Top Banner
Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE:http:// vestige.lmsal.com ISAS - 4 Feb. 2003
48

Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

Dec 13, 2015

Download

Documents

Blaise Powell
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

Imaging Solar Coronal Structure With TRACE

Leon Golub, SAO

TRACE:http://vestige.lmsal.comTRACE:http://vestige.lmsal.com

ISAS - 4 Feb. 2003

Page 2: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

The SAO Solar-Stellar X-ray Group

• Leon Golub• Jay Bookbinder• Ed DeLuca• Mark Weber• Joe Boyd• Paul Hamilton• Dan Seaton• With results from A. Van Ballegooijen, A. Winebarger

and H. Warren

http://hea-www.harvard.edu/SSXG/http://hea-www.harvard.edu/SSXG/

Page 3: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

The Major Coronal Physics Problems

1. Why is the corona hot?

2. Why is the corona structured?

3. Why is the corona dynamic & unstable?

Emergence of B into the atmosphere,

and response to B.

Page 4: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

Why Use X-rays to Observe Corona?

Page 5: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

Heating & Dynamics in ARs

TRACE sees four (or possibly only three)distinct processes in active regions:

1. Steady outflows in long, cool structures. ◄

2. Transient loop brightenings in emergingflux areas. Also hot & cool material intertwined –May or may not be related to TLBs.3. Steady heating of hot loops (moss). ◄4. Flare-like events at QSLs (or may be coolingevents predicted by 3.).

Page 6: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

Examples of all four

phenomena

Page 7: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

Another example of flows

Page 8: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

11

TRACE Active Region Observations are not Consistent With Hydrostatic Model

Figure from Aschwanden et al. 2000

Page 9: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

12

Non-HS Loops are ubiquitous

courtesy H. Warren

Page 10: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

Partial Listing of Recent Papers About Non-Hydrostatic Loops

• Lenz etal 1999, ApJ, 517, L155.• Aschwanden etal 2000, ApJ, 531,

1129.• Winebarger etal 2001, ApJ, 553,

L81.• Schmelz etal 2001, ApJ, 556, 896.• Chae etal 2002, ApJ, 567, L159.• Testa etal 2002. ApJ, 580, in press.• Martens etal 2002, ApJ, 577, L115.• Schmelz 2002, ApJ, 578, L161.• Aschwanden 2002 ,ApJ, 580, L79.• Warren etal 2003, ApJ, submitted.

• Small gradient in filter ratio, high n. • Multithread model (a la Peres etal 1994, ApJ

422, 412), footpoint heating.• Flows and transient events in non-hydrostatic

loops.• DEM spread → const. filter ratio.• More passbands may help.• Large range in thread T for some loops. • Full DEM need at each point.

• Grad T along loops w/flat filter ratio• Contra Martens.• Repeated heating episodes.

Page 11: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

What Needs to be Explained?

• 1. 195A/173A ratio is flat.

• 2. Emission extends too high for hydrostatic loop (this is debated, though).

• 3. Loop density is high by an order of magnitude.

• 4. Apparent flows (and some Doppler shifts measured).

Page 12: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

Active Region 8536

Page 13: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

How isothermal are these loops?

Page 14: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

17

SUMER Velocities

Page 15: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

Symmetric vs. Asymmetric Heating

Page 16: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.
Page 17: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

Static vs. Flow Model

Winebarger etal ApJL (2001)Winebarger etal ApJL (2001)

Page 18: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

High-Conductance Model withAsymmetric Heating

Page 19: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

The Effect of High Conductivity

Page 20: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

Footpoints in Transient Heating

1. Initial energyrelease alongcurrent sheet(“spotty”)

2. Footpooint brightening.

3. Evaporation,then post-flareloops.

Page 21: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.
Page 22: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.
Page 23: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

Comparison: Evaporative Model vs.TRACE Obs.

Page 24: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.
Page 25: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.
Page 26: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

Moss as TR of Hot Loops

Page 27: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.
Page 28: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.
Page 29: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

Heating Shut-off vs. Observations

Page 30: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

Hot Material in the Corona

Mg XII Ly-αsuperposed onFe X (log T =6.9 and 6.0)

Consistent with RHESSIdetection of non-thermalelectrons in “quiescent”active regions.

Page 31: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

END PRESENTATION

Page 32: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

March 17, 2000 M1.1: TRACE 1600 Å Movie

Warren & Warshall,ApJL (2001)Warren & Warshall,ApJL (2001)

Page 33: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

March 17, 2000 M1.1: TRACE 1600 Å Images

Page 34: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

March 17, 2000 M1.1: TRACE 1600 Å Light Curves

Page 35: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

TRACE Footpoint vs. BATSE HXR

→HESSI!

Page 36: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

The Solar-B Mission

Page 37: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

The Solar-B Instrument Complement

1. Solar Optical Telescope with Focal Plane Package (FPP)- 0.5m Cassegrain, 480-650nm- VMG, Spectrograph- FOV 164X164 arcsec

2. EUV Imaging Spectrograph (EIS)- Stigmatic, 180-204, 240-290Å- FOV 6.0X8.5 arcmin

3. X-ray Telescope (XRT)- 2-60Å- 1 arcsec pixel- FOV 34X34 arcmin

Page 38: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

XRT vs. SXT Comparison

1. Higher spatial resolution: 1.0” vs. 2.5”

2. Higher data rate: 512kB continuous.

3. Ten focal plane analysis filters.

4. Extended low-T and high-T response.

5. FIFO buffer for flare-mode obs.

Page 39: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

October 24, 2001 XRT CDR Overview/Systems* P. Cheimets-1

Solar-B XRT Flight Design

Front Door andHinge Assembly

Electrical Box

Ascent Vent2 places

Graphite Tube Assembly

Camera

Feed-ThruElectrical

Page 40: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

65

Science Themes

• Plasma Dynamics• Thermal Structure and Stability• The Onset of Large Scale Instabilities• Non-Solar Objects

Page 41: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

66

Plasma Dynamics

• Reconnection– loop-loop interaction

– flux emergence

– nano-flares

– AR jets

– macro-spicular jets

– filament eruption

Page 42: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

67

Plasma Dynamics• Waves

– origin of high speed wind

– tube waves

– coronal seismology

Figures from Nakariakov et al. (1999): decaying loop oscillations seen in TRACE can be used to estimate the coronal dissipation coefficient.

Re ~ 6 x 105 or Rm ~ 3 x 105 , about 8 orders of magnitude less than classical values.

Page 43: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

68

Thermal Structure/Stability

• Physical Properties– Te, ne, EM

– energetics

– variability timescales

• Multithermal Structure– steady loops

– filaments

Page 44: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

69

Onset of Large Scale Instabilities

• Emerging Flux Region– twisting/untwisting

– reconnection

• delta Spots– current sheets

– topology changes

• Active Filaments– Te, ne

– local heating

Page 45: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

70

Non-Solar Objects

• Jupiter

– S VII @ 198

• Nearby RS Cvns

• Galaxy Cluster Halos

• Comets

• Any EUVE source within 1 deg of Sun

Page 46: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

Science Drivers I: Spatial Scales• “Global” MHD Scales

– Active Regions; – granulation scales

• Transverse scales

n

B and j

• Reconnection sites– location– size– dynamics

105 km

103 km

101 - 103 km

<10 km

<10 km

RAM discoveryspace

Page 47: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

Science Drivers II: Time Scales• Loop Alfven time

• Sound speed vs. loop length

• Ion formation times

• Plasma instability times

• Transverse motions

• Surface B evolution times

• ~10 sec

• ~100 sec

• ~1 - 10 sec

• ~10 - 100 sec

• 1 - 100 sec

• minutes - months

Page 48: Imaging Solar Coronal Structure With TRACE Leon Golub, SAO TRACE: ISAS - 4 Feb. 2003.

Optics Metric