Top Banner
ECE/OPTI533 Digital Image Processing class notes 256 Dr. Robert A. Schowengerdt 2003 IMAGE NOISE II PHOTOELECTRONIC NOISE • Frame averaging If available, average N frames of same object If noise is independent frame-to-frame, variance will be reduced by Requires multiple, co-registered frames What will happen if the frames are not co-registered? σ η 2 N
22

IMAGE NOISE II - University of Arizonadial/ece533/notes13.pdfECE/OPTI533 Digital Image Processing class notes 256 Dr. Robert A. Schowengerdt 2003 IMAGE NOISE II PHOTOELECTRONIC NOISE

May 31, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: IMAGE NOISE II - University of Arizonadial/ece533/notes13.pdfECE/OPTI533 Digital Image Processing class notes 256 Dr. Robert A. Schowengerdt 2003 IMAGE NOISE II PHOTOELECTRONIC NOISE

ECE/OPTI533 Digital Image Processing class notes 256 Dr. Robert A. Schowengerdt 2003

IMAGE NOISE IIPHOTOELECTRONIC NOISE

• Frame averaging

If available, average N frames of same object

If noise is independent frame-to-frame, variance will be reduced by

Requires multiple, co-registered frames

What will happen if the frames are not co-registered?

ση2 N⁄

Page 2: IMAGE NOISE II - University of Arizonadial/ece533/notes13.pdfECE/OPTI533 Digital Image Processing class notes 256 Dr. Robert A. Schowengerdt 2003 IMAGE NOISE II PHOTOELECTRONIC NOISE

ECE/OPTI533 Digital Image Processing class notes 257 Dr. Robert A. Schowengerdt 2003

IMAGE NOISE IIsimulation example of frame averaging

N = 1σbackground = 19.86

σbackground = 13.98N = 2

σbackground = 11.47N = 3

σbackground = 9.92N = 4

Page 3: IMAGE NOISE II - University of Arizonadial/ece533/notes13.pdfECE/OPTI533 Digital Image Processing class notes 256 Dr. Robert A. Schowengerdt 2003 IMAGE NOISE II PHOTOELECTRONIC NOISE

ECE/OPTI533 Digital Image Processing class notes 258 Dr. Robert A. Schowengerdt 2003

IMAGE NOISE II• Low-pass smoothing

Reduces high-frequency noise

Smooths image

Set filter cutoff at about ρc ρc SNR 1==

10-4

10-3

10-2

10-1

100

101

102

103

0 0.1 0.2 0.3 0.4 0.5

frequency domain profile - noise image

poweramplitude

pow

er o

r am

plit

ude

spatial frequency (cycles/pixel)

Page 4: IMAGE NOISE II - University of Arizonadial/ece533/notes13.pdfECE/OPTI533 Digital Image Processing class notes 256 Dr. Robert A. Schowengerdt 2003 IMAGE NOISE II PHOTOELECTRONIC NOISE

ECE/OPTI533 Digital Image Processing class notes 259 Dr. Robert A. Schowengerdt 2003

IMAGE NOISE IIideal low-pass filtered examples

ρc = 0.2

ρc = 0.1

Page 5: IMAGE NOISE II - University of Arizonadial/ece533/notes13.pdfECE/OPTI533 Digital Image Processing class notes 256 Dr. Robert A. Schowengerdt 2003 IMAGE NOISE II PHOTOELECTRONIC NOISE

ECE/OPTI533 Digital Image Processing class notes 260 Dr. Robert A. Schowengerdt 2003

IMAGE NOISE II• Sigma filter

Average selected pixels within moving window

Average only those pixels that are within a threshold difference ∆ from the DN of the center pixel, DNc

One type of “edge-preserving smoothing” algorithm

DNc ∆±

Page 6: IMAGE NOISE II - University of Arizonadial/ece533/notes13.pdfECE/OPTI533 Digital Image Processing class notes 256 Dr. Robert A. Schowengerdt 2003 IMAGE NOISE II PHOTOELECTRONIC NOISE

ECE/OPTI533 Digital Image Processing class notes 261 Dr. Robert A. Schowengerdt 2003

IMAGE NOISE IIsigma filter near edges and lines

c

c

edge feature

5 x 5 window:

row m, column n

row m, column n+1

c

c

crow m, column n+2

line feature

only the green

pixels are

averaged for

the output

pixel c

Page 7: IMAGE NOISE II - University of Arizonadial/ece533/notes13.pdfECE/OPTI533 Digital Image Processing class notes 256 Dr. Robert A. Schowengerdt 2003 IMAGE NOISE II PHOTOELECTRONIC NOISE

ECE/OPTI533 Digital Image Processing class notes 262 Dr. Robert A. Schowengerdt 2003

IMAGE NOISE II• Nagao-Matsuyama filter

Calculate the variance of 9 subwindows within a 5 x 5 moving window

Output pixel is the mean of the subwindow with the lowest variance

The nine subwindows used in the Nagao-Matsuyama filter

c

c c c c

c c cc

Page 8: IMAGE NOISE II - University of Arizonadial/ece533/notes13.pdfECE/OPTI533 Digital Image Processing class notes 256 Dr. Robert A. Schowengerdt 2003 IMAGE NOISE II PHOTOELECTRONIC NOISE

ECE/OPTI533 Digital Image Processing class notes 263 Dr. Robert A. Schowengerdt 2003

IMAGE NOISE IIExample of SAR (Synthetic Aperture Radar) noise filtering

original 5 x 5 LPF

Page 9: IMAGE NOISE II - University of Arizonadial/ece533/notes13.pdfECE/OPTI533 Digital Image Processing class notes 256 Dr. Robert A. Schowengerdt 2003 IMAGE NOISE II PHOTOELECTRONIC NOISE

ECE/OPTI533 Digital Image Processing class notes 264 Dr. Robert A. Schowengerdt 2003

IMAGE NOISE II

original 5 x 5 sigma (k=2)

Page 10: IMAGE NOISE II - University of Arizonadial/ece533/notes13.pdfECE/OPTI533 Digital Image Processing class notes 256 Dr. Robert A. Schowengerdt 2003 IMAGE NOISE II PHOTOELECTRONIC NOISE

ECE/OPTI533 Digital Image Processing class notes 265 Dr. Robert A. Schowengerdt 2003

IMAGE NOISE II

original Nagao-Matsuyama

Page 11: IMAGE NOISE II - University of Arizonadial/ece533/notes13.pdfECE/OPTI533 Digital Image Processing class notes 256 Dr. Robert A. Schowengerdt 2003 IMAGE NOISE II PHOTOELECTRONIC NOISE

ECE/OPTI533 Digital Image Processing class notes 266 Dr. Robert A. Schowengerdt 2003

IMAGE NOISE IIImpulse Noise

• Salt and pepper noise DN is “outlier” relative to neighboring pixel DNs

• Use algorithms that compare test pixel to neighbors

Page 12: IMAGE NOISE II - University of Arizonadial/ece533/notes13.pdfECE/OPTI533 Digital Image Processing class notes 256 Dr. Robert A. Schowengerdt 2003 IMAGE NOISE II PHOTOELECTRONIC NOISE

ECE/OPTI533 Digital Image Processing class notes 267 Dr. Robert A. Schowengerdt 2003

IMAGE NOISE II• Noise cleaning

Set threshold ∆ = kσglobal

Noise Cleaning (pixels)

• DNneighbors = average DN (8-neighbors)

• If ,

• If ,

DN test DNneighbors– ∆> DN test DNneighbors=

DN test DNneighbors– ∆≤ DN test DN test=

Noise Cleaning (lines)

• DNneighbors = average DN (2-neighbors above and below)

• If ,

• If ,

DN test DNneighbors– ∆> DN test DNneighbors=

DN test DNneighbors– ∆≤ DN test DN test=

Page 13: IMAGE NOISE II - University of Arizonadial/ece533/notes13.pdfECE/OPTI533 Digital Image Processing class notes 256 Dr. Robert A. Schowengerdt 2003 IMAGE NOISE II PHOTOELECTRONIC NOISE

ECE/OPTI533 Digital Image Processing class notes 268 Dr. Robert A. Schowengerdt 2003

IMAGE NOISE II• Median filtering

Example of rank filtering

Output DN = median(DNwindow)

• Length of window must be odd

• Sort input DNs within window and select middle DN for output

median filter preserves 1-D edges

-5

0

5

10

15

-8 -6 -4 -2 0 2 4 6 8

input signal

1x3 median

amplit

ude

index

-5

0

5

10

15

-8 -6 -4 -2 0 2 4 6 8

input signal

1x3 LPF

amplit

ude

index

Page 14: IMAGE NOISE II - University of Arizonadial/ece533/notes13.pdfECE/OPTI533 Digital Image Processing class notes 256 Dr. Robert A. Schowengerdt 2003 IMAGE NOISE II PHOTOELECTRONIC NOISE

ECE/OPTI533 Digital Image Processing class notes 269 Dr. Robert A. Schowengerdt 2003

IMAGE NOISE IImedian filter removes impulse noise

-2

0

2

4

6

8

10

12

-8 -6 -4 -2 0 2 4 6 8

input signal

1x5 LPF

amplit

ude

index

-2

0

2

4

6

8

10

12

-8 -6 -4 -2 0 2 4 6 8

input signal

1x5 median

amplit

ude

index

median filter window length should be at least 2 x width impulse noise

-2

0

2

4

6

8

10

12

-8 -6 -4 -2 0 2 4 6 8

input signal

1x3 median

amplit

ude

index

Page 15: IMAGE NOISE II - University of Arizonadial/ece533/notes13.pdfECE/OPTI533 Digital Image Processing class notes 256 Dr. Robert A. Schowengerdt 2003 IMAGE NOISE II PHOTOELECTRONIC NOISE

ECE/OPTI533 Digital Image Processing class notes 270 Dr. Robert A. Schowengerdt 2003

IMAGE NOISE II“separable” 2-D median filter preserves 2-D edges

n

m

n

m

3 x 3 2-D median filter

n

m

3 x 3 2-D separable median filter

1 x 3 median filter along m, then 3 x 1 median filter along n

Page 16: IMAGE NOISE II - University of Arizonadial/ece533/notes13.pdfECE/OPTI533 Digital Image Processing class notes 256 Dr. Robert A. Schowengerdt 2003 IMAGE NOISE II PHOTOELECTRONIC NOISE

ECE/OPTI533 Digital Image Processing class notes 271 Dr. Robert A. Schowengerdt 2003

IMAGE NOISE IIexample bad line removal with median filter (Schowengerdt, 1997)

single noisy partial scanline(Landsat MSS)

after 3 x 1 median filter

Page 17: IMAGE NOISE II - University of Arizonadial/ece533/notes13.pdfECE/OPTI533 Digital Image Processing class notes 256 Dr. Robert A. Schowengerdt 2003 IMAGE NOISE II PHOTOELECTRONIC NOISE

ECE/OPTI533 Digital Image Processing class notes 272 Dr. Robert A. Schowengerdt 2003

IMAGE NOISE IIexample line drop removal

3 x 1 median filter

difference

Page 18: IMAGE NOISE II - University of Arizonadial/ece533/notes13.pdfECE/OPTI533 Digital Image Processing class notes 256 Dr. Robert A. Schowengerdt 2003 IMAGE NOISE II PHOTOELECTRONIC NOISE

ECE/OPTI533 Digital Image Processing class notes 273 Dr. Robert A. Schowengerdt 2003

IMAGE NOISE IIMedian filter doesn’t work as well on photoelectronic noise

3 x 3 median filter

Why isn’t median filter effective for this type of noise?

Page 19: IMAGE NOISE II - University of Arizonadial/ece533/notes13.pdfECE/OPTI533 Digital Image Processing class notes 256 Dr. Robert A. Schowengerdt 2003 IMAGE NOISE II PHOTOELECTRONIC NOISE

ECE/OPTI533 Digital Image Processing class notes 274 Dr. Robert A. Schowengerdt 2003

IMAGE NOISE IISTRUCTURED NOISE

Periodic, stationary

• Periodicity means noise power is isolated into a few frequencies

• Difficulty is in detecting noise power “spikes”

• Visual detection works, but not practical for processing large number of images

Automated periodic, sta-tionary noise removal

• Apply “soft” (Gaussian) high-pass filter to noisy image to remove image components

• Threshold HPF-filtered spectrum to isolate noise frequency components

• Convert thresholded spectrum to 0 (noise) and 1 (non-noise) to create noise amplitude “notch” filter

• Apply filter to noisy image

Page 20: IMAGE NOISE II - University of Arizonadial/ece533/notes13.pdfECE/OPTI533 Digital Image Processing class notes 256 Dr. Robert A. Schowengerdt 2003 IMAGE NOISE II PHOTOELECTRONIC NOISE

ECE/OPTI533 Digital Image Processing class notes 275 Dr. Robert A. Schowengerdt 2003

IMAGE NOISE IIexample Mariner 6 image (Rindfleish et al, 1971)

noisy image power spectrum

noise spikes

noise pattern

filtered image

Page 21: IMAGE NOISE II - University of Arizonadial/ece533/notes13.pdfECE/OPTI533 Digital Image Processing class notes 256 Dr. Robert A. Schowengerdt 2003 IMAGE NOISE II PHOTOELECTRONIC NOISE

ECE/OPTI533 Digital Image Processing class notes 276 Dr. Robert A. Schowengerdt 2003

IMAGE NOISE IIexample automated periodic noise removal (Schowengerdt, 1997)

noise spikes

zeros in filter

high-pass filtered noisy image

notch-filtered image

notch filter

power spectrum

Page 22: IMAGE NOISE II - University of Arizonadial/ece533/notes13.pdfECE/OPTI533 Digital Image Processing class notes 256 Dr. Robert A. Schowengerdt 2003 IMAGE NOISE II PHOTOELECTRONIC NOISE

ECE/OPTI533 Digital Image Processing class notes 277 Dr. Robert A. Schowengerdt 2003

IMAGE NOISE II

• Not really automated filter design

Two parameters must be supplied:

• width of Gaussian HPF

• power spectrum threshold for notch filter