spin Flip <My.My>

Page 18: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

18

Low energy excitations

• In all directions • Quasi-élastic• Strong fluctuations

My• Along (h,h,h)

• quasi-élastic• along (h,h,2-h) et (h,h,0)

• propagating excitation• no gap (Δres = 0,07meV)• Disperses up to 0,3 meV• intensity varies like 1/ω

First observation of a dispersive excitation in fluctuating disordered medium

Mz

S. Guitteny et al PRL(2013)

Page 19: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

Nature of the static SRO? the ½ ½ ½ order

½ ½ ½ diffuse maxima• Short range ~8-10 A• below ~0.4K• Vanish in a small field ( ~200G)

Fennel PRL (2012)Fristch PRB(2012)Petit PRB (2012)

In single crystals

In powders½ ½ ½ Mesoscopic structure• Over 30-50A• Associated with Cp anomaly• tuned by minute defects in Tb content

Taniguchi PRB RC(2011)

Short range vs. mesoscopic order

See also poster E. Kermarrec

Page 20: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

powder samples Tb2+xTi2-xO7+y

½ ½ ½ ½ ½ 3/2

½ ½ 5/2

3/2 3/2 1/2

X=0

Mesoscopic structure for x=0 and x=0.01

Difference pattern: I(50 mk)- I(1K)

T=50mK

N

X=0

exp: P. Dalmas de Réotier 2 q (deg)

Neu

tron

cou

nts

Page 21: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

Symmetry analysis 2 orbits with no common IR

site 1

Sites 2-4

N site1 0 0 0 2 ¾ ¼ ½ 3 ¼ ½ ¾4 ½ ¾ ¼

space group Fd-3M, K= ½ ½ ½

Champion, PRB (2001) Stewart, Wills JPCM(2004) Gd2Ti2O7

No way to build a strong ½ ½ ½ peak for Ising spins!

Needs to break either Ising anisotropy or cubic symmetry

K // local <111> axis no intensity at ½ ½ ½

• No vectors of the IR along the local <111> axes• Contributions to ½ ½ ½ cancel by symmetry

Systematic search of magnetic structures • 1T • cfc translations (cubic cell : a)• K= ½ ½ ½ (magnetic unit cell: 2a)

Page 22: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

The best structures (x=0)moments remain close to local <111>axes (3-10 deg)

M=1.9(4) µB/Tb; Lc =60 A (Y=1.4)

X=0X=0

Correlation length ~30 -50 A

« Monopole layered structure » « AF -Ordered spin ice »

Page 23: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

Ferrimagnetic piling of SI Tetrahedra

moments remain close to local <111>axes (<10 degs)

Fritsch PRB (2012)

The best structures (x=0)

« AF -Ordered spin ice » « Monopole layered structure »

AF packed OSI cubic cells,

MZ

Z//001

S. Guitteny (thesis) derived from Tb2Sn2O7 I. M et al PRL (2005)

Page 24: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

Ferrimagnetic piling of SI Tetrahedra separated by monopole layers

moments remain close to local <111>axes (<10 degs)

Fritsch PRB (2012)

The best structures (x=0)

« AF -Ordered spin ice » « Monopole layered structure »

AF packed OSI cubic cells, separated by SI tetrahedra with M

Full of monopoles, but compatible with a distortion No monopoles, but symmetry breaking at each cubic cell no possible LRO?

MZMZ

Z//001

Page 25: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

Calculated diffuse scatteringIn a single crystal, correlation length reduced to 2 cubic cells

h, h, 0

0, 0

, l

0, 0

, l

h, h, 0

« Monopole layered structure » « AF -Ordered spin ice »

Experiments

Petit PRB (2013)Fennel PRL (2013)Fritsch PRB(2013)

1

2

3

4

1 2 3 41 2 3 4

1

2

3

4

Page 26: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

The ½ ½ ½ order: summary• ½ ½ ½ order cannot propagate without breaking the cubic symmetry

• different structures and/or K orientations may compete (in space, time) yielding:

• SRO (single crystal) • mesoscopic orders (powders, tuned by x)• Spin glass like irreversibilities : Yin (2013), Fritsch PRB (2014) , Lhotel (2013)

• 2 physical mechanisms at play for the magnetic excitations• Relaxation (quasielastic)• Dispersive excitations

• Analog to the double dynamics in SP particles or quantum molecular magnets

Magneto-elastic modes as a switching mechanism?

Quasielastic or slow relaxations (thermally activated ,QT)

Inelastic modes

Page 27: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

Probing the magneto-elastic coupling Interaction between 1st excited CF doublet and acoustic phonon branch

Guitteny PRL(2013)

see also:Fennel PRL(2013)this conf. M. Ruminy : next talk

Other probes• pressure induced magnetic orderIM et al Nature 2002, PRL(2004)

•Elastic constantsKlekovina-Malkin J. Phys. 2011, J. Opt. Phys. 2014

•Thermal conductivityLi et al PRB(2013)

Page 28: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

Summary: what is new in TTO?• Quantum mixing in the GS doublet due to quadrupolar order: a necessary ingredient

• JT distortion « exchange » int. between quadrupolar moments

• Magnetoelastic coupling

• Non-Kramers character is crucial

• First observation of dispersive anisotropic excitations in a fluctuating disordered medium Two types of dynamics : relaxation, excitations

• Competing SI correlations with K=½ ½ ½• Not compatible with cubic symmetry• Tuned by off-stoechiometries• With different time and length scales• Associated with glassy behaviour

Gehring-Gehring (1985) Savary-Balents PRL(2012) Lee-Onoda-Balents PRB(2012)

MF

poster Malkin

Page 29: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

x=0.01

coexistence of LRO and mesoscopic orders

• Mesoscopic: M= 1.3µB/Tb

• LRO: M=0.3 µB/Tb

Page 30: I.Mirebeau, S.Petit, A. Gukasov, J.Robert, thesis S.Guitteny, Laboratoire Léon Brillouin, CEA-Saclay P.Bonville DSM/IRAMIS/SPEC, CEA-Saclay C.Decorse ICMMO,

I.M et al Nature (2002)

Under pressure : a phase with larger unit cell is also stabilized

Pressure induced structures