Top Banner
Image Formation I Chapter 1 (Forsyth&Ponce) Cameras Guido Gerig CS 6320 Spring 2015 Acknowledgements: Slides used from Prof. Trevor Darrell, (http://www.eecs.berkeley.edu/~trevor/CS280.html) Some slides modified from Marc Pollefeys, UNC Chapel Hill. Other slides and illustrations from J. Ponce, addendum to course book.
39

Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Feb 03, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Image Formation IChapter 1 (Forsyth&Ponce)

CamerasGuido Gerig

CS 6320 Spring 2015

Acknowledgements: • Slides used from Prof. Trevor Darrell,

(http://www.eecs.berkeley.edu/~trevor/CS280.html)• Some slides modified from Marc Pollefeys, UNC Chapel Hill. Other

slides and illustrations from J. Ponce, addendum to course book.

Page 2: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

GEOMETRIC CAMERA MODELS

• The Intrinsic Parameters of a Camera

• The Extrinsic Parameters of a Camera

• The General Form of the Perspective Projection Equation

• Line Geometry

Reading: Chapter 1.

Page 3: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Images are two-dimensional patterns of brightness values.

They are formed by the projection of 3D objects.

Figure from US Navy Manual of Basic Optics and Optical Instruments, prepared by Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969.

Page 4: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Animal eye:a looonnng time ago.

Pinhole perspective projection: Brunelleschi, XVth Century.Camera obscura: XVIth Century.

Photographic camera:Niepce, 1816.

Page 5: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Camera model

Relation between pixels and rays in space

?

Page 6: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Camera obscura + lens

The camera obscura (Latin for 'dark room') is an optical device that projects an image of its surroundings on a screen (source Wikipedia).

Page 7: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Limits for pinhole cameras

Page 8: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Physical parameters of image formation

• Geometric– Type of projection– Camera pose

• Photometric– Type, direction, intensity of 

light reaching sensor– Surfaces’ reflectance 

properties• Optical

– Sensor’s lens type– focal length, field of view, 

aperture• Sensor

– sampling, etc.

Page 9: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Physical parameters of image formation

• Geometric– Type of projection– Camera pose

• Optical– Sensor’s lens type– focal length, field of view, aperture

• Photometric– Type, direction, intensity of light reaching sensor– Surfaces’ reflectance properties

• Sensor– sampling, etc.

Page 10: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Perspective and art• Use of correct perspective projection indicated in 1stcentury B.C. frescoes

• Skill resurfaces in Renaissance: artists develop systematic methods to determine perspective projection (around 1480‐1515)

Durer, 1525RaphaelK. Grauman

Page 11: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Perspective projection equations

• 3d world mapped to 2d projection in image plane

Forsyth and Ponce

Camera frame

Image plane

Optical axis

Focal length

Scene / world points

Scene point Image coordinates

‘’‘’

Page 12: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Affine projection models: Weak perspective projection

0

'where''

zfm

myymxx

is the magnification.

When the scene distance variation is small compared to its distance from the Camera, m can be taken constant: weak perspective projection.

Page 13: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Affine projection models: Orthographic projection

yyxx

'' When the camera is at a

(roughly constant) distancefrom the scene, take m=1.

Page 14: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Homogeneous coordinatesIs this a linear transformation?

Trick:  add one more coordinate:

homogeneous image coordinates

homogeneous scene coordinates

Converting from homogeneous coordinates

• no—division by z is nonlinear

Slide by Steve Seitz

Page 15: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Perspective Projection Matrix

divide by the third coordinate to convert back to non‐homogeneous coordinates

• Projection is a matrix multiplication using homogeneous coordinates:

'/1

0'/10000100001

fzyx

zyx

f)','(

zyf

zxf

Slide by Steve Seitz

Complete mapping from world points to image pixel positions?

Page 16: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Points at infinity, vanishing points

Points from infinity representrays into camera which are close to the optical axis.

Image source: wikipedia

Page 17: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Perspective projection & calibration• Perspective equations so far in terms of camera’sreference frame….

• Camera’s intrinsic and extrinsic parameters needed to calibrate geometry.

Camera frame

K. Grauman

Page 18: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

The CCD camera

Page 19: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Perspective projection & calibration

Camera frame

Intrinsic:Image coordinates relative to camera  Pixel coordinates

Extrinsic:Camera frame World frame

World frame

World to camera coord. trans. matrix

(4x4)

Perspectiveprojection matrix

(3x4)

Camera to pixel coord. trans. matrix 

(3x3)

=2D

point(3x1)

3Dpoint(4x1)

K. Grauman

Page 20: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Intrinsic parameters:  from idealized world coordinates to pixel values

Forsyth&Ponce

zyfvzxfu

Perspective projection

W. Freeman

Page 21: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Intrinsic parameters

zyvzxu

But “pixels” are in some arbitrary spatial units

W. Freeman

Page 22: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Intrinsic parameters

zyvzxu

Maybe pixels are not square

W. Freeman

Page 23: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Intrinsic parameters

0

0

vzyv

uzxu

We don’t know the origin of our camera pixel coordinates

W. Freeman

Page 24: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Intrinsic parameters

0

0

)sin(

)cot(

vzyv

uzy

zxu

May be skew between camera pixel axes

v

u

v

u

vuvuuvv

)cot()cos()sin(

W. Freeman

Page 25: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

pz

p C (K) 1

Intrinsic parameters, homogeneous coordinates

0

0

)sin(

)cot(

vzyv

uzy

zxu

1000

100)sin(

0

)cot(1

10

0

zyx

v

u

zvu

Using homogenous coordinates,we can write this as:

or:

In camera‐based coords

In pixels

W. Freeman

Page 26: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Perspective projection & calibration

Camera frame

Intrinsic:Image coordinates relative to camera  Pixel coordinates

Extrinsic:Camera frame World frame

World frame

World to camera coord. trans. matrix

(4x4)

Perspectiveprojection matrix

(3x4)

Camera to pixel coord. trans. matrix 

(3x3)

=2D

point(3x1)

3Dpoint(4x1)

K. Grauman

Page 27: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Coordinate Changes: Pure Translations

OBP = OBOA + OAP , BP = AP + BOA

Page 28: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Coordinate Changes: Pure Rotations

),,(.........

AB

AB

AB

BABABA

BABABA

BABABABA R kji

kkkjkijkjjjiikijii

A

BA

BA

B kji

TB

A

TB

A

TB

A

kji

Page 29: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Coordinate Changes: Rotations about the k Axis

1000cossin0sincos

RBA

Page 30: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

A rotation matrix is characterized by the following properties:

• Its inverse is equal to its transpose, and

• its determinant is equal to 1.

Or equivalently:

• Its rows (or columns) form a right-handedorthonormal coordinate system.

Page 31: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Coordinate Changes: Pure Rotations

PRP

zyx

zyx

OP

ABA

B

B

B

B

BBBA

A

A

AAA

kjikji

Page 32: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Coordinate Changes: Rigid Transformations

ABAB

AB OPRP

Page 33: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Block Matrix Multiplication

2221

1211

2221

1211

BBBB

BAAAA

A

What is AB ?

2222122121221121

2212121121121111

BABABABABABABABA

AB

Homogeneous Representation of Rigid Transformations

11111P

TOPRPORP A

BA

ABAB

AA

TA

BBA

B

0

Page 34: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Extrinsic parameters:  translation and rotation of camera frame

tpRp CW

WCW

C Non‐homogeneous 

coordinates

Homogeneous coordinates

ptRp WC

WC

WC

1000|

|

W. Freeman

Page 35: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Combining extrinsic and intrinsic calibration parameters, in homogeneous coordinates

Forsyth&Ponce

ptR

Kp WC

WC

W

10,0,0z

1

pp C K z1

pMp W z1

Intrinsic

Extrinsic

ptRp WC

WC

WC

1000|

|World coordinates

Camera coordinates

pixels

W. Freeman

Page 36: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Other ways to write the same equation

1.........

1

1 3

2

1

zW

yW

xW

T

T

T

ppp

mmm

zvu

pMz

p W 1

PmPmv

PmPmu

3

2

3

1

pixel coordinates

world coordinates

Conversion back from homogeneous coordinates leads to (note that z = mT

3*P) :

W. Freeman

Page 37: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Extrinsic Parameters

Page 38: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Explicit Form of the Projection Matrix

Note:

M is only defined up to scale in this setting!!

Page 39: Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Calibration target

http://www.kinetic.bc.ca/CompVision/opti‐CAL.html

Find the position, ui and vi, in pixels, of each calibration object feature point.