Top Banner
Imaging transmission of nanostructures in a high- mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider Local electron transport Diffusive/ballistic transport Classical/quantum phenomena
48

Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Mar 28, 2015

Download

Documents

Gisselle Pennix
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Imaging transmission of nanostructures in a high-mobility heterostructure

Aleksey KozikovClemens RösslerThomas IhnKlaus Ensslin

C. ReichlW. Wegscheider

Local electron transport

• Diffusive/ballistic transport

• Classical/quantum phenomena

Page 2: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Motivation

Ultra high-mobility:

• lp >> L Ballistic transport: electron trajectories are straight lines

• Modulation doping technique Small-angle scattering:

electron trajectories are wavy lines

How does small-angle scattering affect transport?

Page 3: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Motivation

QPC

2DEG

x

y

Conductance, G

M. Topinka et al. Nature 410, 183-186 (2001)

Page 4: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Motivation

300 K115 K0.24 K

Local relocation of charge between donor sites

Scannell et al. PRB 85, 195319 (2012)

Page 5: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Motivation

Wilkinson et al. Nature 380, 608 (1996)

Conductance through a tunneling diode

Page 6: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

MotivationExperimental data Filtered data

Crook et al. PRL 91, 246803 (2003)

Page 7: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

MotivationExperimental data TheoryFiltered data

No one-to-one correspondenceAoki et al. PRL 108, 136804 (2012)

Page 8: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Sample

n = 1.2 × 1015 m-2

EF = 4 meVλF = 72 nmµ = 850 m2/Vslp = 49 µmDStadium = 3 µm

Excellent wafers:C. ReichlW. WegscheiderETH Zurich

Golden top gates

QPC Ballisticstadium

2DEG 1 µm

Page 9: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Quantum point contact

Top gates

2DEG

Electron flowD. A. Wharam et al., 1988B. J. van Wees et al., 1988

-0.8 -0.6 -0.40

2

4

6

Con

duct

ance

, (2

e2 /h)

Gate voltage, (V)

Page 10: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

EF

Energy TipTop gates

2DEG

SGM technique

Backscattering effect

n

nTh

eG

22

Landauer-Büttiker theory of transport

d

D. A. Wharam et al., 1988B. J. van Wees et al., 1988

-0.8 -0.6 -0.40

2

4

6

Con

duct

ance

, (2

e2 /h)

Gate voltage, (V)

Page 11: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Electron backscattering through the QPC

3rd plateau

Vtip= -6.0 Vd = 70 nm

1 µm

xy

Differential conductance, dG/dx

arXiv:1206.1371

Page 12: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

• Gate voltage dependence• Tip voltage dependence• Tip-surface distance dependence• Temperature dependence• Source-drain bias dependence• QPC asymmetry dependence• Magnetic field dependence: backscattering is

essential

o Strongly varying interference fringe spacing (50%)

0.5 µm

X (µm)

y (µ

m)

Scanning gate microscopy on a QPC

arXiv:1206.1371Small-angle scattering

Page 13: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Vtip= -8.0 V

Vstadium= -0.5 V

Scanning gate microscopy on a stadiumdG/dx

X (µm)

1 µmy

(µm

)

Page 14: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Scanning gate microscopy on a stadiumdG/dx

Vtip= -8.0 V

Vstadium= -0.8 V

X (µm)

1 µmy

(µm

)

Page 15: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Scanning gate microscopy on a stadiumdG/dx

Vtip= -8.0 V

Vstadium= -2.0 V

X (µm)

1 µmy

(µm

)

Page 16: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Vtip= -8.0 V Vstadium= -0.8 V

Scanning gate microscopy on a stadiumG (2e2/h)dG/dx

1 µm 1 µm

Page 17: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

500 nm

Scanning gate microscopy on a stadiumdG/dx

Page 18: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Scanning gate microscopy on a stadium

dG/dx

G (2e2/h)dG/dx

Page 19: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

a

b

c

d

Qualitative model

Page 20: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

a

b

c

d

𝐺𝑇𝑜𝑡𝑎𝑙=1/𝑅𝑇𝑜𝑡𝑎𝑙

Qualitative model

𝑅  𝑇𝑜𝑡𝑎𝑙=𝑅  𝑎∨¿𝑅  𝑏+𝑅  𝑐+𝑅  𝑑+𝑅  𝑐𝑟

𝑅  𝑇𝑜𝑡𝑎𝑙=(𝑒2

h𝑎+

𝑒2

h𝑏)

−1

+(𝑒2

h𝑐)

−1

+¿

+(𝑒2

h𝑑)

− 1

+𝑅𝑐𝑟

contact resistance

Rcr

Page 21: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Assumptions: Rcr= 0, d = ∞c = 25, W = 0.9 µm, RTip=0.5 µm

𝐺𝑇𝑜𝑡𝑎𝑙=2𝑒2

h(𝑎+𝑏)𝑐𝑎+𝑏+𝑐

G (2e2/h)Qualitative model

Page 22: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

µ

Dashed lines are guides to the eye

Model vs. experiment

Model G (2e2/h) G (2e2/h)Experiment

Page 23: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

1D profiles along red lines shown in the previous slide

Model vs. experiment

Page 24: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Magnetic field dependence

Vtip= -8.0 V

Vcgate= -1.0 V

B = 0 mT

dG/dx

X (µm)

1 µmy

(µm

)

Page 25: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Vtip= -8.0 V

Vcgate= -1.0 V

B = 50 mT

Magnetic field dependencedG/dx

X (µm)

1 µmy

(µm

)

Page 26: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Magnetic field dependence

Vtip= -8.0 V

Vcgate= -1.0 V

B = 100 mT

dG/dx

X (µm)

1 µmy

(µm

)

Page 27: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Vtip= -8.0 V

Vcgate= -1.0 V

B = 200 mT

Magnetic field dependencedG/dx

X (µm)

1 µmy

(µm

)

Page 28: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Magnetic field dependence

Vtip= -8.0 V

Vcgate= -1.0 V

B = 300 mT

dG/dx

X (µm)

1 µmy

(µm

)

Page 29: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Magnetic field dependence

Vtip= -8.0 V

Vcgate= -1.0 V

B = 500 mT

dG/dx

X (µm)

1 µmy

(µm

)

Page 30: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Magnetic field dependence

Vtip= -8.0 V

Vcgate= -1.0 V

B = 0 mT

dG/dx

X (µm)

1 µmy

(µm

)

Page 31: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Magnetic field dependence

Dr. Dietmar Weinmann, Strasbourg, France

dG/dx

dG/dx

Page 32: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Summary (experimental observations)

QPC:

• Backscattering effect

• Interference effect

Ballistic stadium:

• Two fringe patterns

• Conductance fluctuations

1 µm500 nm

1 µm

Page 33: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

• Center of the stadium

• Positions of the lens-shaped regions

• Magnetic field dependence

Summary (experimental features not covered by the model)

Page 34: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

THANK YOU

Page 35: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Numerical simulations (top panel) vs. experiment (bottom panel)

RTip=0.05 µm RTip=0.5 µm RTip=1 µm

Vtip = - 8 VVtip = - 6 VVtip = - 4 V

G ≈ 17× 2e2/h without the tip

Page 36: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Features not explained by simulations

• A region of reduced conductance in the center of the stadium at low tip biases (experiment)

• Positions of the lens-shaped regions:

inside the stadium in the experiment

in the centers of the constrictions in the simulations

Page 37: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Numerical simulations (B = 0 mT):same as in the previous slide, but the color scales are different

RTip=0.05 µm RTip=0.5 µm

RTip=1 µm

Page 38: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

SGM technique

Gating effect

μS μD

EnergyTop gates

2DEG

Tip

-0.8 -0.7 -0.6 -0.5 -0.40

1

2

3

4

5

6

7

Con

duct

ance

, G

(2e

2 /h)

Gate voltage, Vg (V)

Tip-inducedpotential

D. A. Wharam et al., 1988B. J. van Wees et al., 1988

Page 39: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Influence of the tip on the conductance

-0.9 -0.8 -0.7 -0.60

1

2

3 V

Tip = 0 V, B = 0 mT

VTip

= -6 V, B = 0 mT

VTip

= -6 V, B = 25 mT

G (

2e2 /h

)

Vg (V)

(a)

Central branch Side branchOff branch

-0.9 -0.8 -0.7 -0.60

1

2

3

G (

2e2 /h

)

Vg (V)

(c)

-0.9 -0.8 -0.7 -0.60

1

2

3

G (

2e2 /h

)

Vg (V)

(b)

2e2/h

Page 40: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Scanning inside the stadium

Vtip=-8.0 V

Vcgate=-1.0 VVQPC=0 V

Page 41: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Scanning inside the stadium

Vcgate=-1.0 VVQPC=-0.38 VB=0 mT

Vtip=-8.0 V

Page 42: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Profiles

Vtip=-8.0 V

Vcgate=-1.0 V

B=0 mT

A B

A

B

Left QPC is biased, 3 modes. This is the case only in this slide.

Page 43: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Profiles

Vtip=-8.0 V

Vcgate=-1.0 V

B=300 mT

I (nA)

A B

A

B

Page 44: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Profiles

Vtip=-8.0 V

Vcgate=-1.0 V

B=500 mT

I (nA)

A

B

A B

Page 45: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Magnetoresistance measurements

0 1 2 3 4 5

0

5

10

15

20

25

30

= 5 = 4

= 3

= 2

R (

kOhm

)

B (T)

= 1

= 6

Page 46: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Magnetoresistance measurements

0 40 80 120 160 200 240 280 320

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-2.5 V

-2,0 V

-1,5 V-1,2 V-1,0 V-0,8 V

-0,5 V

R (

kOhm

)

B (mT)

0 V

B (mT) rc (um)

120 0.48

100 0.58

80 0.72

60 0.96

40 1.44

10 5.75

Stadiumvoltage

Page 47: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Magnetic focusing

80 mT100 mT

50 mTB (mT) rc (um)

120 0.48

100 0.58

80 0.72

60 0.96

40 1.44

10 5.75

Page 48: Imaging transmission of nanostructures in a high-mobility heterostructure Aleksey Kozikov Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider.

Summary (experimental observations)Scanning gate microscopy on a quantum point contact:

• Imaging electron backscattering• Observation of branches and interference fringes• Detailed investigation of the branching behaviour• Strongly varying interference fringe spacing

Scanning gate microscopy on a ballistic stadium:

• Two fringe pattern close to the constrictions• Measurements at high magnetic fields• Proposed model explains some of the observed

features, but not all of them